Skip to main content
Log in

Computational complexity of the integration problem for anisotropic classes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We determine the exact order of ɛ-complexity of the numerical integration problem for the anisotropic class W r (Id) and H r (Id) with respect to the worst case randomized methods and the average case deterministic methods. We prove this result by developing a decomposition technique of Borel measure on unit cube of d-dimensional Euclidean space. Moreover by the imbedding relationship between function classes we extend our results to the classes of functions W Λp (Id) and H Λp (Id). By the way we highlight some typical results and stress the importance of some open problems related to the complexity of numerical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.I. Babenko, Theoretical Foundations and Construction of Numerical Algorithms for Problems in Mathematical Physics (Nauka, Moskow, 1979) (in Russian).

    Google Scholar 

  2. N.S. Bakhvalov, On the optimality of linear methods for operator approximation in convex classes of functions, USSR Comput. Math. Math. Phys. 11 (1971) 244–249.

    Google Scholar 

  3. A.P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952) 85–139.

    Google Scholar 

  4. F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2002) 1–49.

    Google Scholar 

  5. W. Dahmen, R. DeVore and K. Scherer, Multi-dimensional spline approximation, SIAM J. Numer. Anal. 17 (1980) 380–402.

    Google Scholar 

  6. D. Dung, Continous algorithms in N-term approximation and nonlinear n-width, J. Approx. Theory 102 (2000) 217–242.

    Google Scholar 

  7. D. Dung, Nonlinear N-term approximation of smooth functions using wavelet decompositions, in: Proc. of the 3rd Asian Math. Conf. (2000), eds. T. Sunada, P.W. Sy and Y. Lo (World Scientific, Singapore, 2002) pp. 153–174.

    Google Scholar 

  8. F. Gensun and Y. Peixin, Integration error for multivariate functions from anisotropic classes, J. Complexity 19 (2003) 610–627.

    Google Scholar 

  9. F. Gensun and Y. Peixin, Computational complexity in worst, stochastic and average case setting on functional approximation problem of multivariate, submitted for publication.

  10. S. Heinrich, Random approximation in numerical analysis, in: Function Analysis, Proceedings of the Essen Conference, eds. K.D. Bierstedt et al., Lecture Notes in Pure and Applied Mathematics, Vol. 150 (Marcel Dekker, New York, 1994) pp. 123–171.

    Google Scholar 

  11. S.H. Hikernell and R.X. Yue, Optimal quadrature for Harr wavelet function space, to appear in Math. Comp.

  12. R. Hochmuth, Nonlinear anisotropic boundary value problems – Regularity results and multiscale discretizations, Nonlinear Anal. 46 (2001) 1–18.

    Google Scholar 

  13. C. Micchelli, Y. Xu and P. Ye, Cucker smale learning theory in Besov spaces, in: NATO–ASI on Learning Theory and Practice, Advances in Learning Theory: Methods, Models and Applications, eds. J.A.K. Suykens, G. Horvath, S. Basu, C. Micchelli and J. Vandewalle, Leuven (2002), NATO Science Series III: Computer and Systems Sciences, Vol. 190 (IOS Press, Amsterdam, 2003) pp. 47–68.

    Google Scholar 

  14. S.M. Nikolskii, Approximation of Functions of Several Variables and Imbedding Theorems (Springer, Berlin, 1975).

    Google Scholar 

  15. E. Novak, A decomposition of measures in Euclidean space yielding error bounds for quadrature formulas, Math. Z. 196 (1987) 407–413.

    Google Scholar 

  16. E. Novak, Stochastic properties of quadrature formulas, Numer. Math. 53 (1988) 609–620.

    Google Scholar 

  17. E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, Vol. 1349 (Springer, Berlin, 1988).

    Google Scholar 

  18. E. Novak, Intractablity results for positive quadrature formulas and extremal problems for trigonomeric polynomials, J. Complexity 15 (1999) 299–316.

    Google Scholar 

  19. E. Novak, Is there a curse of dimension for integration? in: 11th Internat. Conf. on Domain Decomposition Methods, eds. C.-H. Lai, P.E. Bjorstad, M. Cross and O.B. Widlund (Domain Decomposition Press, Bergen, 1999) pp. 88–95.

    Google Scholar 

  20. E. Novak and H. Woźniakowski, Intractability results for integration and discrepancy, J. Complexity 17 (2001), 388–441.

    Google Scholar 

  21. E. Novak and H. Woźniakowski, When are integration and discrepancy tractable? in: Foundation of Computational Mathematics, eds. R.A. DeVore, A. Iserles and E. Süli (Cambridge Univ. Press, Cambridge, 2001) pp. 211–266.

    Google Scholar 

  22. K. Ritter, Average-Case Analysis of Numerical Problems, Lecture Notes in Mathematics, Vol. 1733 (Springer, Berlin, 2000).

    Google Scholar 

  23. L.L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981).

    Google Scholar 

  24. I.H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14 (1998) 1–33.

    Google Scholar 

  25. S. Smale and D. Zhou, Estimating the approximation error in learning theory, Anal. Appl. 1 (2003) 1–25.

    Google Scholar 

  26. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton Univ. Press, Princeton, NJ, 1970).

    Google Scholar 

  27. V.N. Temlyakov, On a way of obtaining lower estimates for the error quadrature formulas, USSR Mat. Sbornik 71 (1992) 247–257.

    Google Scholar 

  28. V.N. Temlyakov, Approximation of Periodic Functions of Several Variables (Nova Science, New York, 1993).

    Google Scholar 

  29. V.N. Temlyakov, Cubature formulas, diserepancy and nonlinear approximation, J. Complexity 19 (2003) 352–391.

    Google Scholar 

  30. S. Tezuka and H. Faure, I-binomial scrambling of digital nets and sequences, J. Complexity 19 (2003) 744–757.

    Google Scholar 

  31. J.F. Traub, G.W. Wasilkowski and H. Woźniakowski, Information Based Complexity (Academic Press, New York, 1988).

    Google Scholar 

  32. J.F. Traub and A.G. Werschulz, Complexity and Information (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  33. J.O. Wojtaszczyk, Multivariate integration in C([0,1]d) is not strongly tractable, J. Complexity 19 (2003) 638–643.

    Google Scholar 

  34. H. Woźniakowski, Open problems for tractability of multivariate integration, J. Complexity 19 (2003) 434–444.

    Google Scholar 

  35. D.X. Zhou, The covering number in learning theory, J. Complexity 18 (2002) 739–767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Peixin.

Additional information

Communicated by A. Zhou

Project supported by the fund of Personnel Division of Nankai University and the Program of “One Hundred Distinguished Chinese Scientists” of the Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peixin, Y. Computational complexity of the integration problem for anisotropic classes. Adv Comput Math 23, 375–392 (2005). https://doi.org/10.1007/s10444-004-1830-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1830-8

Keywords

Navigation