Skip to main content
Log in

A regularized domain decomposition method with Lagrange multiplier

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the nonoverlapping domain decomposition method with Lagrange multiplier for three-dimensional second-order elliptic problems with no zeroth-order term. It is known that the methods result in a singular subproblem on each internal (floating) subdomain. To handle the singularity, we propose a regularization technique which transforms the corresponding singular problems into approximate positive definite problems. For the regularized method, one can build the interface equation of the multiplier directly. We first derive an optimal error estimate of the regularized approximation, and then develop a cheap preconditioned iterative method for solving the interface equation. For the new method, the cost of computation will not be increased comparing the case without any floating subdomain. The effectiveness of the new method will be confirmed by both theoretical analyzes and numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Achdou, Yu. Kuznetnov and O. Pironneau, Substructuring preconditioners for the Q 1 mortar element method, Numer. Math. 71 (1995) 419–449.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Achdou, Y. Maday and O. Widlund, Iterative substructuring preconditioners for mortar element methods in two dimensions, SIAM J. Numer. Anal. 36 (1999) 551–580.

    Article  MathSciNet  Google Scholar 

  3. F. Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math. 84 (1999) 173–197.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Belgacem and Y. Maday, The mortar element method for three dimensional finite elements, Math. Modelling Numer. Anal. 31 (1997) 289–302.

    MATH  Google Scholar 

  5. C. Bernardi, Y. Maday and A. Patera, A new nonconforming approach to domain decomposition: The mortar element method, in: Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, Vol. XI (Paris, 1989–1991) (Longman Sci. Tech., Harlow, 1994) pp. 13–51.

    Google Scholar 

  6. J. Bramble, J. Pasciak and A. Schatz, The construction of preconditioners for elliptic problems by substructuring, IV, Math. Comp. 53 (1989) 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  7. T.F. Chan and Jun Zou, A convergence theory of multilevel additive Schwarz methods on unstructured meshes, Numer. Algorithms 13 (1996) 365–398.

    Article  MathSciNet  MATH  Google Scholar 

  8. Q. Dinh, R. Glowinski and J. Periaux, Solving elliptic problems by domain decomposition methods with applications, in: Elliptic Problem Solver II (Academic Press, New York, 1982).

    Google Scholar 

  9. M. Dorr, On the discretization of interdomain coupling in elliptic boundary-value problems, in: Domain Decomposition Methods, ed. T.F. Chan (SIAM, Philadelphia, 1989) pp. 17–37.

    Google Scholar 

  10. Q. Du, Optimization based nonoverlapping domain decomposition algorithms and their convergence, SIAM J. Numer. Anal. 39 (2001) 1056–1077.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Farhat, J. Mandel and F. Roux, Optimal convergence properties of the FETI domain decomposition method, Comput. Methods Appl. Mech. Engrg. 115 (1994) 367–388.

    Article  MathSciNet  Google Scholar 

  12. C. Farhat, M. Lesoinne and K. Pierson, A scalable dual–primal domain decomposition method, Numer. Linear Algebra Appl. 7 (2000) 687–714.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Hackbusch and B. Khoromskij, A sparse ℋ-matrix arithmetic. II: Application to multi-dimensional problems, Computing 64 (2000) 21–47.

    MathSciNet  MATH  Google Scholar 

  14. Q. Hu, Study of domain decomposition methods with non-matching grids, Ph.D. thesis, Institute of Mathematics, Chinese Academy of Science, Beijing (1998).

  15. Q. Hu, A new kind of preconditioner for interface equations of mortar multipliers on subspaces, in: Recent Progress in Computational and Applied PDEs, eds. T. Chan et al. (Kluwer Academic Publishers, 2002) pp. 203–214.

  16. Q. Hu and G. Liang, Acceleration of the non-symmetrized two-level iteration, Appl. Numer. Math. 41 (2002) 305–323.

    Article  MathSciNet  MATH  Google Scholar 

  17. Q. Hu and G. Liang, A general framework to construct interface preconditioners, Chinese J. Num. Math. Appl. 21 (1999) 83–95 (Published in New York).

    MathSciNet  Google Scholar 

  18. Q. Hu, G. Liang and J. Lui, The construction of preconditioner for domain decomposition methods with polynomial Lagrangian multipliers, J. Comp. Math. 19 (2001) 213–224.

    MATH  Google Scholar 

  19. Q. Hu and J. Zou, A non-overlapping domain decomposition method for Maxwell's equations in three dimensions, SIAM J. Numer. Anal. 41 (2003) 1682–1708.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Huang and J. Zou, A mortar element method for elliptic problems with discontinuous coefficients, IMA J. Numer. Anal. 22 (2002) 549–576.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Klawonn, O. Widlund and M. Dryja, Dual–primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40 (2002) 159–179.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Kim, R. Lazarov, J. Pasciak and P. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions, SIAM J. Numer. Anal. 39 (2001) 517–538.

    Article  MathSciNet  Google Scholar 

  23. Y. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on non-matching grids, Russian J. Numer. Anal. Math. Modeling 10(3) (1995) 187–211.

    Article  MATH  Google Scholar 

  24. C. Lacour, Iterative substructuring preconditioners for the mortar finite element method, in: Ninth International Conference of Domain Decomposition Methods, eds. P. Bjorstad, M. Espedal and D. Keyes (1997).

  25. G. Liang and J. He, The non-conforming domain decomposition method for elliptic problems with Lagrangian multipliers, Chinese J. Num. Math. Appl. 15(1) (1993) 8–19.

    MathSciNet  Google Scholar 

  26. G. Liang and P. Liang, Non-conforming domain decomposition with the hybrid finite element method, Math. Numer. Sinica 11(3) (1989) 323–332.

    MATH  Google Scholar 

  27. J. Mandel and R. Tezaur, Convergence of a substructuring methods with Lagrangian multipliers, Numer. Math. 73 (1996) 473–487.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Smith, P. Bjorstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge University Press, 1996).

  29. P. Tallec, Domain decomposition methods in computational mechanics, Comput. Mech. Adv. 2 (1994) 1321.

    Google Scholar 

  30. P. Tallec, T. Sassi and M. Vidrascu, Three-dimensional domain decomposition methods with nonmatching grids and unstructured coarse solvers, Contemp. Math. 180 (1994) 61–74.

    Google Scholar 

  31. B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal. 38 (2000) 989–1012.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review 34 (1992) 581–613.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Xu and J. Zou, Some non-overlapping domain decomposition methods, SIAM Review 40 (1998) 857–914.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiya Hu.

Additional information

Communicated by Achui Zhou

The work is supported by Natural Science Foundation of China G10371129.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q. A regularized domain decomposition method with Lagrange multiplier. Adv Comput Math 26, 367–401 (2007). https://doi.org/10.1007/s10444-004-4094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-4094-4

Keywords

Mathematics subject classifications (2000)

Navigation