Skip to main content
Log in

The basis of meshless domain discretization: the meshless local Petrov–Galerkin (MLPG) method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The MLPG method is the general basis for several variations of meshless methods presented in recent literature. The interrelation of the various meshless approaches is presented in this paper. Several variations of the meshless interpolation schemes are reviewed also. Recent developments and applications of the MLPG methods are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.R. Aluru and G. Li, Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation, Internat. J. Numer. Methods Engrg. 50(10) (2001) 2373–2410.

    MATH  Google Scholar 

  2. S.N. Atluri, J.Y. Cho and H.G. Kim, Analysis of the beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations, Comput. Mech. 24 (1999) 334–347.

    MATH  Google Scholar 

  3. S.N. Atluri, H.G. Kim and J.Y. Cho, A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) and local boundary integral equation (LBIE) methods, Comput. Mech. 24 (1999) 348–372.

    MATH  Google Scholar 

  4. S.N. Atluri and S. Shen, The Meshless Local Petrov–Galerkin (MLPG) Method (Tech Science Press, Los Angeles, CA, 2002).

    MATH  Google Scholar 

  5. S.N. Atluri and S. Shen, The meshless local Petrov–Galerkin (MLPG) method: A simple and less-costly alternative to the finite element and boundary element methods, CMES: Comput. Modeling Engrg. Sci. 3(1) (2002) 11–52.

    MathSciNet  MATH  Google Scholar 

  6. S.N. Atluri, J. Sladek, V. Sladek and T. Zhu, The local boundary integral equation (LBIE) and its meshless implementation for linear elasticity, Comput. Mech. 25 (2000) 180–198.

    MATH  Google Scholar 

  7. S.N. Atluri and T. Zhu, A new meshless local Petrov–Galerkin (MLPG) approach to nonlinear problems in computational modeling and simulation, Comput. Modeling Simulation Engrg. 3 (1998) 187–196.

    Google Scholar 

  8. S.N. Atluri and T. Zhu, A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput. Mech. 22 (1998) 117–127.

    MathSciNet  MATH  Google Scholar 

  9. S.N. Atluri and T. Zhu, The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elastostatics, Comput. Mech. 25 (2000) 169–179.

    MATH  Google Scholar 

  10. S.N. Atluri and T. Zhu, New concepts in meshless methods, Internat. J. Numer.Mech. Engrg. 47 (2000) 537–556.

    MathSciNet  MATH  Google Scholar 

  11. I. Babuska and J.M. Melenk, The partition of unity method, Internat. J. Numer. Methods Engrg. 40 (1997) 727–758.

    MathSciNet  MATH  Google Scholar 

  12. W. Barry and V. Thulasi, A wachspress meshless local Petrov–Galerkin method, www.sce.ait.ac.th/people/faculty/wjbarry/ (2002).

  13. R.C. Batra and H.K. Ching, Analysis of elastodynamic deformations near a crack/notch tip by the meshless local Petrov–Galerkin (MLPG) method, CMES: Comput. Modeling Engr. Sci. 3(6) (2002) 717–730.

    MATH  Google Scholar 

  14. S. Beissel and T. Belytschko, Nodal integration of element-free Galerkin method, Comput. Methods Appl. Mech. Engrg. 139 (1996) 49–74.

    MathSciNet  MATH  Google Scholar 

  15. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg. 139 (1996) 3–47.

    MATH  Google Scholar 

  16. T. Belytschko, Y.Y. Lu and L. Gu, Element-free Galerkin methods, Internat. J. Numer. Methods Engrg. 37 (1994) 229–256.

    MathSciNet  MATH  Google Scholar 

  17. M.K. Chati and S. Mukherjee, The boundary node method for three-dimensional problems in potential theory, Internat. J. Numer. Methods Engrg. 47(9) (2000) 1523–1547.

    MathSciNet  MATH  Google Scholar 

  18. J.S. Chen, C.T. Wu, S. Yoon and Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg. 50 (2001) 435–466.

    MATH  Google Scholar 

  19. H.K. Ching and R.C. Batra, Determination of crack tip fields in linear elastostatics by the meshless local Petrov–Galerkin (MLPG) method, CMES: Comput. Modeling Engrg. Sci. 2(2) (2001) 273–290.

    Google Scholar 

  20. J.Y. Cho and S.N. Atluri, Analysis of shear flexible beams, using the meshless local Petrov–Galerkin method, based on a locking-free formulation, Engrg. Comput. 18(1/2) (2001) 215–240.

    MATH  Google Scholar 

  21. S. De and K.J. Bathe, The method of finite spheres, Comput. Mech. 25(4) (2000) 329–345.

    MathSciNet  MATH  Google Scholar 

  22. C. Duarte and J.T. Oden, Hp-cloud – a meshless method to solve boundary-value problems, Comput. Methods Appl. Mech. Engrg. 139 (1996) 237–262.

    MathSciNet  MATH  Google Scholar 

  23. R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. Roy. Astronom. Soc. 181 (1977) 375–389.

    MATH  Google Scholar 

  24. Y.T. Gu and G.R. Liu, A meshless local Petrov–Galerkin (MLPG) formulation for static and free vibration analysis of thin plates, CMES: Comput. Modeling Engrg. Sci. 2(4) (2001) 463–476.

    MATH  Google Scholar 

  25. S. Hao, H.S. Park and W.K. Liu, Moving particle finite element method, Internat. J. Numer. Methods Engrg. 53(8) (2002) 1937–1958.

    MATH  Google Scholar 

  26. X. Jin, G. Li and N.R. Aluru, On the equivalence between least-squares and kernel approximations in meshless methods, CMES: Comput. Modeling Engrg. Sci. 2(4) (2001) 463–476.

    MathSciNet  Google Scholar 

  27. H.G. Kim and S.N. Atluri, Arbitrary placement of secondary nodes and error control in the meshless local Petrov–Galerkin (MPLG) method, CMES: Comput. Modeling Engrg. Sci. 1(3) (2000) 11–32.

    MathSciNet  MATH  Google Scholar 

  28. G. Li and N.R. Aluru, Boundary cloud method: A combined scattered point/boundary integral approach for boundary-only analysis, Comput. Methods Appl. Math. 191(21/22) (2002) 2337–2370.

    MathSciNet  MATH  Google Scholar 

  29. Q. Li, S. Shen, Z.D. Han and S.N. Atluri, Application of meshless local Petrov–Galerkin (MLPG) to problems with singularities and material discontinuities in 3-D elasticity, CMES: Comput. Modeling Engrg. Sci. 4(5) (2003) 567–581.

    MathSciNet  Google Scholar 

  30. H. Lin and S.N. Atluri, Meshless local Petrov–Galerkin (MPLG) method for convection–diffusion problems, CMES: Comput. Modeling Engrg. Sci. 1(2) (2000) 45–60.

    MathSciNet  Google Scholar 

  31. H. Lin and S.N. Atluri, The meshless local Petrov–Galerkin (MPLG) method for solving incompressible Navier–Stokes equations, CMES: Comput. Modeling Engrg. Sci. 2(2) (2001) 117–142.

    MathSciNet  Google Scholar 

  32. W.K. Liu, Y. Chen, R.A. Uras and C.T. Chang, Generalized multiple scale reproducing kernel particle methods, Comput. Methods Appl. Mech. Engrg. 139 (1996) 91–157.

    MathSciNet  MATH  Google Scholar 

  33. G.R. Liu and Y.T. Gu, Comparisons of two meshfree local point interpolation methods for structural analyses, CMES: Comput. Mech. 29(2) (2002) 107–121.

    MathSciNet  MATH  Google Scholar 

  34. S.Y. Long and S.N. Atluri, A meshless local Petrov–Galerkin method for solving the bending problem of a thin plate, CMES: Comput. Modeling Engrg. Sci. 3(1) (2002) 53–63.

    MATH  Google Scholar 

  35. M. Luan, R. Tian and Q. Yang, A new numerical method – finite-cover based element-free method, in: Proc. of the 10th Internat. Conf. on Computer Methods and Advances in Geomechanics, University of Arizona, Tucson, AZ, USA, 2001.

  36. J.J. Monaghan, Particle methods for hydrodynamics, Comput. Phys. Rep. 3 (1985) 71–124.

    Google Scholar 

  37. B. Nayroles, G. Touzot and P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements, Comput. Mech. 10 (1992) 307–318.

    MATH  Google Scholar 

  38. A. Needleman, Material rate dependent and mesh sensitivity in localization problems, Comput. Methods Appl. Mech. Engrg. 67 (1988) 68–85.

    Google Scholar 

  39. E. Onate, S. Idelsohn, O.C. Zienkiewicz and R.L. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Internat. J. Numer. Methods Engrg. 39 (1996) 3839–3866.

    MathSciNet  MATH  Google Scholar 

  40. E. Pardo, Meshless method for linear elastostatics based on a path integral formulation, Internat. J. Numer. Methods Engrg. 47(8) (2000) 1463–1480.

    MathSciNet  MATH  Google Scholar 

  41. E. Pardo, Convergence and accuracy of the path integral approach for elastostatics, Comput. Methods Appl. Mech. 191(19/20) (2002) 2191–2219.

    MathSciNet  Google Scholar 

  42. E. Pardo, Blurred derivatives and meshless methods, Internat. J. Numer. Methods Engrg. 56(2) (2003) 295–324.

    MathSciNet  MATH  Google Scholar 

  43. S.H. Park and S.K. Young, The least-squares meshfree method, Internat. J. Numer. Methods Engrg. 52 (2001) 997–1012.

    MathSciNet  MATH  Google Scholar 

  44. M.J.D. Powell, The theory of radial basis function approximation in 1990, in: Advances in Numerical Analysis, Vol. 2, ed. W. Light (Clarendon Press, Oxford, 1992) pp. 105–210.

    Google Scholar 

  45. L.F. Qian, R.C. Batra and L.M. Chen, Elastostatic deformations of a thick plate by using a higher-order shear and normal deformable plate theory and two meshless local Petrov–Galerkin (MLPG) method, CMES: Comput. Modeling Engrg. Sci. 4(1) (2003) 161–176.

    MATH  Google Scholar 

  46. I.S. Raju and D.R. Phillips, Further fevelopments in the MLPG method for beam problems, CMES: Comput. Modeling Engrg. Sci. 4(1) (2003) 141–160.

    MathSciNet  MATH  Google Scholar 

  47. D. Shepard, A two-dimensional function for irregularly spaced points, in: Proc. of ACM National Conf., 1968, pp. 517–524.

  48. J. Sladek and V. Sladek, A Trefftz function approximation in local boundary integral equations, Comput. Mech. 28(3/4) (2002) 212–219.

    MathSciNet  MATH  Google Scholar 

  49. J. Sladek and V. Sladek, Application of local boundary integral equation method into micropolar elasticity, Engrg. Anal. Bound. Elem. 27(1) (2003) 81–90.

    MATH  Google Scholar 

  50. J. Sladek, V. Sladek and S.N. Atluri, Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties, Comput. Mech. 24(6) (2000) 456–462.

    MathSciNet  MATH  Google Scholar 

  51. J. Sladek, V. Sladek and S.N. Atluri, A pure contour formulation for the meshless local boundary integral equation method in thermoelasticity, CMES: Comput. Modeling Engrg. Sci. 2(4) (2001) 423–434.

    MathSciNet  MATH  Google Scholar 

  52. J. Sladek, V. Sladek and S.N. Atluri, Application of local boundary integral equation method to solve boundary value problems, Internat. Appl. Mech. 38(9) (2002) 3–27.

    MathSciNet  MATH  Google Scholar 

  53. V. Sladek, J. Sladek, S.N. Atluri and R. Keer, Numerical integration of singularities in meshless implementation of the LBIE, Comput. Mech. 25 (2000) 394–403.

    MathSciNet  MATH  Google Scholar 

  54. J. Sladek, V. Sladek and H.A. Mang, Meshless local boundary integral equation method for simply supported and clamped plates resting on elastic foundation, Comput. Methods Appl. Math. 191(51/52) (2002) 5943–5959.

    MATH  Google Scholar 

  55. J. Sladek, V. Sladek and R. Van Keer, Global and local Trefftz boundary integral formulations for sound vibration, Adv. Engrg. Software 33(7–10) (2002) 469–476.

    MATH  Google Scholar 

  56. N. Sukumar, B. Moran and T. Belytschko, The natural element method in solid mechanics, Internat. Numer. Methods Engrg. 43 (1998) 839–887.

    MathSciNet  MATH  Google Scholar 

  57. Z. Tang, S. Shen and S.N. Atluri, Analysis of materials with strain gradient effects: A meshless local Petrov–Galerkin approach with nodal displacements only, CMES: Comput. Modeling Engrg. Sci. 4(1) (2003) 177–196.

    MATH  Google Scholar 

  58. J.G. Wang and G.R. Liu, A point interpolation meshless method based on radial basis functions, Internat. J. Numer. Methods Engrg. 54(11) (2002) 1623–1648.

    MATH  Google Scholar 

  59. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree, Adv. Comput. Math. 4 (1995) 389–396.

    MathSciNet  MATH  Google Scholar 

  60. H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory 93 (1998) 258–272.

    MathSciNet  MATH  Google Scholar 

  61. H. Wendland, Meshless Galerkin methods using radial basis function, Math. Comp. 68(228) (1999) 1521–1531.

    MathSciNet  MATH  Google Scholar 

  62. Z. Wu, Hermite–Birkhoff interpolation of scattered data by radial basis functions, Approx. Theory Appl. 8 (1992) 1–10.

    MATH  Google Scholar 

  63. Z. Wu, Compactly supported positive definite radial functions, Adv. Comput. Math. 4 (1995) 283–292.

    Article  MathSciNet  MATH  Google Scholar 

  64. J.R. Xiao and M.A. McCarthy, Local variational inequality and meshless analysis of a beam involving unilateral contact conditions, in: Proc. of the ACMC-UK 10th Anniversary Conference, Swansea, 2002, pp. 223–226.

  65. J.M. Zhang and Z.H. Yao, Meshless regular hybrid boundary node method, CMES: Comput. Modeling Engrg. Sci. 2(3) (2001) 307–318.

    MATH  Google Scholar 

  66. X. Zhang, K.Z. Song, M.W. Lu and X. Liu, Meshless methods based on collocation with radial basis functions, Comput. Mech. 26(4) (2000) 333–343.

    MATH  Google Scholar 

  67. T. Zhu and S.N. Atluri, A modified collocation and a penalty formulation for enforceing the essential boundary conditions in the element free Galerkin method, Comput. Mech. 21 (1998) 211–222.

    MathSciNet  MATH  Google Scholar 

  68. T. Zhu, J.D. Zhang and S.N. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput. Mech. 21 (1998) 223–235.

    MathSciNet  MATH  Google Scholar 

  69. T. Zhu, J.D. Zhang and S.N. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems, Comput. Mech. 22 (1998) 174–186.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya N. Atluri.

Additional information

Communicated by Z. Wu and B.Y.C. Hon

AMS subject classification

65N30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atluri, S.N., Shen, S. The basis of meshless domain discretization: the meshless local Petrov–Galerkin (MLPG) method. Adv Comput Math 23, 73–93 (2005). https://doi.org/10.1007/s10444-004-1813-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1813-9

Keywords

Navigation