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Figure 1: Implicit smoothing applied to a noisy Lidar scan.



1 Introduction

This paper develops some mollification formulas involving convo-
lutions between popular radial basis function (RBF) basic functions
®, and suitable mollifier&. Polyharmonic spline, scaled Bessel
kernel (Matern function) and compactly supported basic functions
are considered. An application which motivated the development of
the formulas is a technique called implicit smoothing. This compu-
tationally efficient technique smooths a previously obtained RBF fit
by replacing the basic functich with a smoother versio during
evaluation. In the case of the polyharmonic spline basic functions
the smoothed basic function is a generalised multiquadric or shifted
thin-plate spline (at least up to a polynomial).

Special cases of one of the mollification formulas developed here
were given in the 1D setting in [Beatson and Dyn 1996]. That pa-
per concerned error estimates for quasi interpolation with 1D gen-
eralised multiquadrics, and showed by elementary methods
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for j € N. Amultivariate analog relatin@ (z) = |«| and the multi-
quadric¥ (z) = v/z2 + 2 in R? has been used to smooth implicit

(.2+62)(2j—1)/2 _ |.‘(2j71)/2*- c2j(.2+c2)—<2j+1)/2’

Figure 2: A noisy lidar scan of a statue in Santa Barbara.

scan. Firstly an RBF is fitted to the noisy data yielding an RBF
approximation

surface fits to lidar and laser scanner data (see Figures 1 and 2, and

Section 2). This application is detailed in [Carr et al. 2003]. That

paper presents the application but not the mathematics underlying

it. Implicit smoothing of globally supported RBFs should also have

s(z) = p(x) + Z Ai®(z — x3). (2.1)

many other applications. [Fasshauer 1999] has used related basic

function substitution techniques as part of a process for the numer-
ical solution of PDEs with compactly supported RBFs.

The purpose of the current paper is to present a mathematical
treatment of general versions of these, and related, mollification
formulas. Initially our development for the polyharmonic spline
case was based on viewing odd powergadfas multiples of fun-
damental solutions of iterated versions of Laplace’s equation. As
such our treatment was restricted to polyharmonic splines in odd
dimensions. Changing to arguments based more directly on gener

alised functions has enabled many restrictions to be dropped. For

example in the case of the results fet® (Theorem 4.1) there is
no longer any restriction on the parity of the dimension, nor any
requirement that the powe? of |z| be odd or integer. Further-
more we develop analogous formulas for polyharmonic splines in
even dimension. Related results for scaled Bessel kernels (Mater
functions) and compactly supported radial basis functions are also
discussed.

Notation: In this paper the Fourier transform is defined as follows

€)= /Rd e " f () da, fe LY (RY.

Also, except where explicitly noted, the generalized Fourier trans-
forms that appear are the generalised transforms of the func-
tions viewed as distributions acting @(R*\{0}) rather than on
D(R?). This convention simplifies the discussion.

2 An application — implicit smoothing

This section concerns an application of the mollification formulas
to come to the smoothing of RBF fits. This particular application
motivated the development of the formulas. The process will be
called implicit smoothing and can be viewed as smoothing an inter-
polant to noisy data rather than smoothing the data itself.

The process starts with a noisy data set to be approximated. Fig-
ure 2 shows one example of such a noisy data set, a “noisy” Lidar

Then the initial RBF approximation is smoothed by convolution
with the mollifier k yielding a smoother fit

3(z) = q(a) + Z NV (z — ), (2.2)

whereq = px kand¥ = & x k. Figure 1 shows zoomed
in views of the isosurfaces arising when this strategy applied to

the noisy Lidar scan of Figure 2. Hefe(z) = |z| is the bi-
harmonic spline basic function iR® and ¥ (x) 224 2 is
the ordinary multiquadric. In Figure 1 one can clearly see the
amount of smoothing increase with the parameter Figure 3
shows a thin-plate spline fit to data from the Mexican hat function

o/ (@) = (1 — 2*) exp(—a”/2) at400 scattered points iR?. Uni-

form random noise of magnitude? has been added to the original
Mexican hat height data. Hefe(z) = x*log |z| is the thin-plate
spline and¥ (z) = (2 + ¢?) log v/x2 + 2 is the shifted thin-plate
spline. Implicit smoothing has been employed to obtain an approx-
imation to the noise free signal.

For important choices ofp, and suitable choices of, the
smoothed basic functio® turns out to be a simple and easy to
evaluate, function. Therefore in applying the technique there is no
need for any explicit, and computationally expensive, evaluation of
convolutions. Rather one fits the initial radial basis functpand
then smooths it when evaluating by substituting the smoothed ba-
sic function¥ for the original basic functio®. Thus the technique
can be viewed as smoothing by basic function substitution. In some
important cases fast evaluators are available for the smoothed RBF
S.

Advantages of the technique are

e No explicit convolution to do.

e There is no requirement that the data or evaluation points be
gridded.

e Well understood linear filtering. Fourier transform and abso-
lute moments of the smoothing kernel are known.
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e Smoothing can be chosen for appropriate frequency or length
scale.

e A posteriori parameter for user to play with — “noise
level/frequency” need not be known a priori.
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e A posteriori parameter for user to play with.

e Just linear filtering so will blur sharp features.

3 Technical lemmas

The following technical lemmas which deal with distributions and
special functions will be needed in later sections.

Lemma 3.1. Identification of a convolution

(i) LetB,e > 0.Supposg € C(R?), g(z) = O(|z|?) as|z| —
oo, andk € L=(R?), k(x) = O(|z|~@+°+9)) as|z| — oo.
Theng « k is a C(R?) function with(g x k)(z) = O(|z|?)
as|z| — oo.

(i) Let 8, ¢, g andk be as in part (i). Leth € C(R?) be such
that h(z) = O(|z|®) as|z| — oco. Viewingg and h as
tempered distributions suppose that there exist functi@ns
and H in Ly, (R*\{0}) such that for all test functiong €

D (RN\{0})

9:0) = | G(&)e(§)dE

RAd

and

il
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(h,9) = | H(E)P(E)dE.
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‘ "‘;5."33“{\*\‘\“\:‘?‘:“.“3»\ Further writing & for the classical Fourier transform &f sup-
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. pose
““\\\\‘W & R
W G(Ok(&) = H(¢), foralmostallé # 0.
Then

(g*k)(z) =p(z) + h(z) forallz e R?

wherep is a polynomial of degree not exceeding the integer
part of 3.

Proof of part (i).
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(g% k)(z) = / oz — k(y)dy
—o( [+l =’ a+ |y\>—(d+ﬁ+€>dy)

(

1+ |z T+ y)? (1 +|y))~ dy
(+1a)® [ @ 1+ )5 ay
(

(d) Smoothed witle = 0.6

Figure 3: Various fits to noisy data created from the Mexican hat
function.

Now fix z € R% and let{t, } be a sequence tending to zero in
R% with |t,,| < 1for all n. By an analogous argument to that above
there is a constar' so that

lg(z + tn — y)k(y)] < C@2 + |z (1 + |y[) =T
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for almost ally. Hence, applying the Lebesgue dominated conver- - B (E v — B) e
gence theorem, 2’ 2 2
1 w 1 w
lim (g*k)(z+tn) = (g% k)(x). {IOg(C) + §¢ (5) - §w (U - 5)} . (3.2)
It follows thatg * & is continuous. and
Proof of part (ii) < 0 log(r? + ¢2) d
Below we will view g x k as a tempered distribution. Let € M(w,v) := / %l
D (RM\{0}). Henceg € S the space of rapidly decreasing func- 0 (¢ +7r2) r
~ w—2v
tions. The growth conditions om &, and¢ combine to imply that — (E v — E) ¢ %
all the iterated integrals below are absolutely convergent, so that the 2’ 2 2
applications of Fubini’'s Theorem that occur are justified. {210g(c) T (v) — o (,U _ E) } (3.3)
5) ) .
((g* k], 0) = {gxk ¢> Proof of the first identity. The assumptions omagdw clearly im-
// . Vdy &(z)dz ply the integral is convergent. Substitutingy = r
[ IR YL G
// y—‘,—zdzk( )dy o (4+r) r 2 )y ()t
. w oo tw/2 dt
= [ ([ st [t )1z wtpay o A
0
—iye A\ Cw—2v w w
= [{o.[eo@]) Ky ~ (Y-
— ~ ,iye 0o pw
- / <g’ € ¢(°)> k(y)dy Proof of the second identitySince/ %g < oo we
0
— —iy¢ use the Lebesgue Dominated Convergence Theorem and differenti-
/ (/ Gle)e ¢(§)d§> k(y)dy ate under the integral sign to obtain
— [ [c@e ™ a@nrway ae At
I(w,v) = dw [, (2+r2)" r’
_ —iy¢
- /G(§)¢(§) (/ e k(y)dy) dg Employing (3.1) this implies
= [ GOk(E) B(€)de _d [ oww
/ Hw, o) = G5\ 2 B(Q’” 2)
= (i) wle T
— ~ _ 1 w—QUF w r _w
Henceg x k — h is a distribution supported at the origin. Therefore 2I'(v) { og(c)e ( 2 ) <U 2 )
g * k = p+ h wherep is a polynomial. The growth af x k£ andh 1 /w W\ w20 w
implies thatp is of degree at most the integer parf O +t5¢ (5) I (5) e T (” - 5)
. . . 1 _92e w w w
In the following B is the Beta function —5e T <§> " (v _ 5) r (v _ 5)}
Y t* dt _ T'(x)'(w) B(%0—-%)
B(z w) '_/0 A+t +e t  T(ztw)’ = T
and ¢ is the Digamma function)(z) := I"(z)/T'(z) (see e.g. {log(c) + %w (%) - %w <v - %)} .

[Abramowitz and Stegun 1965[).

Proof of the third identityProceeding as in the proof of the second
integral identity

') Tw d’/‘ B Cw—QU w w d oo Tw d’V‘
[ wrer - Sr(Fe-g). e M) ==g- | e,

Lemma 3.2. Letc, w,v € R withc > 0andv > w/2 > 0. Then

2 +r2)" r 2 2 dv )y (@+r)" 1’
Further Employing (3.1) this implies
< r%logr dr
I{w,v) ::/ —_—— d | 2T ()T (v—2
o (E+712)" r M(w,v):_dv{ 5 (2)1“(5)) 2)

1care is needed in interpreting the literature as many authors (S w
to denote the functiof’ (= + 1) /T'(z + 1) instead. See for example [Jones _ T (?) _9 log(c)cw_z”
1982, page 114]. 2
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Using equation (3.1) again one has

+c (o)
/ Fkap,c(x)d
L= D)W [ ePhac(ayto = dus el bt
—¢ 2 Rd o fRd ka,p,c(x)dx
T'(v)) e
Ix whErEos
B — IR (c24r T
(271} 2) w—2v>< == ( = -
2 Jr e
w
21 AR
{ og(c) + 1 (v) ¢<v 2)} O :cﬁB(d;B,g)/B(g,d;ﬂ)
= (4.6)

4 Mollification formulas for powers of the

modulus We are particularly interested in the polyharmonic splines. In
odd dimension odd powers of the modulus are multiples of funda-
In this section mollification formulas will be developed for powers mental solutions of iterated versions of Laplace's equation. Radial
of the modulus. The flavour of the main result, Theorem 4.1, is that basis functions based on sums of shifts of these fundamental solu-

the convolution ofz|® against an appropriate inverse multiquadric  tions supplemented by polynomials have many wonderful proper-
is the generalised multiquadrigz|* + c2)5/2. Further, a quanti- ties. Such polyharmonic splines arise naturally as smoothest inter-
tative Korovkin Theorem, Proposition 4.2, estimates the distance Polants (see [Duchon 1977]) and have performed extremely well in

between the original unsmoothed RB§ and the corresponding
smoothed RBFs = s x kg 3,c.

Define the generalised multiquadric basic function ( the gener-
alised Fourier transform of a Bessel kernel) as
zeR

Vpe(z) = (Ja]* + )72, (4.1)

many practical applications (see e.g. [Carr et al. 2001]). A particu-
larly important special case is that of the basic functiqn) = |z|
in R®. The corresponding RBFs, which take the form of a linear
polynomial plus sums of shifts of the modulus, are called bihar-
monic splines ifR>.

We will now show the mollification formula

wherec > 0. These functions are most often considered in the case Theorem 4.1. For all 3 such thatR(5) > —d

that 3 is a positive odd integer. Clearly s . can be viewed as a
smoothed out version ¢&|°. The results of this section show that
the “smoothing out” is actually given by a convolution.

More precisely Theorem 4.1 to come shows thaRifand for
all g > —d

Uge(x) = (Pg x ka,g,c) (), (4.2)

whered; = |z|® and the convolution kernél, 5 () is the gener-
alised multiquadric with negative indeX_s_24 (), normalised
to have integral one. That is

kape(x) = aapc P _5_sq.c(z), (4.3)
for some constanty,s. Write
o4 = 27"?/T(d/2), (4.4)

for the surface area of the unit sphereRfi. Then

rd dr

_ _ d+8
1= /,zd k‘dﬁ,c(m)dl‘ = 04Q4,pC /7; W?’
implying from equation (3.1) that

_a2D((B+2d)/2)
L(B+d)/2)"

Interpretation of convolution against the kernel as a low pass fil-
ter will be aided by the expression (4.8) for its Fourier transform

ad,p = T (45)

91— (d+5)/2
I'((3+d)/2)

This Fourier transform is a positive function tending to zero expo-
nentially fast with|¢|. Considering the graph éf; s..(|¢|) against

|€| it is clear that the width of the graph at any fixed height is in-
versely proportional te. This expresses precisely how the graph of
Ed,/;,c(g) grows more and more peaked@screases. Thus convo-
lution with @d_ﬂ,c will attenuate high frequencies more and more as
cincreases.

B> 0.

Fape(€) = K s (cle]) (cl€l) *+7,

forall x € R%.

(g % ka,p,c)(w) = Vg,c(z), 4.7

Remark:This result includes the cases where the posand the
dimensiond are both odd, an@s(z) = |z|? is a polyharmonic
spline basic function. It also includes many other cases. In partic-
ular the range of validity of the formula includes those exceptional
B's for which &g and¥ 5, . are polynomial.

Proof. We note the following generalized Fourier transforms

for the relevant functions viewed as distributions acting on
d

D(RA{0}).

/2
(F0) () = g 5 Kaspa(léD) (5]

—(d+B)/2
)

for 3 ¢ 2No, whereK 44 5y/2 is a modified Bessel function (see
[Abramowitz and Stegun 1965, page 374] or [Aronszajn and Smith
1961, page 415]). Fg8 < —d this is a classical Fourier transform
onR%. Also

(#1617) (0 =2t DD

for 8 ¢ (—d — 2No) [J(2Np) (see [Gelfand and Shilov 1964, page
363)]).
Then using the normalising constant

_a2 T ((B+2d)/2)
L ((8+d)/2)

K_,(z)we find

3

ad,3 = T

defined above and thaf, (z)

%d,ﬁ,c = ad,ﬁcd+ﬁ‘1\’_2d_ﬁ,c
_ iz arp (B +2d)/2) /2
L((B+d)/2) T (—(—2d - 8)/2)

I3 (d+8)/2
K- Cleh (51

C
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_ 2 (B+d)/2
B WK# (clgl) (clél)

for 8 > —d . ltis then clear that

(4.8)

(F1ol?) ©kap.c€) = Tpel®), €€ RA(O}
for a set of8’s including0 < 8 < 1.
Now fix ¢ > 0,0 < # < 1, and apply Lemma 3.1. The Lemma
implies that
o1 (4.9)
wherepg, . is a polynomial of degre@ and the equality holds point-
wise. Considering the point = 0 we find

x ka,6,c = Pg.c+ Yp,c

Q-W*hm@>®%:/ [t]° % ka0 (t)dt
Rd

= C/G’

where we have used (4.6). Then observing that.(0) = ¢® we
deduce that the polynomials.. in (4.9) must be identically zero.
We have therefore established that foralt 0 and0 < g < 1

forall z € RY.

(g *kap,e)(w) = Vg(z), (4.10)

Now fix ¢ > 0 andz € R?. The right-hand side of (4.7) is an
entire function of3. The left-hand side is continuous B := {3 :

R(B) > —d} by the Lesbesgue dominated convergence theorem. A

of continuity of all directional derivatives of ordérof f is given
by

Q(f,RY,6) = sup w(fL”, R, 5).

|ul=1

For a discussion of the properties of this modulus of continuity
see [Beatson and Light 1993]. Givéne Ny and0 < o < 1
we will say the total derivative’”) is in Lip,, () if there exists a
positive a constanmt/ such that

Q(f Y, R, 8) < Ms°, forall0 < 4§ < oo.

For each multiindexy adopt the usual notation definifvg| = ||v||1
and the normalized mononomial

V(e) =~ !

=~z = 5 'x¥1 V2 Yd
7! Y1ly2!- - va!

xz ...xd

With this notation in hand we can state the following folklore quan-
titative Korovkin Theorem. We include the simple proof for the
sake of completeness, and also because we do not know of a con-
venient reference.

Proposition 4.2. Let{ € Ny, 0 < g < 1, andB > 0. For each
¢ > 0letk. : R* — R be a bounded function such that

/ Phe(t)dt = d00, 0< <6 (412)
Rd

/ [t ke (t)|dt < B TP, (4.13)
R

standard argument using Morera’s theorem then shows that the left-Then for all f € C*(R“) with ¢-th total derivative in Lig, (3) and

hand side is analytic oft;. (4.10) shows that (4.7) holds fér<
B < 1. Hence, by analytic continuation, it holds for &(3) >
—d. O

allec>0 BM
1f % ke = flloo < =57,

Proof. Taylor's theorem with integral remainder for univariate

(4.14)

The remainder of this section will concern the application of the  fynctions implies

Theorem above to implicit smoothing.
Recall from (4.6) that

/ \m|ﬁkd’5’c(m)dm = Cﬁ.
Rd
A routine application of llder’s inequality then shows that

foral0 <a<g. (4.11)

[ el kape)de < e,
Rd

These expressions for theth absolute moment o, 3, clearly
quantify the manner in which the kernel becomes peaketlaas

It @
S 7“‘)(9 7|t|)7

7 z,t € R.

oo -0 -3 oV "

Jj=0

Applying this along the line segment joiningandz — ¢ in R¢ we
find the multivariate Taylor theorem in the form

4
fa—0) = 3 (D7) @Va(-n)| < o (50,72 1)

[vI<e

Hence using the hypotheses

proaches zero. Loosely speaking they shows that the dominant part
of convolution against the kernel is averaging on a length scale of |(f * kc)(z) — f(z) | = '/ . (f(z—1t) — f(z)) kc(t)dt‘
R

approximatelye, at least for functions of sufficiently slow growth.
Thus we can expect convolution agaiksts, . to lose, or smooth,
detail at this length scale.

A more precise statement about the error between the original

RBF s and its smoothed versiofiis implied by the quantitative

Korovkin theorem we are about to present. See the last paragraph

of this section for the details.
Given a uniformly continuous functiop : R¢ — R define its
uniform norm modulus of continuity

w(g,R%,8) :=

sup lg(z) — g(y)I.

z,y€RL:|x—y|<S

Let f € C*(R%) be a function with alt-th order partials uniformly
continuous orR?. Define thel-th order directional derivative of
f atzx in the direction ofu, fff’)(m), as the/-th derivative of the
univariate functiory(¢) = f(z + tu), att = 0. The joint modulus

I, (f(:v—t) - o (m)vw—t)) k(O

[v|<e
|t ) d
< — X
< [ e (s R ) heolar
<My ae < BM e4s. O
- i

As a first application of Theorem 4.1 and Proposition 4.2 con-
sider implicit smoothing of an RBF of form (2.1) wheérn(z) = |z|
andp is of degreel. Implicit smoothing of a surface if®* mod-
elled with such biharmonic spline is illustrated in Figures 1 and 2.
Then the unsmoothed functiene Lip,,(1) where

M= sup |Vs(x)|.

z€RIN{z;:1<i<N}
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Convolving againskq,1,. we note that linear polynomials are pre-
served so that the smoothed RBF (2.2) takes the special form

N

(z) + Z AiVic(z — x;).

i=1

s(x) =

Applying the Korovkin theorem Proposition 4.2, using that
Jralzlkan,c(z)dz = c by (4.6), we see thals — 5]|c < Me.

5 Radial functions

7
:Z (Hz2jp) (|zlex)
= Z |:E|2j (Hij) (61)
J=0
:ZijT2j7 r= |CL“,
j=0
whereby; = (Ha;p) (e1). =

This section outlines some known fundamental properties of radial 6 Mollification formulas for functions of

functions.
A function f : RY — R is radial if there is a univarate function
g such thatf (z) = g(|z|) for all z.

Lemma5.1. Let f, k : R? — R be such that the integral defining
(f x k)(x) is absolutely convergent for all. If f and & are radial
then so isf * k.

Proof. Givenz € R choose a rotation matrig) so thatQz =
|z|er wheree, is the vector(1,0,...,0). Then

(fxk)(z) = » flz = )k(t)dt

- / (Qx — QK@)

/ F(lwler — s)k(s)ds

= (f xk)(Jzler). 0
Given a polynomiap : R? — R write it in terms of the mono-
mial basis ag(z) = ZaENg a.x”. Define the homogeneous part

of degreej of p, H;p by (H;p) (z) =3, =, @az”

Lemma 5.2. Letp : RY — R be a polynomial which is also
radial. Then

(a) All the homogeneous parf$;p of p, j = 0,1,..., are also

radial.

(b) There is a univariate polynomiglsuch that
q(lxl),

Proof of (a). Suppose that is radial yet at least one homogeneous
part of p is not. LetH.,,,p be the first non radial homogeneous part
of p. Then there exist, y with |z| = |y| = 1 but (H..p) (z) #
(Hmp) (y). Now let

p(z) = for all x.

H

m—

-

k=0

Hkp Z (Hkp) .

k=m

Then
™ (Hmp) () — (Hmp) () + O (r™1),

as r — 0T implying e(rz) # e(ry) for all sufficiently small

r > 0. Bute is radial by choice ofn. Contradiction.

Proof of (b)From part (a) ifj is odd thenH;p is both odd and ra-
dial, therefore identically zero. Hence writiiag for the unit vector
(1,0,...,0) and using part (a) again

Z H2Jp
j=0

e(rz) —e(ry) =

the form r% logr

In this section mollification formulas are developed for the gener-
alised thin-plate spline basic functidn|® log |z|, j € N. The
flavour of the main result Theorem 6.1 is that convolution of
the generalised thin-plate basic function against a certain inverse
multiquadric yields the corresponding shifted thin-plate spline
(|z|> 4+ ¢*)” log v/]z[? + ¢2, plus a polynomial of degrezj — 2.

In even dimension even powers of the modulus multiplied by
log || are fundamental solutions of iterated versions of Laplace’s
equation. In particular RBFs taking the form of a linear polyno-
mial plus a sum of shifts af? log || are the biharmonic RBFs in
R?. Thesethin-plate splinesan be shown to be the solutions of
various smoothest interpolation and penalized smoothing problems
(see e.g. [Duchon 1977], [Wahba 1990]) and have proved very suc-
cessful in many scattered data fitting applications, see for example
[Hutchinson and Gessler 1994]. For such functions we will show
mollification formulas of the form

lo|?log | e | * kap.ec = (02 + 02)5/2 log \/ 2 + c2 + pg, (6.1)

whereg € 2N, kq s, is as in(4.3), angg is a polynomial depend-
ing ond, B andc. The first function on the right above

R z e R

(6.2)
is the shifted thin-plate spline basic function of Dyn, Levin and
Rippa. Some properties of these functions can be found in [Dyn
et al. 1986] and [Dyn 1989].

In contrast to the case of smoothipg” discussed in Section 4 a
nonzero polynomial part does arise in smoothing” log ||. For
example the convolution on the left of (6.1) fér= 2, 25 = 2, and
¢ = 1 evaluated at zero can be rewritten using polar coordinates as

Z.e(@) = (o]’ + )" log (| +¢*) '

2 / 2mr 72 log(r) (> + 1) 2dr.
0

™ D
This equalsl /2, while (r? + 1) log(r? 4 1) evaluated at = 0 is
0. This direct calculation for the special case- 2 is in agreement

with the general formula (6.5) which we are about to prove.
Explicitly we will show

Theorem 6.1. For j € N

{(Ie1 1081 0]} x kassc } (@) = Bajc(@) +pos (@) (63)

wherep,; is a radial polynomial of degre2; — 2. Writing p2; in
the form

|2j72

P25 () = bajo + baja|w]® + -+ + baja;a|w

)

1 1 1
+ ﬁ} , (6.4)

=
bajo = ¢ {(2j—2)+d+(2j—4)+d+
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and in particular

2
C

R
Proof. Start with the the mollification formula of Theorem 4.1

2 —(B42d)/2
(1o + )" = asoc™ [ 1ol (o =+ )" ay
R

(6.5)

bao =

forallz € R? and allR(8) > —d. Differentiating both sides with
respect tq3 yields

(‘$|2+62)5/2 log (|x\2+02)1/2

d d+8 / 8 2 | 2\ —(B+2d)/2
ad,3C T — +c d
= (aasc™) [ W o= o +) y
—(B+2d)/2
anc? [yl loglyl (jo — yl* + ) dy
R
—(B+2d)/2
—aupe™ [yl (o= ol )T
R(

log (\m — y|2 + 02)1/2 dy

= Ap+ Bg — Cp.
Calculation of quantityd 3. From (4.5)

{i (ad,gcdﬂa)} - adygcd'w log c

dp
_ {ﬂ—d/2r((5+2d)/2)}
g L((B+d)/2)
_ass 1 [TU(ERY) T (H2)T (%)
c o7d/2 F(%) - 1_‘(%)2

{52 ()

Hence employing the mollification formula (4.7) we find

= (|ac|2 +c2)6/2 {logch %1/1 (ﬁ-ZQd) - 71/1 (ﬁ—'_d) } .

Quantity By is the convolution

{(1e17108] o) * kassc } (@)

we are interested in.
Calculation of quantityCs;.

/uzMJW|+c)““’

Expanding the termw — y|* = (|z|* — 2 < =,y > +|y|*)’ that
occurs above using the Binomial Theorem it is clear that y|*/
a polynomial of degre@j in z andy. Collecting terms in the ex-
pansion by degree in

Caj = log ([y|? + ¢*) dy

ad ,25C

I = (]2 =2 < 2,y > +]y[*)’
2j—2

|z —yl?
= |z[* - 2j <2,y > 2|
(312l + 25— 1) < 2,y > 27 )

+ terms of lower degree in .

Substituting this expansion into the expressiondegy reveals that
Cs; is a polynomial of degre2; in . From Lemma 5.1 this con-
volution of radial functions yields a radial function. Hence from
Lemma 5.2C5; is a polynomial of degreg in |z|2.

The term involvingz|* in the expressio; is

1 i i —(d+j
§ad,2jcd+2J/d|m‘2j (‘y‘2+c2) (d+35) log(\y\z—&—cQ) dy
R

251 atv2i [ a4
= |z| ]iad’QjO'dC J/ r
0

i1 i .
= |x|215ad,2jadcd+21M(d, d+ )

; 1 2 d
—lof {1ogte) + guta+ ) - 3u (250}

where we have employed (3.3).

Combining the expressions fak,; andBz;, with the expression
above for the coefficient ofc|?’ in Ca; we find that the terms in
|z|* cancel and therefore the convolution has the form given in
equation (6.3) of the Theorem.

We proceed to identify the constant past, o of the polynomial
p2;. It follows from formula (6.3) that

2 2\ —(d+3) 2 2y dr
(7‘ —|—c) log(r +c)7

((| o|¥log| e |) * kd,zj,c) (0) = Z0.c(0) + boj0.  (6.6)

Using the radial symmetry the left hand side can be rewritten as the
univariate integral

Odad,2j6d+2j / r2 log(r) (7“2 + 02) —(2j+2d)/2 Td—ldr
r=0
Applying the notation and results of Lemma 3.2 this becomes

I I(d + 24,5 + d)

5325

:%{log(cQ)—Fi/)(j—l—g) —w@)}.

Observing thaE»;,.(0) = c* log(c) it follows that

Tl @)

Employing the recurrence [Abramowitz and Stegun 1965, (6.3.5)
and (6.3.6)]

baj,0 =

1 1 1
v(n+2) = (n—1)+=z + (n—2)+=z2 +.”+;+¢(2)
the expression fobz;,o can be rewritten as
i 1 1 1
boi o = 27 R
vo=\ Gogratmonra Tt

establishing formula (6.4). Substituting = 1 gives the for-
mula (6.5). O

As an application of the mollification formula of Theorem 6.1
consider implicit smoothing of an ordinary thin-plate spline of form

N
+Z)\i|$ — zi|*log |z — ]

=1

s(z) = p1(x)

in R?. Implicit smoothing of such a fit is illustrated in Figure 3. If
the RBF coefficients\; satisfy the usual side conditions

N N
Z/\izo and Z)\i$i=0,

i=1 i=1

(6.7)
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then the sum of all the constant parts arising from smoothing,
>, (Aic?/d), is zero. Thus the smoothed thin-plate spline is

N

3(z) = p1(x) + Z)\i (|9L’ — mi\z + c2) log/|z — @] 4+ ¢ .

=1
Further, when (6.7) holds, one can form a far field expansion

PQ(iL')
||

|z[*

Alog(|z]) + Pi(z) +

+...,

of s(x) whereP; denotes a polynomial of degrgeThis expansion
converges ta(x) with a geometric rate for all sufficiently larde|.

It follows that the gradiens*) (z) = V() is bounded and hence
s € Lip,, (1) with

M = sup |Vs(z)|.
zERD

Hence noting from (4.11) thaf, ,; |2|*ka,2,c(z)dx < ¢* for all
0 < a < 2 and applying the Korovkin theorem Proposition 4.2 we
find that in this case

IIs = $]loo < Me.

Consider now using the triharmonic splineft based on sums
of shifts of|z|* log |z| plus quadratics

N
s(x) = p2(z) + Z i |z — 2| log |z — 4.

=1

The triharmonic spline i€’3. It is natural to use such a triharmonic
spline, rather than the usual thin-plate spline, if the function be-
ing approximated is smoother, or if a smoother approximation is
required.

The usual side conditions for the triharmonic spline are that the
coefficients\; are “orthogonal to” quadratics. That is that

N
Z Aig(;)

These conditions imply that the polynomial parts arising from
smoothing of the weighted shifts ofe |*log| e | cancel to give
the zero polynomial. Therefore the smoothed RBF has the form

0, for all quadratics;. (6.8)

N
q2(x) + Z Ai (|lz— zi)® + 02)210g

i=1

g(m) |$—5L‘i‘2+c2 s

wheregs = p2 * kq,4,. Will usually differ fromp,.
Further, when the side conditions (6.8) hold, one can form a far
field expansion

Ps(x)
|22

P4(:IZ)
|=[*

Q1(z)log(|z]) + Po(z) + + +o

of s(z) whereQ: (z) is a polynomial of degreé, and for allj, P;
denotes a polynomial of degrgeThis expansion convergesd(r)
with a geometric rate for all sufficiently large|. It follows that all
the second partials afare bounded. Hence the first total derivative
s ¢ Lip,,(1) for some constand/. Noting from (4.11) that
Jralz|“kaa.c(z)dz < ¢ forall 0 < a < 4 and applying the
Korovkin theorem Proposition 4.2 we find that in this case

s — 3lloo < Mc>.

7 Bessel kernels and Matern functions

This section discusses mollification formulas for Bessel kernels and
the scaled versions known as Matern functions. These mollification
formulas can be exploited in an implicit smoothing technique for
Matern RBFs.

Recall the Bessel kernefs, ., for R? given fora: > 0 by

Gua(€) = (1+1¢%) 72,

and

1 a2,

Ga,a(z) = 7d/22(d+a=2)/2T (o/2) K(d—a)/z(m)\f

Good references for the many wonderful properties of these func-
tions are [Aronszajn and Smith 1961] and [Donoghue 1969]. The
properties that we will need in the following are

o Gao € L% a>d/2.
e (4, is continuous when > d.

o Gua(x) = Daalz|@ 4 D/2e7 1= (1 4 0(1)) as|z| — .
HereD, . is a constant depending @rando .

e (4,4 is positive definite forx > d.

® Gaa*Gap=Gaatrp, o, f>0.

The Bessel kernels are also basic functions corresponding to natural
smoothest interpolation problems. [Schaback 1993] and [Schaback
1995] having shown that fdr > d/2 RBF interpolation with basic
functionG 4, 21, yields the interpolant minimizing the Sobolev inner
product forlVa (R%)

~ k
lolfy sy = [ 1B (1+ )" do
Rd

over all sufficiently smooth interpolants.
More explicit forms for some of the Bessel kernels are

am@-v/2

Ga,a+1(z) = me ;
2

which is Lipschitz,
o (d=1)/2

— —lx|
= ey (U Hlebe

Ga,a+3(x)

which is twice continuously differentiable and
a—(d=1)/2

_ 2\, —|z|
= gdter (429) (34 3lz| + |z[7)e .

Ga,a+5(x)

which is four times continuously differentiable. These formulas
and others can be derived using [Abramowitz and Stegun 1965,
(10.2.15) or (10.2.17)].

Introduce a parameterby considering the dilated version scaled
to have integral

My o.c(z) =c “Gaalz/c). (7.2)

We have used the lettev/ for these functions as in the Statistics
literature they are often called Matern functions rather than scaled
Bessel kernels (see e.g. [Stein 1999]). From (7.1) and its immediate
consequence

/ |x|Ma,a,c(z)dz = c/ |2|Ga,a(z)dx (7.2)
Rd RA
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it is clear thatc is a length scale associated with the kethg&j ., ..

The positive definiteness of thé;.’s implies that of the
Mag,.,c's. Hence the scattered data interpolation problem of finding
a Matern RBF of the form

S(.) = Z )‘iMd,a,c(. - :L'z)

taking given valued; at a finite number of given distinct points

is guaranteed to have a unique solution. [Mouat and Beatson 2002]

discuss an application of Matern RBFs to the numerical solution of
PDEs in which they significantly outperform multiquadrics.
The convolution property of th€'y ,'s implies
Md,u,c * Md.ﬂ,c - Md,(x«l»ﬂ,w awB > 0.

Therefore given an RBF built upon the basic functitfy .. we
can carry out implicit smoothing in the form

S = Z )\'LMd,a,c(. - xl)

—_— {Z /\iMd,a,c(. — l’z)} *Md,ﬁ,c
= Z AiMa,otp.c(® — i) =: 5.

The RBFs based on the kerndl/, ., is Lipschitz whenevex >

10

Then Wendland derives from the work of [Schaback and Wu
1996] formulas for the convolutions of compactly supported radial
functions one of which should read

I(f *a+2 g) = 2n (I f) *xa (Ig)- (8.2)

Now let k. be the characteristic function of the ball radius
in 3D, normalised to have integral one. By Bochner’s theorem
Cs(x) = (kexske)(z) will necessarily be positive definite. Statisti-
cians call this function the spherical covariance, but it is also known
as the Euclid hat. The latter name derives from the analogy with the
univariate piecewise linear hat function, or linear B-spline, on a uni-
form mesh, which is the convolution of two characteristic functions.
It follows easily from formula (8.2) that the spherical covariance,
normalised to have value at zero, and to be supported on a ball
radiusl, is

(1= 3 L
Cs(z) = <1 2|x|+ 2\m| )

Other frequently used positive definite compactly supported ba-
sic functions inR? are the Askey functiom and the Wendland

d + 1. Hence, the Korovin theorem and the moment estimate (7.2) function given by

imply that

Is =5l < ( [ lelGistaras (;“Ed w(x)) ‘

wheneveily > d + 1.

8 Mollification formulas for compactly
supported RBFs
This section discusses mollification formulas for compactly sup-

ported RBFs. These mollification formulas can be exploited in im-
plicit smoothing techniques for compactly supported RBFs.

A(r)
W(r)

(1-7)2,
(1= )t (4 + 1),

which is Lipschitz
which is C'.

(8.3)
(8.4)

P2,0(r) =
3,1(r)

To use these functions at a length scRlene simply replaces by
||/ R.

We consider implicit smoothing of these basic functions by con-
volving them with the kernet. defined above. The resulting func-
tion will clearly be supported ofiz : |z| < 1+ ¢}. Looking in
the Fourier domain we see that the smoothed function will not be
positive definite. Positive definiteness is important as it guarantees

In this section we abuse notation and do not distinguish betweenthe existence of solutions to interpolation problems. However, it

radial functions in terms of the dimension of their Euclidean do-
main. Thus we writef(x) for a radial function which when writ-
ten asg(|z|) we can consider as having any finite dimensional
Euclidean domairR™. Consequently we need to identify the di-
mensionality of the domain differently and do so by writiagfor

the convolution inR<. Following [Wendland 1995] given afi..
compactly supported radial functighform from it another radial
function (I f) by defining (viewingf as a function of the variable

r =)

(If)(t) = / sf(s)ds, 0<t< oo,

—t (8.1)
L) (=),

t otherwise

Also define fort > 0

1d,

(DA =75

(t).

In the interior of intervals of continuity of the fundamental theo-
rem of calculus implies

(DIf)(t) = f(t).

does not matter for our implicit smoothing application, in which
one smooths a previous fitted RBF. If one wants the smoothed ba-
sic function to be positive definite then clearly one should choose
a compactly supported positive definite function such as the Askey
function or spherical covariance, normalised to have integrak

the smoothing kernel rather than.

Maple code based on (8.2) yields piecewise definitions for the
smooth approximation¥ = & %3 k. to these basic function®
when0 < ¢ < 1/2. In particular(A 3 k.) (r) equals

1 4 1 9 3 3 5
Toca" +(172)r+ lf§c+gc), 0<r<ec,
2
rP—2r+ 1—|—§c2 _ (%< 17 c<r<l-—eg,
5 5 /)r
1 5 1 4, 1-3¢ 4 l+c

163 %
14 10¢® 4+ 15¢* + 6¢°
20c3

l—c<r<l+ec

803 2088
_146¢* +16¢° +9c4r

16¢3
~1—5¢% +15¢" + +16¢° +5¢° 1
80c? r’




Mollification formulas and implicit smoothing

Also (Cs3 %3 k) (r) equals

1 ¢ 3 1Y 4
— = (24 —

o Tae\Fta)"
+%(1——2>T2+<1—§c+703),0<r<c,

c<r<l-—e,

280c3 8ot T 16

2 2 3 45
+3(1 c)r2_3(1—|—5c +1[00 4C)r

8¢ 40¢3
+1+8c3 +9c¢* —2c°

16¢3

a2 4 5 47

_ 3(3 — 14c” +35¢” +28¢ 46)1’ le<r<lte
560c3 r

Finally, (W %3 k.) (r) equals

-1 5, (6 2\ 6 4
23" +(%‘ﬁ m ‘15+9C+z)’"
+ (=10 + 30c — 30¢ + 10c*) r?

4
+ 1—602—&—1003—75044—%05 s 0<r<e,
4r® — 157" + (20 + 12¢%) »°
36 4

— (10 + 3062) r? 4+ ( 24¢% + 70 r

4 1 4 1
+<1—602—75c4>+<72c4+ﬁcﬁ>;, c<r<l-—eg,
1 s 15 7
84c?  224c3 ) 5
1—3c" ¢ 1—15c" —16¢° 5
+ o= r

[CX 2 8¢’ 2 3 4 5
3(2+ 5¢c+ 3¢ )7'4 n 1+ 30c” + 160c” 4 225¢™ + 96¢ 3

16¢3

2c
-5 (1 +3c+3c¢" + cg) 7
3 (14 7¢* —105¢" — 224¢” — 175¢° — 48¢")
r
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