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POLYNOMIAL INTERPOLATION ON THE UNIT SPHERE II

WOLFGANG ZU CASTELL, NOEMÍ LAÍN FERNÁNDEZ AND YUAN XU

Abstract. The problem of interpolation at (n+1)2 points on the unit sphere
S2 by spherical polynomials of degree at most n is proved to have a unique
solution for several sets of points. The points are located on a number of circles
on the sphere with even number of points on each circle. The proof is based
on a method of factorization of polynomials.

1. Introduction

Let S2 = {x : ‖x‖ = 1} denote the unit sphere of R3, where ‖x‖2 = x2
1+x2

2+x2
3.

Let Πn(S
2) denote the space of spherical polynomials of degree n, which is the

restriction of polynomials of degree n in three variables to S2. It is known that

dimΠn(S
2) = (n+ 1)2, n ≥ 0.

The problem of interpolation on the unit sphere by polynomials is as follows:

Problem 1. Let X = {ai : 1 ≤ i ≤ (n + 1)2} be a set of pairwise distinct points
on S2. Find conditions on X such that there is a unique polynomial T ∈ Πn(S

2)
satisfying

T (ai) = fi, ai ∈ X, 1 ≤ i ≤ (n+ 1)2,

where {fi} is an arbitrary set of data.

If there is a unique solution to the interpolation problem, we say that the problem
is poised and that X solves Problem 1. This problem has been studied recently in
[3, 4, 5, 7, 11, 14, 15].

Although almost all choices of X will solve Problem 1, it is difficult to know
whether a given set X will work since computing the determinant of the interpola-
tion matrix is difficult. In [14] a large family of sets of interpolation points is given
explicitly, each set solving Problem 1. Let us briefly describe this construction.
The (n+ 1)2 points lie on n+ 1 distinct latitudes (parallel circles on S2), and each
latitude contains an odd number of equidistant points. The number of points needs
not to be the same on each latitude and there is no restriction on the position of
the latitudes. For the simplest case n = 2m, the set of (2m + 1)2 points lie on
2m + 1 latitudes, each of them containing 2m + 1 equally spaced nodes. In [4],
another family of points that solves Problem 1 was found, for which n = 2m − 1.
There the points lie on 2m latitudes and each latitude has an even number of 2m
equally spaced points. In this case, the 2m latitudes are divided into two groups;
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the equidistant points on one half of the latitudes need to differ by a rotation from
the points on the other half of the latitudes. While the proof in [4] is based on
the analysis of the determinants of the interpolation matrix, the proof in [14] uses
a factorization method which avoids the determinants. Furthermore, the factor-
ization method provides many more sets of points leading to poised problems. A
key observation in [14] is that the use of equidistant points allows us to reduce the
problem on the sphere to a special trigonometric interpolation problem.

The purpose of this paper is to show that the factorization method also works
in the setting of an even number of points on each latitude. Again, the use of
equidistant points reduces the problem to an interpolation problem of one variable.
However, the new interpolation problem is different from the one with an odd
number of points on each latitude and has to be solved using a completely different
method. In comparison to [4], the factorization method allows to obtain more sets
of points that solve Problem 1.

For the background of polynomial interpolation in general, we refer to the survey
article [6] and the references therein, even though interpolation on the sphere is not
discussed there. Let us also mention that the factorization method is closely related
to the method used for polynomial interpolation on the unit disk in [1, 2, 8]. Apart
from a result in [7], which is a simple consequence of Bezout’s theorem, the family
of points found in [4, 14], and those stated below appear to be the only ones that
are given explicitly for all n.

The paper is organized as follows. The factorization method is studied in Section
2 and its application to polynomial interpolation on S2 is given in Section 3.

2. Factorization of polynomials

2.1. Polynomial representation. For fixed a ∈ (−1, 1), let S2(a) := {(x, y, z) ∈
S2 : z = a} denote the circle on S2 resulting from the intersection of S2 with the
plane z = a. This set is called latitude at z = a.

On the unit sphere S
2 it is more convenient to work with spherical coordinates,

x = sin θ sinφ, y = sin θ cosφ, z = cos θ, 0 ≤ φ < 2π, 0 ≤ θ ≤ π.

For a polynomial Tn ∈ Πn(S
2), we introduce the notation T̃n defined by

T̃n(θ, φ) = Tn(sin θ cosφ, sin θ sinφ, cos θ), 0 ≤ φ < 2π, 0 ≤ θ ≤ π.

If X = {(xi, yi, zi) : 1 ≤ i ≤ M} is a set of points on S2, we also use the notation

X̃={(θi, φi) : 1 ≤ i ≤ M} for the corresponding set of spherical coordinates.

It has been shown in Section 2 of [14] that the polynomial T̃n can be written as

T̃n(θ, φ) = a0(cos θ)(2.1)

+
n∑

k=1

[
ak(cos θ) (sin θ)

k cos kφ+ bk(cos θ)(sin θ)
k sin kφ

]
,

where ak(·) and bk(·) are polynomials of degree n−k in one variable. Note that for

any fixed θ, the polynomial T̃n(θ, ·) is a trigonometric polynomial of degree n.
Below we will consider interpolation problems based on points that are equidis-

tantly distributed on an even number of latitudes, each of them containing an
even number of nodes. To describe these points, it is convenient to introduce the
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following notation:

Θα,s :=

{
φα
j : φα

j =
(2j + α)π

2s
, j = 0, 1, . . . , 2s− 1

}
,

where s ∈ N and α ∈ [0, 2). These points can be considered as equidistant points
on the unit circle using the mapping φ 7→ eiφ. The parameter α indicates that the
points are defined up to a rotation by an angle of απ/2s.

Lemma 2.1. Let n = 2m−1 and α ∈ [0, 2). For φ ∈ Θα,m,

T̃n(θ, φ) = a0(cos θ)(2.2)

+

m−1∑

k=1

[
(ak(cos θ)(sin θ)

k+u2m−k(cos θ)(sin θ)
2m−k) cos kφ

+(bk(cos θ)(sin θ)
k+v2m−k(cos θ)(sin θ)

2m−k) sin kφ
]

+
(
am(cos θ) cos

απ

2
− bm(cos θ) sin

απ

2

)
(sin θ)m cos

(
mφ− απ

2

)
,

where, for k = 1, . . . ,m− 1,

u2m−k(t) = a2m−k(t) cosαπ + b2m−k(t) sinαπ,

v2m−k(t) = a2m−k(t) sinαπ − b2m−k(t) cosαπ

are polynomials of degree k − 1.

Proof. We split the sum in (2.1) into two sums, one over 1 ≤ k ≤ m− 1 and the
other over m ≤ k ≤ 2m − 1. In the second sum we change the summation index
k 7→ 2m−k and use the elementary relations

cos(2m− k)φ =cos((2j + α)π − kφ) = cosαπ cos kφ+ sinαπ sinkφ,

sin(2m− k)φ =sin((2j + α)π − kφ) = sinαπ cos kφ− cosαπ sin kφ,

which holds for φ ∈ Θα,m. Combining the two sums, we obtain

T̃n(θ, φ) = a0(cos θ) +
m−1∑

k=1

[
(ak(cos θ)(sin θ)

k+u2m−k(cos θ)(sin θ)
2m−k) cos kφ

+(bk(cos θ)(sin θ)
k+v2m−k(cos θ)(sin θ)

2m−k) sin kφ
]

+ (am(cos θ) cos(απ −mφ) + bm(cos θ) sin(απ −mφ))(sin θ)m.

Using the addition formula for the cosine and the sine function

cos(mφ− απ) = cos
(
mφ− απ

2

)
cos

απ

2
+ sin

(
mφ− απ

2

)
sin

απ

2
,

sin(mφ− απ) = sin
(
mφ− απ

2

)
cos

απ

2
− cos

(
mφ− απ

2

)
sin

απ

2
,

the am and bm terms of the above expression of T̃n can be rewritten as
(
am(cos θ) cos

απ

2
− bm(cos θ) sin

απ

2

)
(sin θ)m cos

(
mφ− απ

2

)

+
(
am(cos θ) sin

απ

2
+ bm(cos θ) cos

απ

2

)
(sin θ)m sin

(
mφ− απ

2

)
.

Consequently, formula (2.2) follows from the fact that φ ∈ Θα,m satisfies sin(mφ−
απ/2) = 0. �
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Lemma 2.2. Let T̃2m−1 be given as in (2.2) and θ ∈ (0, π). If T̃2m−1(θ, φ) = 0 for

φ ∈ Θα,m, then a0(cos θ) = 0, and

ak(cos θ) + (sin θ)2m−2k(a2m−k(cos θ) cosαπ + b2m−k(cos θ) sinαπ) = 0,

bk(cos θ) + (sin θ)2m−2k(a2m−k(cos θ) sinαπ − b2m−k(cos θ) cosαπ) = 0,
(2.3)

for 1 ≤ k ≤ m− 1. Furthermore,

(2.4) am(cos θ) cos
απ

2
− bm(cos θ) sin

απ

2
= 0.

Proof. The proof uses the following fact. Interpolation on the 2m zeros of the
function sin

(
mφ− απ

2

)
inside [0, 2π) by a trigonometric polynomial of the form

Sm−1(φ) = a0 +
m−1∑

k=1

(ak cos kθ + bk sin kθ) + an cos(mφ− απ/2)

is unique (see [16, Vol. II]). Observe that the points in Θα,m are exactly zeros of
sin (mφ− απ/2) and cos(mφ− απ/2) = ±1 for φ ∈ Θα,m.

By Lemma 2.1, T̃2m−1 takes the form of (2.2). The assumption that T̃2m−1(θ, φ)=

0 implies that the coefficients of T̃2m−1(θ, ·) are all zero. This leads to a0(cos θ) = 0,

ak(cos θ)(sin θ)
k + u2m−k(cos θ)(sin θ)

2m−k = 0,

bk(cos θ)(sin θ)
k + v2m−k(cos θ)(sin θ)

2m−k = 0,

for k = 1, . . . ,m − 1, which become the equations in (2.3) upon multiplying by
(sin θ)−k, and

(
am(cos θ) cos

απ

2
− bm(cos θ) sin

απ

2

)
(sin θ)m = 0,

which gives (2.4). Note that sin θ 6= 0 as θ ∈ (0, π). �

To proceed from here, we want to choose 2m distinct θi such that whenever the
polynomials in (2.3) and (2.4) vanish on these 2m points, they will be identically
zero. To this end, however, we need to impose an additional symmetry. We choose
θi to satisfy

(2.5) θ2m+1−i = π − θi, θi ∈ (0, π), 1 ≤ i ≤ m.

In other words, we choose the latitudes to be symmetric with respect to the equator.
If p(t) is a polynomial of degree n, we denote by peven and podd the even and the

odd part of p, respectively. To be precise, if p(t) =
∑N

j=0 ajt
j , then

peven(t) =
∑

0≤2j≤N

a2jt
2j and podd(t) =

∑

1≤2j−1≤N

a2j−1t
2j−1.

Lemma 2.3. Let T̃2m−1 be given as in (2.2). If for some θ in (0, π)

T̃2m−1(θ, φ) = 0, φ ∈ Θ0,m and T̃2m−1(π − θ, φ) = 0, φ ∈ Θ1,m,

then, setting t = cos θ, we have a0(t) = 0 and, for 1 ≤ k ≤ m− 1,

peven2m−k−1(t) + qoddk−1(t)(1 − t2)m−k = 0,

podd2m−1−k(t) + qevenk−1 (t)(1 − t2)m−k = 0,
(2.6)

where either p2m−k−1(t) = ak(t) and qk−1(t) = a2m−k(t), or p2m−k−1(t) = bk(t)
and qk−1(t) = −b2m−k(t). Furthermore, am(t) = bm(t) = 0.



POLYNOMIAL INTERPOLATION ON THE UNIT SPHERE II 5

Proof. The assumption allows us to use the previous lemma. Since α = 0 or α = 1,
the fact that am(t) = bm(t) = 0 follows immediately from (2.4). For 1 ≤ k ≤ m− 1
and α = 0, the equations (2.3) become

ak(cos θ) + (sin θ)2m−2ka2m−k(cos θ) = 0,

bk(cos θ)− (sin θ)2m−2kb2m−k(cos θ) = 0.
(2.7)

For 1 ≤ k ≤ m − 1, α = 1 and θ replaced by π − θ, the equations (2.3) take the
form

ak(− cos θ)− (sin θ)2m−2ka2m−k(− cos θ) = 0,

bk(− cos θ) + (sin θ)2m−2kb2m−k(− cos θ) = 0.
(2.8)

Since p(t) + p(−t) = 2peven(t) and p(t) − p(−t) = 2podd(t), combining equations
(2.7) and (2.8) proves the result. �

We use the notation p2m−k−1 and qk−1 since they are polynomials of degree
2m−k− 1 and k− 1, respectively. In the following we will work with the equations
in (2.6). If p is an even polynomial, it can be written as p(t) = p∗(t2); if p is an odd
polynomial, it can be written as p(t) = tp∗(t2). Thus, in place of (2.6) we will need
to consider polynomials of the form p(t) + tq(t)(1 − t2)r and tp(t) + q(t)(1 − t2)r.
We will need to study the possibility of interpolation by such polynomials. This is
discussed in the following subsection.

2.2. Chebyshev systems. A family of functions {φ1, . . . , φr} is called a Cheby-
shev system on a set E ⊆ R, if every linear combination from the span{φ1, . . . , φr}
has at most r zeros in E; in other words, interpolation on r points by functions in
the span{φ1, . . . , φr} has a unique solution. In this subsection we prove that the
families of functions in (2.6) are Chebyshev systems on (0, 1).

Proposition 2.4. Let r and s be two nonnegative integers such that r > s > 0.
For ǫ = 0 or 1, let

g(t) = pr(t
2) + t±1(1 − t2)r−sqs−1+ǫ(t

2),

where pr and qs−1+ǫ are polynomials of degree r and s − 1 + ǫ, respectively. If g
vanishes on r + s+ 1 + ǫ distinct points in (0, 1), then g(t) ≡ 0.

Proof. We first prove the case that the power of t±1 in g(t) is taken as t and ǫ = 0.
The cases t−1 or ǫ = 1 are similar; in fact, the proof for the case ǫ = 1 is identical,
and only minor changes (merely the numbers b∗k below will change) are needed for
the case that t±1 is taken as t−1.

Changing variables t 7→ t2 shows that we need to prove that if

g∗(t) = pr(t) +
√
t(1− t)r−sqs−1(t)

vanishes on r + s+ 1 distinct points in [0, 1], then g∗(t) ≡ 0. Let

h(t) := tr−
1

2

dr+1

dtr+1
g∗(t) = tr−

1

2

dr+1

dtr+1

[√
t(1− t)r−sqs−1(t)

]
.

Using Rolle’s theorem repeatedly, we see that it suffices to prove that if h(t) vanishes
on s distinct points in (0, 1), then qs−1(t) ≡ 0.

Since qs−1 is a polynomial, we can write it as

qs−1(t) = b0 + b1(1− t) + . . .+ bs−1(1− t)s−1.
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Using the Leibnitz rule repeatedly, we have

dr+1

dtr+1
tk+j+ 1

2 =
t−r− 1

2

2r+1

k+j∏

i=0

(2i+ 1)(−1)r−k−j

r−k−j∏

i=1

(2i− 1)tk+j .

In the following, we will use the convention that
∏b

i=a = 1 whenever b < a. This
leads to

h(t) =
dr+1

dtr+1

s−1∑

k=0

bk

r−s∑

j=0

(−1)j
(
r − j

j

)
tk+j+ 1

2 =

s−1∑

k=0

b∗khk(x),

where

b∗k = bk
(−1)r−k

2r+1

k−1∏

i=0

(2i+ 1)
s−k−1∏

i=1

(2i− 1) and hk(t) =
r−s∑

j=0

ak,jt
j+k,

in which the coefficients ak,j are given by

(2.9) ak,j =

(
r − s

j

) j∏

i=0

(2k + 2i+ 1)

r−s∏

i=j

(2(r − k − i)− 1).

We note that all coefficients ak,j are positive numbers. The polynomial hk is of
degree r − s + k. In order to prove the proposition, we need to show that the set
{h0, h1, . . . , hs−1} forms a Chebyshev system on (0, 1). In other words, we need
to prove that the matrix (hj(tk))

s−1
j,k=0 is invertible for any set of distinct points in

(0, 1).
Let t = {t1, t2, . . . , ts} be a given set of distinct numbers in (0, 1). For a given

set of nonnegative integers λ = {j0, j1, . . . , js−1}, we introduce the notation

V (λ; t) = det




tj01 tj02 . . . tj0s
tj11 tj12 . . . tj1s
...

... . . .
...

t
js−1

1 t
js−1

2 . . . t
js−1

s


 .

In the case of λ = {s− 1, s− 2, . . . , 0}, we denote the determinant by Vs(t), which
is the Vandermonde determinant

Vs(t) = det[tjk+1]
s−1
k,j=0 =

∏

1≤i<j≤s

(tj − ti).

For a given set of nonnegative integers λ, we further introduce the notation

sλ(t) = sj0,j1,...,js−1
(t) =

V (λ; t)

Vs(t)
.

Note that sλ is a symmetric polynomial in t and sλ is zero if j0, j1, . . . , js−1 are
not pairwise distinct. If µ = (µ0, µ1 . . . , µs−1) is a partition, that is, µ0 ≥ µ1 ≥
. . . ≥ µs−1 ≥ 0, µi ∈ N, and ji = µi + n − i + 1 for 0 ≤ j ≤ s − 1, then sλ is
called a Schur polynomial, cf. [9] for details. It is known that Schur polynomials
can be written as a linear combination of monomial symmetric polynomials and
the coefficients in the linear combination are all positive (called Kosta numbers).
For our purpose, it is enough to note that the Schur polynomials are positive when
tl > 0 for all 1 ≤ l ≤ s. In particular, it follows that if j0 < j1 < . . . < js−1, then
sλ(t) is positive when tl > 0 for all 1 ≤ l ≤ s.
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Using the definition of the polynomials hj we can write

1

Vs(t)
det(hj(tk+1))

s−1
j,k=0(2.10)

=

r−s∑

j0=0

r−s+1∑

j1=1

· · ·
r−1∑

js−1=s−1

a0,j0a1,j1−1 . . . as−1,js−1−(s−1)sj0,j1,...,js−1
(t).

For λ = {j0, j1, . . . , js−1} we will also denote the coefficient of sλ in the above sum
by Aλ; that is

Aλ = a0,j0a1,j1−1 . . . as−1,js−1−(s−1).

Recall that aj,k are all positive numbers. If λ = {j0, j1, . . . , js−1} is not a partition,
then a proper permutation of j0, j1, . . . , js−1 will be. The determinant changes sign
when two rows are exchanged, so that sλ is positive if the permutation is even and
it is negative if the permutation is odd. Every permutation can be factored into a
number of transpositions. A transposition means exchanging two elements. If sλ
is negative, there is a transposition of λ, call it λ′, such that sλ′(t) = −sλ(t) > 0.

Let sλ(t) be negative and assume that jp and jq are a pair in λ = {j0, j1, . . . , js−1}
such that p < q but jp > jq. Considering the summation indices in (2.10), we must
have jp > jq > q > p. Let λ′ be the image of λ under the transposition (p, q), that
is, with jp and jq exchanged. Then sλ′(t) > 0. The coefficients of these two terms
in (2.10), Aλ and Aλ′ differ by two terms only. We have

Aλ′ −Aλ = (ap,jq−paq,jp−q − ap,jp−paq,jq−q)
∏

i6=p,q

ai,ji−i.

We now show that Aλ′ > Aλ, which will complete the proof of the proposition.
Recall the definition of ak,j in (2.9). Let us denote bk,j = ak,j/

(
r−s
j

)
. Then it is

easy to verify that

bp,jq−p

bq,jq−q
=

(2q − 1)(2q − 3) . . . (2p+ 1)

(2s− 2q − 1)(2s− 2q − 3) . . . (2s− 2p+ 1)
=: Bp,q,

which is independent of jp and jq. Consequently, we have

ap,jq−p

aq,jq−q
= Bp,q

(
r−s
jq−p

)
(
r−s
jq−q

) = Bp,q

(
r − s+ 1

jq − q + 1
− 1

)
. . .

(
r − s+ 1

jq − p
− 1

)

> Bp,q

(
r − s+ 1

jp − q + 1
− 1

)
. . .

(
r − s+ 1

jp − p
− 1

)
=

ap,jp−p

aq,jp−q
,

which implies that Aλ′ > Aλ and completes the proof. �

Proposition 2.5. Let m and k be integers such that 1 ≤ k ≤ m. Let p2m−k−1 and

qk−1 be polynomials of degree 2m−k−1 and degree k−1, respectively. If t1, . . . , tm
be distinct numbers in (0, 1) and

peven2m−k−1(ti) + qoddk−1(ti)(1− t2i )
m−k = 0,(2.11)

podd2m−1−k(ti) + qevenk−1 (ti)(1 − t2i )
m−k = 0,(2.12)

then p2m−k−1(t) ≡ 0 and qk−1(t) ≡ 0.

Proof. Depending on k being even or odd, we need to consider the following four
cases.
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Case 1. k is even. Setting r = m− (k + 2)/2 and s = (k − 2)/2, equation (2.11)
becomes

pr(t
2
i ) + ti qs(t

2
i )(1− t2i )

r−s = 0, 1 ≤ i ≤ r + s+ 2.

From Proposition 2.4 with ǫ = 1 and t±1 = t, it follows that pr(t) ≡ 0 and qs(t) ≡ 0.

Case 2. k is even. Setting r = m− (k + 2)/2 and s = (k − 2)/2, equation (2.12)
becomes

ti p
∗
r(t

2
i ) + q∗s (t

2
i )(1 − t2i )

r−s = 0, 1 ≤ i ≤ r + s+ 2.

Multiplying the equation by t−1
i , we can use Proposition 2.4 with ǫ = 1 and t±1 =

t−1 to conclude that pr(t) ≡ 0 and qs(t) ≡ 0.

Case 3. k is odd. Setting r = m − (k + 1)/2 and s = (k − 1)/2, equation (2.11)
becomes

p∗r(t
2
i ) + tiq

∗
s−1(t

2
i )(1 − t2i )

r−s = 0, 1 ≤ i ≤ r + s+ 1.

From Proposition 2.4 with ǫ = 0 and t±1 = t, it follows that pr(t) ≡ 0 and qs(t) ≡ 0.

Case 4. k is odd. Setting r = m − (k + 2)/2 and s = (k − 2)/2, equation (2.12)
becomes

ti p
∗
r(t

2
i ) + q∗s−1(t

2
i )(1− t2i )

r−s = 0, 1 ≤ i ≤ r + s+ 1.

Multiplying the equation by t−1
i , we can use Proposition 2.4 with ǫ = 1 and t±1 = t

to conclude that pr(t) ≡ 0 and qs(t) ≡ 0. �

2.3. Factorization method. The following factorization theorem holds the key
to our main result.

Theorem 2.6. Let m and s be positive integers satisfying m ≤ s ≤ 2m−1. Denote

λ = s−m+1. Let θ1, . . . , θ2λ be distinct numbers in (0, π) such that θ2λ+1−i = π−θi
for i = 1, . . . , λ. Denote

X̃ = {(θi, φi,j) : φi,j ∈ Θ0,m, 1 ≤ i ≤ λ, and φi,j ∈ Θ1,m, λ+ 1 ≤ i ≤ 2λ}.
If Ts ∈ Πs(S

2) satisfies

T̃s(θi, φi,j) = 0, (θi, φi,j) ∈ X̃,

then there is a spherical polynomial T ∗
s−2λ ∈ Πs−2λ(S

2) such that

T (x, y, z) =

2λ∏

i=1

(z − cos θi), T
∗
s−2λ(x, y, z).

In particular, T ∗
s−2λ ≡ 0 if s=2m−1.

Proof. We start with the formula (2.1), which becomes

T̃n(θ, φ) = a0(cos θ) +

s∑

k=1

[
ak(cos θ) (sin θ)

k cos kφ+ bk(cos θ)(sin θ)
k sin kφ

]
,

where ak(·) and bk(·) are polynomials of degree s − k. For i = 1, 2 . . . , λ, we can
follow the proof of Lemma 2.2 and Lemma 2.3 and distinguish the following three
cases.

Case 1. For 0 ≤ k ≤ 2m− s− 1,

ak(cos θi)(sin θi)
k = 0, bk(cos θi)(sin θi)

k = 0, i = 1, . . . , 2λ,
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setting b0 ≡ 0. Since θi ∈ (0, π), we have that ak(cos θi) = 0 and bk(cos θi) = 0, for
i = 1, . . . , 2λ. Recall that ak and bk are polynomials of degree s− k ≥ s − (2m −
s − 1) = 2λ − 1. Consequently, there exist polynomials a∗k and b∗k, both of degree
s− k − 2λ, such that

ak(t) =

2λ∏

i=1

(t− cos θi)a
∗
k(t) and bk(t) =

2λ∏

i=1

(t− cos θi)b
∗
k(t).

In the extreme case k=2m−s−1, we have a2m−s−1 = b2m−s−1 = 0.

Case 2. For k = m,

(sin θi)
mam(cos θi) = 0 and i = 1, . . . , λ,

(sin θi)
mbm(cos θi) = 0 and i = λ+ 1, . . . , 2λ.

Since θi ∈ (0, π) and both am and bm are polynomials of degree s − m = λ − 1
vanishing at at least λ points, they have to be identically zero.

Case 3. For 2m− s ≤ k ≤ m− 1, we end up with equations similar to (2.6):

pevens−k (ti) + qodd2λ−(s−k)−2(ti)(1 − t2)s−λ−k+1 = 0,

podds−k(ti) + qeven2λ−(s−k)−2(ti)(1− t2)s−λ−k+1 = 0,
(2.13)

for i = 1, 2, . . . , λ, where either ps−k(t) = ak(t) and q2λ−(s−k)−2(t) = a2m−k(t), or
ps−k(t) = bk(t) and q2λ−(s−k)−2(t) = −b2m−k(t). In deriving the above equations
we have used several times the identity λ = s −m + 1. Recall that ak and bk are
polynomials of degree s−k; the subscript of the polynomials p2λ−k and q2λ−(s−k)−2

again indicate their degree.
It is easy to see that the system of equations (2.13) is exactly the one being stud-

ied in the previous subsection, namely (2.11) and (2.12). Hence, using Proposition
2.5 we conclude that

ak(t) ≡ 0 and a2m−k(t) ≡ 0, k = 2m− s, . . . ,m− 1,

bk(t) ≡ 0 and b2m−k(t) ≡ 0, k = 2m− s, . . . ,m− 1.

Together, these three cases show that we have the factorization

T̃s(θ, φ) =

2λ∏

i=1

(cos θ − cos θi)

×
(
a∗0(cos θ) +

2m−s−2∑

k=1

(a∗k(cos θ) cos kφ+ b∗k(cos θ) sin kφ)

)
,

which completes the proof. �

Using factorization repeatedly, we can obtain a complete factorization of a poly-
nomial of degree 2m− 1 in Π2m−1(S

2).

Theorem 2.7. Let n be an odd positive integer, σ ∈ N, and λ1, . . . , λσ be positive

integers. Define nk = nk−1−2λk, for 1 ≤ k ≤ σ, with n0 = n. Assume that nk ≥ 0
for 1 ≤ k ≤ σ − 1. If Tn ∈ Πn(S

2) satisfies

T̃n(θi,k, φi,j,k) = 0, 1 ≤ i ≤ 2λk, 0 ≤ j ≤ 2(nk−1 − λk + 1)− 1, 1 ≤ k ≤ σ,
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where θi,k are pairwise distinct angles in (0, π) with θi,2λk+1−l = π − θi,l, l =
1, . . . , λk, φi,j,k ∈ Θ0,nk−1−λk+1 for 1 ≤ i ≤ λk and φi,j,k ∈ Θ1,nk−1−λk+1 for

λk + 1 ≤ i ≤ 2λk, then there exists a polynomial T ∗
nσ

∈ Πnσ
(S2) such that

Tn(x, y, z) =

σ∏

k=1

2λk∏

i=1

(z − cos θi,k)T
∗
nσ

(x, y, z).

In particular, Tn(x, y, z) ≡ 0 if nσ < 0.

Proof. We apply the factorization result in Theorem 2.6 repeatedly with s = nk−1,
m = nk−1 − λk + 1 and λ = λk for k = 1, 2, . . . , σ. �

Just as in the case of an odd number of points on each latitude (cf. [14]), the
interpolation nodes in the above theorem are located on latitudes split up into σ
groups {S2(zi,k) : 1 ≤ i ≤ 2λk}, 1 ≤ k ≤ σ, zi,k = cos θi,k, and z2λk+1−i,k = −zi,k.
Latitudes in different groups contain a different number of nodes. More precisely,
each of the latitudes in the k-th group, S2(z1,k), S

2(z2,k), . . . , S
2(z2λk,k), contains an

even number of 2(nk−1−λk+1) equidistant points and the points lie on symmetric
latitudes. In other words, points on S2(z2λk+1−i,k) and S2(zi,k), i = 1, . . . , λk, differ
by a rotation of an angle of π/(2(nk−1 − λk + 1)).

3. Interpolation on the sphere

Our main result on interpolation follows from the factorization Theorem 2.7. The
following formula can be used to verify that the number of interpolation conditions
matches the dimension of the polynomial space:

(3.1) Πs(S
2) = dimΠs−2λ(S

2) + 2λ (2s− 2λ+ 2).

Theorem 3.1. Let n be an odd natural number and let λ1, . . . , λσ (σ ∈ N) be

positive integers, such that

λ1 + . . .+ λσ =
n+ 1

2
.(3.2)

Define nk = nk−1 − 2λk, for 1 ≤ k ≤ σ − 1, with n0 = n. Let

X̃ = {(θi,k, φi,j,k) : 1 ≤ i ≤ 2λk, 0 ≤ j ≤ 2(nk−1 − λk + 1)− 1, 1 ≤ k ≤ σ},
where θi,k, 1 ≤ j ≤ 2λk and 1 ≤ k ≤ σ, are distinct numbers in (0, π) with

θ2λk+1−i,k = π − θi,k (i = 1, . . . , λk), φi,j,k ∈ Θ0,nk−1−λk+1, for 1 ≤ i ≤ λk, and

φi,j,k ∈ Θ1,nk−1−λk+1, for λk+1 ≤ i ≤ 2λk. Then the set X solves the interpolation

problem in Πn(S
2).

Proof. First, we verify that the dimension of Πn(S
2) matches the number of inter-

polation conditions. Let |X | denote the number of points in X . It follows from
equation (3.1) that

|X | =
σ∑

k=1

2λk (2nk−1 − 2λk + 2)

=
σ∑

k=1

(dimΠnk−1
(S2)− dimΠnk−1−2λk

(S2)) = (n+ 1)2 = dimΠn(S
2).
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Thus, it is sufficient to show that if Tn ∈ Πn(S
2) vanishes onX , then Tn(x, y, z) ≡ 0.

Under the condition (3.2), it follows that

nσ = nσ−1 − 2λσ = nσ−2 − 2λσ−1 − 2λσ = · · · = n− 2
σ−1∑

k=1

λk = −1 < 0.

Hence, the factorization in Theorem 2.7 shows that T (x, y, z) ≡ 0. �

For a fixed n = 2m−1, this theorem contains a number of different interpolation
processes. In fact, for each positive odd integer n, the number of point sets X
which can be deduced from Theorem 3.1 depends on the partition number of (n+
1)/2. Every solution of equation (3.2) leads to a set of points defining a poised
interpolation problem in Πn(S

2). The number of solutions of such an equation
grows exponentially as n goes to infinity. Moreover, the order of λ1, . . . , λσ matters;
i.e. , different permutations of a solution λ1, . . . , λσ of equation (3.2) give different
sets of interpolation points.

Among the solutions of equation (3.2), one extreme case is σ = 1, for which the
equation has only one solution λ1 = (n+1)/2. In this case, the interpolation points
are located on n+1 symmetric latitudes S2(z1), S

2(z2), . . . , S
2(zn+1), each of them

containing n+1 equidistant points. This case has already appeared in [4, Theorem
2.5].

The other extreme case is σ = (n + 1)/2 and λ1 = · · · = λ(n+1)/2 = 1. There,
nk = n− 2k and we have (n + 1)/2 groups of two symmetric latitudes, where the
ones in the kth group contain 2(n − 2k + 2) equidistant nodes. The points on a
latitude are rotated by an angle of π/(2(n− 2k+ 2)) with respect to the points on
the corresponding symmetric latitude of the same group.

Example 3.2. To illustrate the power of the factorization method, we present the

possible point distributions for n = 3, 5 and 7.

• n = 3
(1) σ = 1, λ1 = 2: 4 latitudes each with 4 points,

(2) σ = 2, λ1 = λ2 = 1: 2 latitudes with 6 points and 2 latitudes with 2
points.

• n = 5
(1) σ = 1, λ1 = 3: 6 latitudes, each with 6 points.

(2) σ = 2, λ1 + λ2 = 3 has two solutions.

(a) λ1 = 1, λ2 = 2: 4 latitudes with 8 points and 2 latitudes with 2
points.

(b) λ1 = 2, λ2 = 1: 2 latitudes with 10 points and 4 latitudes with 4
points.

(3) σ = 3, λ1 = λ2 = λ3 = 1: 2 latitudes with 10 points, 2 latitudes with 6
points and 2 latitudes with 2 points.

• n = 7
(1) σ = 1, λ1 = 4: 8 latitudes with 8 points.

(2) σ = 2, λ1 + λ2 = 4 has three solutions,

(a) λ1 = 2, λ2 = 2: 4 latitudes with 12 points and 4 latitudes with 4
points;

(b) λ1 = 1, λ2 = 3: 2 latitudes with 14 points and 6 latitudes with 6
points;
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(c) λ1 = 3, λ2 = 1: 6 latitudes with 10 points and 2 latitudes with 2
points.

(3) σ = 3, λ1 + λ2 + λ3 = 4 has three solutions,

(a) λ1 = 1, λ2 = 1, λ3 = 2: 2 latitudes with 14 points, 2 latitudes

with 10 points and 4 latitudes with 4 points.

(b) λ1 = 1, λ2 = 2, λ3 = 1: 2 latitudes with 14 points, 4 latitudes

with 8 points and 2 latitudes with 2 points;

(c) λ1 = 2, λ2 = 1, λ3 = 1: 4 latitudes with 12 points, 2 latitudes

with 6 points and 2 latitudes with 2 points.

(4) σ = 4, λ1 = λ2 = λ3 = λ4 = 1: 2 latitudes with 14 points, 2 latitudes

with 10 points, 2 latitudes with 6 points and 2 latitudes with 4 points.

It is well-known that interpolating polynomials can be used to construct cuba-
ture formulas on the unit sphere (cf. [12]). In fact, integrating the interpolation
polynomial in Πn(S

2) yields a cubature formula on the sphere which is exact for
spherical polynomials of degree n. Among the point sets in Theorem 3.1, the case
where the points are distributed on 2m symmetric latitudes, with each latitude con-
taining 2m equidistant points, is of particular interest. In this case, the cubature
formula is simple and can be explicitly given.

Proposition 3.3. Let m be a positive integer. Let θ1, . . . , θ2m be pairwise distinct

numbers in (0, π) with θ2m+1−i = π − θi, i = 1, . . . ,m, and α ∈ {0, 1}. Then for

all T2m−1 ∈ Π2m−1(S
2),

∫

S2

T2m−1(ξ) dω(ξ) =
π

m

m∑

i=1

λi

2m−1∑

j=0

T̃2m−1(θi, φ
0
j) +

π

m

2m∑

i=m+1

λi

2m−1∑

j=0

T̃2m−1(θi, φ
1
j )

where φα
j = (2j + α)π/2m, and λi is given by

λi =

∫ 1

−1

2m∏

k=1,k 6=i

t− cos θk
cos θi − cos θk

dt, i = 1, . . . , 2m.

Proof. Let the interpolation polynomial T2m−1 be of the form (2.1). We use the
quadrature formula

(3.3)
1

2π

∫ 2π

0

p(t)dt =
1

2m

2m−1∑

j=0

p(φα
j ),

which is known to hold for every trigonometric polynomial of degree at most m
(see, for example, [16, Vol.2, p. 8]). Using formula (3.3) and the interpolation
property of T2m−1, it follows that

a0(cos θi) =
1

2π

∫ 2π

0

T̃2m−1(θi, φ) dφ =
1

2m

2m−1∑

j=0

T̃2m−1(θi, φ
α
j ),

for every fixed θi, 1 ≤ i ≤ 2m. Consequently, a0, which is a polynomial of degree
2m−1 in one variable, is uniquely determined by these 2m interpolation conditions.
It follows that

a0(t) =

m∑

i=1



 1

2m

2m−1∑

j=0

T̃2m−1(θi, φ
0
j )



 ℓi(t)+

2m∑

i=m+1



 1

2m

2m−1∑

j=0

T̃2m−1(θi, φ
1
j )



 ℓi(t),
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where ℓi(t) =
∏2m

k=1,k 6=i(t− cos θk)/(cos θi − cos θk). Using the change of variables

∫

S2

T2m−1(ξ)dω(ξ) =

∫ π

0

∫ 2π

0

T̃2m−1(θ, φ) sin θ dφ dθ,

the integral of T2m−1 over the surface of the sphere is equal to
∫

S2

T2m−1(ξ)dω(ξ) = 2π

∫ π

0

a0(cos θ) sin θdθ = 2π

∫ 1

−1

a0(t)dt.

The stated formula follows from the formula for a0(t) given above. �

In particular, this result shows that the cubature formula is nonnegative, if cos θi
are chosen so that λi are nonnegative. This holds, for example, if cos θi are the
zeros of the Legendre polynomial P2m of degree 2m, or the zeros of a quasi Legendre
orthogonal polynomial P2m+αP2m−1 with mild conditions imposed on α ∈ R (see,
for example, [13]). In [10], the positivity of the cubature in this case has been
proved by working directly with the interpolation matrix.
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[5] N. Láın Fernández and J. Prestin, Interpolatory band-limited wavelets on the sphere, sub-

mitted to Constr. Approx..
[6] M. Gasca and T. Sauer, Polynomial interpolation in several variables, Adv. in Comput. Math.,

12 (2000), 377–410.
[7] M. v. Golitschek and W. A. Light, Interpolation by polynomials and radial basis functions

on spheres, Constr. Approx. 17 (2001), 1–18.
[8] H. Hakopian and S. Ismaeil, On a bivariate interpolation problem, J. Approx. Theory, 116

(2002), 76-99.
[9] I. G. Macdonald, Symmetric functions and Hall polynomials, 2ed ed. Oxford Mathematical

Monographs, Clarendon Press, New York, 1995.
[10] J. Prestin and D. Rosca, On a positive cubature formula on the sphere, preprint.
[11] I. H. Sloan and R. S. Womersley, How good can polynomial interpolation on the sphere be?

Adv. Comp. Math. 14 (2001), 195-226.
[12] A. Stroud, Approximate calculation of multiple integrals, Prentice Hall, Englewood Cliffs,

NJ, 1971.
[13] Yuan Xu, A Characterization of positive quadrature formulae, Math. Comp. 62 (1994), 703–

718.
[14] Yuan Xu, Polynomial interpolation on the unit sphere, SIAM J. Numer. Anal. 41 (2003),

751-766.
[15] Yuan Xu, Polynomial interpolation on the unit ball and on the unit sphere, Adv. in Comp.

Math., 20 (2004), 247-260.
[16] A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge, 1959.

Institute of Biomathematics and Biometry, GSF - National Research Center for

Environment and Health, 85764 Neuherberg, Germany

E-mail address: castell@gaf.de

Center for Mathematical Sciences, Munich University of Technology, Boltzmannstr.

3, 85747 Munich, Germany

E-mail address: fernande@ma.tum.de



14 WOLFGANG ZU CASTELL, NOEMÍ LAÍN FERNÁNDEZ AND YUAN XU
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