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Figure 1: Implicit smoothing applied to a noisy Lidar scan.



1 Introduction

This paper develops some mollification formulas involving convo-
lutions between popular radial basis function (RBF) basic functions
Φ, and suitable mollifiersk. Polyharmonic spline, scaled Bessel
kernel (Matern function) and compactly supported basic functions
are considered. An application which motivated the development of
the formulas is a technique called implicit smoothing. This compu-
tationally efficient technique smooths a previously obtained RBF fit
by replacing the basic functionΦ with a smoother versionΨ during
evaluation. In the case of the polyharmonic spline basic functions
the smoothed basic function is a generalised multiquadric or shifted
thin-plate spline (at least up to a polynomial).

Special cases of one of the mollification formulas developed here
were given in the 1D setting in [Beatson and Dyn 1996]. That pa-
per concerned error estimates for quasi interpolation with 1D gen-
eralised multiquadrics, and showed by elementary methods

(•2+c2)(2j−1)/2 = |•|(2j−1)/2?j
(2j − 1)!!

(2j)!!
c2j(•2+c2)−(2j+1)/2,

for j ∈ N. A multivariate analog relatingΦ(x) = |x| and the multi-
quadricΨ(x) =

√
x2 + c2 in R3 has been used to smooth implicit

surface fits to lidar and laser scanner data (see Figures 1 and 2, and
Section 2). This application is detailed in [Carr et al. 2003]. That
paper presents the application but not the mathematics underlying
it. Implicit smoothing of globally supported RBFs should also have
many other applications. [Fasshauer 1999] has used related basic
function substitution techniques as part of a process for the numer-
ical solution of PDEs with compactly supported RBFs.

The purpose of the current paper is to present a mathematical
treatment of general versions of these, and related, mollification
formulas. Initially our development for the polyharmonic spline
case was based on viewing odd powers of|x| as multiples of fun-
damental solutions of iterated versions of Laplace’s equation. As
such our treatment was restricted to polyharmonic splines in odd
dimensions. Changing to arguments based more directly on gener-
alised functions has enabled many restrictions to be dropped. For
example in the case of the results for|x|β (Theorem 4.1) there is
no longer any restriction on the parity of the dimension, nor any
requirement that the powerβ of |x| be odd or integer. Further-
more we develop analogous formulas for polyharmonic splines in
even dimension. Related results for scaled Bessel kernels (Matern
functions) and compactly supported radial basis functions are also
discussed.

Notation: In this paper the Fourier transform is defined as follows

f̂(ξ) :=

∫
Rd

e−ixξf(x)dx, f ∈ L1(Rd).

Also, except where explicitly noted, the generalized Fourier trans-
forms that appear are the generalised transforms of the func-
tions viewed as distributions acting onD(Rd\{0}) rather than on
D(Rd). This convention simplifies the discussion.

2 An application – implicit smoothing

This section concerns an application of the mollification formulas
to come to the smoothing of RBF fits. This particular application
motivated the development of the formulas. The process will be
called implicit smoothing and can be viewed as smoothing an inter-
polant to noisy data rather than smoothing the data itself.

The process starts with a noisy data set to be approximated. Fig-
ure 2 shows one example of such a noisy data set, a “noisy” Lidar

Figure 2: A noisy lidar scan of a statue in Santa Barbara.

scan. Firstly an RBF is fitted to the noisy data yielding an RBF
approximation

s(x) = p(x) +

N∑
i=1

λiΦ(x− xi). (2.1)

Then the initial RBF approximation is smoothed by convolution
with the mollifierk yielding a smoother fit

s̃(x) = q(x) +

N∑
i=1

λiΨ(x− xi), (2.2)

where q = p ? k and Ψ = Φ ? k. Figure 1 shows zoomed
in views of the isosurfaces arising when this strategy applied to
the noisy Lidar scan of Figure 2. HereΦ(x) = |x| is the bi-
harmonic spline basic function inR3 andΨ(x) =

√
x2 + c2 is

the ordinary multiquadric. In Figure 1 one can clearly see the
amount of smoothing increase with the parameterc. Figure 3
shows a thin-plate spline fit to data from the Mexican hat function
f(x) = (1− x2) exp(−x2/2) at400 scattered points inR2. Uni-
form random noise of magnitude0.7 has been added to the original
Mexican hat height data. HereΦ(x) = x2 log |x| is the thin-plate
spline andΨ(x) = (x2 + c2) log

√
x2 + c2 is the shifted thin-plate

spline. Implicit smoothing has been employed to obtain an approx-
imation to the noise free signal.

For important choices ofΦ, and suitable choices ofk, the
smoothed basic functionΨ turns out to be a simple and easy to
evaluate, function. Therefore in applying the technique there is no
need for any explicit, and computationally expensive, evaluation of
convolutions. Rather one fits the initial radial basis functions, and
then smooths it when evaluating by substituting the smoothed ba-
sic functionΨ for the original basic functionΦ. Thus the technique
can be viewed as smoothing by basic function substitution. In some
important cases fast evaluators are available for the smoothed RBF
s̃.

Advantages of the technique are

• No explicit convolution to do.

• There is no requirement that the data or evaluation points be
gridded.

• Well understood linear filtering. Fourier transform and abso-
lute moments of the smoothing kernel are known.
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(a) The Mexican hat function

(b) Exact fit to Mexican hat plus noise data

(c) Smoothed withc = 0.2

(d) Smoothed withc = 0.6

Figure 3: Various fits to noisy data created from the Mexican hat
function.

• Smoothing can be chosen for appropriate frequency or length
scale.

• A posteriori parameter for user to play with – “noise
level/frequency” need not be known a priori.

Disadvantages of the method

• A posteriori parameter for user to play with.

• Just linear filtering so will blur sharp features.

3 Technical lemmas

The following technical lemmas which deal with distributions and
special functions will be needed in later sections.

Lemma 3.1. Identification of a convolution

(i) Letβ, ε > 0. Supposeg ∈ C(Rd), g(x) = O(|x|β) as|x| →
∞, andk ∈ L∞(Rd), k(x) = O(|x|−(d+β+ε)) as|x| → ∞.
Theng ? k is aC(Rd) function with(g ? k)(x) = O(|x|β)
as|x| → ∞.

(ii) Let β, ε, g andk be as in part (i). Leth ∈ C(Rd) be such
that h(x) = O(|x|β) as |x| → ∞. Viewing ĝ and ĥ as
tempered distributions suppose that there exist functionsG
andH in L1

loc

(
Rd\{0}

)
such that for all test functionsφ ∈

D
(
Rd\{0}

)
〈ĝ, φ〉 =

∫
Rd

G(ξ)φ(ξ)dξ

and

〈ĥ, φ〉 =

∫
Rd

H(ξ)φ(ξ)dξ.

Further writing k̂ for the classical Fourier transform ofk sup-
pose

G(ξ)k̂(ξ) = H(ξ), for almost allξ 6= 0.

Then

(g ? k)(x) = p(x) + h(x) for all x ∈ Rd

wherep is a polynomial of degree not exceeding the integer
part ofβ.

Proof of part (i).

(g ? k)(x) =

∫
g(x− y)k(y)dy

= O
(∫

(1 + |x|+ |y|)β (1 + |y|)−(d+β+ε)dy

)
= O

(
(1 + |x|)β

∫
(1 + |y|)β (1 + |y|)−(d+β+ε)dy

)
= O((1 + |x|)β).

Now fix x ∈ Rd and let{tn} be a sequence tending to zero in
Rd with |tn| ≤ 1 for all n. By an analogous argument to that above
there is a constantC so that

|g(x+ tn − y)k(y)| ≤ C(2 + |x|)β(1 + |y|)−(d+ε)
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for almost ally. Hence, applying the Lebesgue dominated conver-
gence theorem,

lim
n→∞

(g ? k)(x+ tn) = (g ? k)(x).

It follows thatg ? k is continuous.
Proof of part (ii)
Below we will view g ? k as a tempered distribution. Letφ ∈
D
(
Rd\{0}

)
. Henceφ̂ ∈ S the space of rapidly decreasing func-

tions. The growth conditions ong, k, andφ̂ combine to imply that
all the iterated integrals below are absolutely convergent, so that the
applications of Fubini’s Theorem that occur are justified.

〈(g ? k)̂, φ〉 = 〈g ? k, φ̂〉

=

∫ ∫
g(x− y)k(y)dy φ̂(x)dx

=

∫ ∫
g(z)φ̂(y + z)dz k(y)dy

=

∫ (∫
g(z)

[
e−iyξφ(ξ)

]̂
(z)dz

)
k(y)dy

=

∫ 〈
g,
[
e−iy•φ(•)

]̂ 〉
k(y)dy

=

∫ 〈
ĝ, e−iy•φ(•)

〉
k(y)dy

=

∫ (∫
G(ξ)e−iyξφ(ξ)dξ

)
k(y)dy

=

∫ ∫
G(ξ)e−iyξφ(ξ)k(y)dy dξ

=

∫
G(ξ)φ(ξ)

(∫
e−iyξk(y)dy

)
dξ

=

∫
G(ξ)k̂(ξ) φ(ξ)dξ

=

∫
H(ξ)φ(ξ)dξ

= 〈ĥ, φ〉.

Henceĝ ? k− ĥ is a distribution supported at the origin. Therefore
g ? k = p+ h wherep is a polynomial. The growth ofg ? k andh
implies thatp is of degree at most the integer part ofβ.

In the followingB is the Beta function

B(z, w) :=

∫ ∞

0

tz

(1 + t)z+w

dt

t
=

Γ(z)Γ(w)

Γ(z + w)
,

andψ is the Digamma functionψ(z) := Γ′(z)/Γ(z) (see e.g.
[Abramowitz and Stegun 1965]).1

Lemma 3.2. Let c, w, v ∈ R with c > 0 andv > w/2 > 0. Then∫ ∞

0

rw

(c2 + r2)v

dr

r
=
cw−2v

2
B
(w

2
, v − w

2

)
. (3.1)

Further

I(w, v) :=

∫ ∞

0

rw log r

(c2 + r2)v

dr

r

1Care is needed in interpreting the literature as many authors useψ(z)
to denote the functionΓ′(z+1)/Γ(z+1) instead. See for example [Jones
1982, page 114].

= B
(w

2
, v − w

2

) cw−2v

2
×{

log(c) +
1

2
ψ
(w

2

)
− 1

2
ψ
(
v − w

2

)}
. (3.2)

and

M(w, v) :=

∫ ∞

0

rw log(r2 + c2)

(c2 + r2)v

dr

r

= B
(w

2
, v − w

2

) cw−2v

2
×{

2 log(c) + ψ (v)− ψ
(
v − w

2

)}
. (3.3)

Proof of the first identity.The assumptions onv andw clearly im-
ply the integral is convergent. Substitutingc2t = r2∫ ∞

0

rw

(c2 + r2)v

dr

r
=

1

2

∫ ∞

0

(
c2t
)w/2

(c2 + c2t)v

dt

t

=
cw

2c2v

∫ ∞

0

tw/2

(1 + t)v

dt

t

=
cw−2v

2
B
(w

2
, v − w

2

)
.

Proof of the second identity.Since
∫ ∞

0

rw| log r|
(c2 + r2)v

dr

r
< ∞ we

use the Lebesgue Dominated Convergence Theorem and differenti-
ate under the integral sign to obtain

I(w, v) =
d

dw

∫ ∞

0

rw

(c2 + r2)v

dr

r
.

Employing (3.1) this implies

I(w, v) =
d

dw

{
cw−2v

2
B
(w

2
, v − w

2

)}
=

d

dw

{
cw−2v

2

Γ
(

w
2

)
Γ
(
v − w

2

)
Γ (v)

}

=
1

2Γ(v)

{
log(c)cw−2vΓ

(w
2

)
Γ
(
v − w

2

)
+

1

2
ψ
(w

2

)
Γ
(w

2

)
cw−2vΓ

(
v − w

2

)
−1

2
cw−2vΓ

(w
2

)
ψ
(
v − w

2

)
Γ
(
v − w

2

)}
=
B
(

w
2
, v − w

2

)
2

cw−2v×{
log(c) +

1

2
ψ
(w

2

)
− 1

2
ψ
(
v − w

2

)}
.

Proof of the third identity.Proceeding as in the proof of the second
integral identity

M(w, v) = − d

dv

∫ ∞

0

rw

(c2 + r2)v

dr

r
.

Employing (3.1) this implies

M(w, v) = − d

dv

{
cw−2v

2

Γ
(

w
2

)
Γ
(
v − w

2

)
Γ (v)

}

= −
Γ
(

w
2

)
2

{
−2 log(c)cw−2v Γ

(
v − w

2

)
Γ(v)



Mollification formulas and implicit smoothing 5

+ cw−2v ψ
(
v − w

2

)
Γ
(
v − w

2

)
Γ(v)

−cw−2v Γ
(
v − w

2

)
Γ′(v)

(Γ(v))2

}

=
B
(

w
2
, v − w

2

)
2

cw−2v×{
2 log(c) + ψ (v)− ψ

(
v − w

2

)}
.

4 Mollification formulas for powers of the
modulus

In this section mollification formulas will be developed for powers
of the modulus. The flavour of the main result, Theorem 4.1, is that
the convolution of|x|β against an appropriate inverse multiquadric

is the generalised multiquadric
(
|x|2 + c2

)β/2
. Further, a quanti-

tative Korovkin Theorem, Proposition 4.2, estimates the distance
between the original unsmoothed RBFs and the corresponding
smoothed RBF̃s = s ? kd,β,c.

Define the generalised multiquadric basic function ( the gener-
alised Fourier transform of a Bessel kernel) as

Ψβ,c(x) = (|x|2 + c2)β/2, x ∈ Rd. (4.1)

wherec > 0. These functions are most often considered in the case
thatβ is a positive odd integer. ClearlyΨβ,c can be viewed as a
smoothed out version of|x|β . The results of this section show that
the “smoothing out” is actually given by a convolution.

More precisely Theorem 4.1 to come shows that inRd and for
all β > −d

Ψβ,c(x) = (Φβ ? kd,β,c)(x), (4.2)

whereΦβ = |x|β and the convolution kernelkd,β,c(x) is the gener-
alised multiquadric with negative indexΨ−β−2d,c(x), normalised
to have integral one. That is

kd,β,c(x) = ad,βc
d+βΨ−β−2d,c(x), (4.3)

for some constantad,β . Write

σd := 2πd/2/Γ(d/2), (4.4)

for the surface area of the unit sphere inRd. Then

1 =

∫
Rd

kd,β,c(x)dx = σdad,βc
d+β

∫
R

rd

(r2 + c2)(β+2d)/2

dr

r
,

implying from equation (3.1) that

ad,β = π−d/2 Γ((β + 2d)/2)

Γ((β + d)/2)
. (4.5)

Interpretation of convolution against the kernel as a low pass fil-
ter will be aided by the expression (4.8) for its Fourier transform

k̂d,β,c(ξ) =
21−(d+β)/2

Γ((β + d)/2)
K β+d

2
(c|ξ|) (c|ξ|)(β+d)/2 , β > 0.

This Fourier transform is a positive function tending to zero expo-
nentially fast with|ξ|. Considering the graph of̂kd,β,c(|ξ|) against
|ξ| it is clear that the width of the graph at any fixed height is in-
versely proportional toc. This expresses precisely how the graph of
k̂d,β,c(ξ) grows more and more peaked asc increases. Thus convo-
lution with k̂d,β,c will attenuate high frequencies more and more as
c increases.

Using equation (3.1) again one has∫
Rd

|x|βkd,β,c(x)dx =

∫
Rd |x|βkd,β,c(x)dx∫
Rd kd,β,c(x)dx

=

∫
R

rd+β

(c2+r2)(β+2d)/2
dr
r∫

R
rd

(c2+r2)(β+2d)/2
dr
r

= cβB(
d+ β

2
,
d

2
)/B(

d

2
,
d+ β

2
)

= cβ . (4.6)

We are particularly interested in the polyharmonic splines. In
odd dimension odd powers of the modulus are multiples of funda-
mental solutions of iterated versions of Laplace‘s equation. Radial
basis functions based on sums of shifts of these fundamental solu-
tions supplemented by polynomials have many wonderful proper-
ties. Such polyharmonic splines arise naturally as smoothest inter-
polants (see [Duchon 1977]) and have performed extremely well in
many practical applications (see e.g. [Carr et al. 2001]). A particu-
larly important special case is that of the basic functionΦ(x) = |x|
in R3. The corresponding RBFs, which take the form of a linear
polynomial plus sums of shifts of the modulus, are called bihar-
monic splines inR3.

We will now show the mollification formula

Theorem 4.1. For all β such that<(β) > −d

(Φβ ? kd,β,c)(x) = Ψβ,c(x), for all x ∈ Rd. (4.7)

Remark:This result includes the cases where the powerβ and the
dimensiond are both odd, andΦβ(x) = |x|β is a polyharmonic
spline basic function. It also includes many other cases. In partic-
ular the range of validity of the formula includes those exceptional
β’s for whichΦβ andΨβ,c are polynomial.

Proof. We note the following generalized Fourier transforms
for the relevant functions viewed as distributions acting on
D(Rd\{0}).

(FΨβ,c) (ξ) =
2πd/2

Γ(−β/2)
K(d+β)/2(c|ξ|)

(
|ξ|
2c

)−(d+β)/2

for β 6∈ 2N0, whereK(d+β)/2 is a modified Bessel function (see
[Abramowitz and Stegun 1965, page 374] or [Aronszajn and Smith
1961, page 415]). Forβ < −d this is a classical Fourier transform
onRd. Also(

F |•|β
)

(ξ) = 2d+βπd/2 Γ ((d+ β)/2)

Γ (−β/2)
|ξ|−d−β

for β /∈ (−d− 2N0)
⋃

(2N0) (see [Gelfand and Shilov 1964, page
363]).

Then using the normalising constant

ad,β = π−d/2 Γ ((β + 2d)/2)

Γ ((β + d)/2)

defined above and thatKν(z) = K−ν(z) we find

k̂d,β,c = ad,βc
d+βΨ̂−2d−β,c

= π−d/2cd+β Γ ((β + 2d)/2)

Γ ((β + d)/2)

2πd/2

Γ (−(−2d− β)/2)

K−(d+β)/2 (c|ξ|)
(
|ξ|
2c

)(d+β)/2
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=
21−(d+β)/2

Γ((β + d)/2)
K β+d

2
(c|ξ|) (c|ξ|)(β+d)/2 (4.8)

for β > −d . It is then clear that(
F |•|β

)
(ξ)k̂d,β,c(ξ) = Ψ̂β,c(ξ), ξ ∈ Rd\{0}.

for a set ofβ’s including0 < β < 1.
Now fix c > 0, 0 < β < 1, and apply Lemma 3.1. The Lemma

implies that
| • |β ? kd,β,c = pβ,c + Ψβ,c (4.9)

wherepβ,c is a polynomial of degree0 and the equality holds point-
wise. Considering the pointx = 0 we find(

| • |β ? kd,β,c

)
(0) =

∫
Rd

|t|β ? kd,β,c(t)dt

= cβ ,

where we have used (4.6). Then observing thatΨβ,c(0) = cβ we
deduce that the polynomialpβ,c in (4.9) must be identically zero.
We have therefore established that for allc > 0 and0 < β < 1

(Φβ ? kd,β,c)(x) = Ψβ,c(x), for all x ∈ Rd. (4.10)

Now fix c > 0 andx ∈ Rd. The right-hand side of (4.7) is an
entire function ofβ. The left-hand side is continuous onΩd := {β :
<(β) > −d} by the Lesbesgue dominated convergence theorem. A
standard argument using Morera’s theorem then shows that the left-
hand side is analytic onΩd. (4.10) shows that (4.7) holds for0 <
β < 1. Hence, by analytic continuation, it holds for all<(β) >
−d.

The remainder of this section will concern the application of the
Theorem above to implicit smoothing.

Recall from (4.6) that∫
Rd

|x|βkd,β,c(x)dx = cβ .

A routine application of Ḧolder’s inequality then shows that∫
Rd

|x|αkd,β,c(x)dx < cα, for all 0 < α < β. (4.11)

These expressions for theα-th absolute moment ofkd,β,c clearly
quantify the manner in which the kernel becomes peaked asc ap-
proaches zero. Loosely speaking they shows that the dominant part
of convolution against the kernel is averaging on a length scale of
approximatelyc, at least for functions of sufficiently slow growth.
Thus we can expect convolution againstkd,β,c to lose, or smooth,
detail at this length scale.

A more precise statement about the error between the original
RBF s and its smoothed versioñs is implied by the quantitative
Korovkin theorem we are about to present. See the last paragraph
of this section for the details.

Given a uniformly continuous functiong : Rd → R define its
uniform norm modulus of continuity

ω(g,Rd, δ) := sup
x,y∈Rd:|x−y|≤δ

|g(x)− g(y)|.

Let f ∈ C`(Rd) be a function with all̀ -th order partials uniformly
continuous onRd. Define thè -th order directional derivative of
f at x in the direction ofu, f (`)

u (x), as the`-th derivative of the
univariate functiong(t) = f(x+ tu), at t = 0. The joint modulus

of continuity of all directional derivatives of order` of f is given
by

Ω(f (`),Rd, δ) := sup
|u|=1

ω(f (`)
u ,Rd, δ).

For a discussion of the properties of this modulus of continuity
see [Beatson and Light 1993]. Given` ∈ N0 and0 < α ≤ 1

we will say the total derivativef (`) is in LipM (α) if there exists a
positive a constantM such that

Ω(f (`),Rd, δ) ≤Mδα, for all 0 < δ <∞.

For each multiindexγ adopt the usual notation defining|γ| = ‖γ‖1
and the normalized mononomial

Vγ(x) =
1

γ!
xγ =

1

γ1!γ2! · · · γd!
xγ1

1 xγ2
2 · · ·xγd

d

With this notation in hand we can state the following folklore quan-
titative Korovkin Theorem. We include the simple proof for the
sake of completeness, and also because we do not know of a con-
venient reference.

Proposition 4.2. Let ` ∈ N0, 0 < β ≤ 1, andB > 0. For each
c > 0 let kc : Rd →R be a bounded function such that∫

Rd

tγkc(t)dt = δ0,|γ|, 0 ≤ |γ| ≤ `, (4.12)∫
Rd

|t|`+β |kc(t)|dt ≤ Bc`+β . (4.13)

Then for allf ∈ C`(Rd) with `-th total derivative in LipM (β) and
all c > 0

‖f ? kc − f‖∞ ≤ BM

`!
c`+β . (4.14)

Proof. Taylor’s theorem with integral remainder for univariate
functions implies∣∣∣∣∣g(x− t)−

∑̀
j=0

g(j)(x)
(−t)j

j!

∣∣∣∣∣ ≤ |t|`

`!
ω(g(`), |t|), x, t ∈ R.

Applying this along the line segment joiningx andx− t in Rd we
find the multivariate Taylor theorem in the form∣∣∣∣∣∣f(x− t)−

∑
|γ|≤`

(Dγf) (x)Vγ(−t)

∣∣∣∣∣∣ ≤ |t|`

`!
Ω
(
f (`),Rd, |t|

)
.

Hence using the hypotheses

|(f ? kc)(x) − f(x) | =
∣∣∣∣∫
Rd

(f(x− t)− f(x)) kc(t)dt

∣∣∣∣
=

∣∣∣∣∣∣
∫
Rd

f(x− t)−
∑
|γ|≤`

(Dγf) (x)Vγ(−t)

 kc(t)dt

∣∣∣∣∣∣
≤
∫
Rd

|t|`

`!
Ω
(
f (`),Rd, |t|

)
|kc(t)|dt

≤ M

`!

∫
Rd

|t|`+β |kc(t)|dt ≤
BM

`!
c`+β .

As a first application of Theorem 4.1 and Proposition 4.2 con-
sider implicit smoothing of an RBF of form (2.1) whenΦ(x) = |x|
andp is of degree1. Implicit smoothing of a surface inR3 mod-
elled with such biharmonic spline is illustrated in Figures 1 and 2.
Then the unsmoothed functions ∈ LipM (1) where

M = sup
x∈Rd\{xi:1≤i≤N}

|∇s(x)|.
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Convolving againstkd,1,c we note that linear polynomials are pre-
served so that the smoothed RBF (2.2) takes the special form

s̃(x) = p(x) +

N∑
i=1

λiΨ1,c(x− xi).

Applying the Korovkin theorem Proposition 4.2, using that∫
Rd |x|kd,1,c(x)dx = c by (4.6), we see that‖s− s̃‖∞ ≤Mc.

5 Radial functions

This section outlines some known fundamental properties of radial
functions.

A functionf : Rd → R is radial if there is a univarate function
g such thatf(x) = g(|x|) for all x.

Lemma 5.1. Letf, k : Rd → R be such that the integral defining
(f ? k)(x) is absolutely convergent for allx. If f andk are radial
then so isf ? k.

Proof. Givenx ∈ Rd choose a rotation matrixQ so thatQx =
|x|e1 wheree1 is the vector(1, 0, . . . , 0). Then

(f ? k)(x) =

∫
Rd

f(x− t)k(t)dt

=

∫
Rd

f(Qx−Qt)k(Qt)dt

=

∫
Rd

f(|x|e1 − s)k(s)ds

= (f ? k)(|x|e1).

Given a polynomialp : Rd → R write it in terms of the mono-
mial basis asp(x) =

∑
α∈Nd

0
aαx

α. Define the homogeneous part

of degreej of p,Hjp by (Hjp) (x) =
∑

|α|=j aαx
α.

Lemma 5.2. Let p : Rd → R be a polynomial which is also
radial. Then

(a) All the homogeneous partsHjp of p, j = 0, 1, . . ., are also
radial.

(b) There is a univariate polynomialq such that

p(x) = q(|x|), for all x.

Proof of (a). Suppose thatp is radial yet at least one homogeneous
part ofp is not. LetHmp be the first non radial homogeneous part
of p. Then there existx, y with |x| = |y| = 1 but (Hmp) (x) 6=
(Hmp) (y). Now let

e = p−
m−1∑
k=0

(Hkp) =

∞∑
k=m

(Hkp) .

Then

e(rx)− e(ry) = rm ((Hmp) (x)− (Hmp) (y)) +O
(
rm+1) ,

as r → 0+ implying e(rx) 6= e(ry) for all sufficiently small
r > 0. But e is radial by choice ofm. Contradiction.
Proof of (b)From part (a) ifj is odd thenHjp is both odd and ra-
dial, therefore identically zero. Hence writinge1 for the unit vector
(1, 0, . . . , 0) and using part (a) again

p(x) =

∞∑
j=0

(H2jp) (x)

=

∞∑
j=0

(H2jp) (|x|e1)

=

∞∑
j=0

|x|2j (H2jp) (e1)

=

∞∑
j=0

b2jr
2j , r = |x|,

whereb2j = (H2jp) (e1).

6 Mollification formulas for functions of
the form r2j log r

In this section mollification formulas are developed for the gener-
alised thin-plate spline basic function|x|2j log |x|, j ∈ N. The
flavour of the main result Theorem 6.1 is that convolution of
the generalised thin-plate basic function against a certain inverse
multiquadric yields the corresponding shifted thin-plate spline(
|x|2 + c2

)j
log
√
|x|2 + c2, plus a polynomial of degree2j − 2.

In even dimension even powers of the modulus multiplied by
log |x| are fundamental solutions of iterated versions of Laplace‘s
equation. In particular RBFs taking the form of a linear polyno-
mial plus a sum of shifts ofx2 log |x| are the biharmonic RBFs in
R2. Thesethin-plate splinescan be shown to be the solutions of
various smoothest interpolation and penalized smoothing problems
(see e.g. [Duchon 1977], [Wahba 1990]) and have proved very suc-
cessful in many scattered data fitting applications, see for example
[Hutchinson and Gessler 1994]. For such functions we will show
mollification formulas of the form

|•|β log | • | ? kd,β,c =
(
•2 + c2

)β/2
log
√
•2 + c2 + pβ , (6.1)

whereβ ∈ 2N, kd,β,c is as in(4.3), andpβ is a polynomial depend-
ing ond, β andc. The first function on the right above

Ξβ,c(x) := (|x|2 + c2)β/2 log
(
|x|2 + c2

)1/2
, x ∈ Rd.

(6.2)
is the shifted thin-plate spline basic function of Dyn, Levin and
Rippa. Some properties of these functions can be found in [Dyn
et al. 1986] and [Dyn 1989].

In contrast to the case of smoothing|x|β discussed in Section 4 a
nonzero polynomial part does arise in smoothing|x|2j log |x|. For
example the convolution on the left of (6.1) ford = 2, 2j = 2, and
c = 1 evaluated at zero can be rewritten using polar coordinates as

2

π

∫ ∞

0

2πr r2 log(r)(r2 + 1)−3dr.

This equals1/2, while (r2 + 1) log(r2 + 1) evaluated atr = 0 is
0. This direct calculation for the special cased = 2 is in agreement
with the general formula (6.5) which we are about to prove.

Explicitly we will show

Theorem 6.1. For j ∈ N{(
| • |2j log | • |

)
? kd,2j,c

}
(x) = Ξ2j,c(x) + p2j(x) (6.3)

wherep2j is a radial polynomial of degree2j − 2. Writing p2j in
the form

p2j(x) = b2j,0 + b2j,2|x|2 + · · ·+ b2j,2j−2|x|2j−2 ,

b2j,0 = c2j

{
1

(2j − 2) + d
+

1

(2j − 4) + d
+ · · ·+ 1

d

}
, (6.4)
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and in particular

b2,0 =
c2

d
. (6.5)

Proof. Start with the the mollification formula of Theorem 4.1(
|x|2 + c2

)β/2
= ad,βc

d+β

∫
Rd

|y|β
(
|x− y|2 + c2

)−(β+2d)/2
dy

for all x ∈ Rd and all<(β) > −d. Differentiating both sides with
respect toβ yields(

|x|2 + c2
)β/2

log
(
|x|2 + c2

)1/2

=

(
d

dβ
ad,βc

d+β

)∫
Rd

|y|β
(
|x− y|2 + c2

)−(β+2d)/2
dy

+ ad,βc
d+β

∫
Rd

|y|β log |y|
(
|x− y|2 + c2

)−(β+2d)/2
dy

− ad,βc
d+β

∫
Rd

|y|β
(
|x− y|2 + c2

)−(β+2d)/2×

log
(
|x− y|2 + c2

)1/2
dy

= Aβ +Bβ − Cβ .

Calculation of quantityAβ . From (4.5){
d

dβ

(
ad,βc

d+β
)}

− ad,βc
d+β log c

= cd+β d

dβ

{
π−d/2 Γ ((β + 2d)/2)

Γ ((β + d)/2)

}
= cd+β 1

2πd/2

{
Γ′
(

β+2d
2

)
Γ
(

β+d
2

) −
Γ
(

β+2d
2

)
Γ′
(

β+d
2

)
Γ
(

β+d
2

)2
}

=
1

2
ad,βc

d+β

{
ψ

(
β + 2d

2

)
− ψ

(
β + d

2

)}
.

Hence employing the mollification formula (4.7) we find

Aβ =
(
|x|2 + c2

)β/2
{

log c+
1

2
ψ

(
β + 2d

2

)
− 1

2
ψ

(
β + d

2

)}
.

QuantityB2j is the convolution{(
| • |2j log | • |

)
? kd,2j,c

}
(x)

we are interested in.
Calculation of quantityC2j .

C2j =
1

2
ad,2jc

d+2j

∫
|x−y|2j (|y|2 + c2

)−(d+j)
log
(
|y|2 + c2

)
dy

Expanding the term|x − y|2j =
(
|x|2 − 2 < x, y > +|y|2

)j
that

occurs above using the Binomial Theorem it is clear that|x− y|2j

a polynomial of degree2j in x andy. Collecting terms in the ex-
pansion by degree inx

|x− y|2j =
(
|x|2 − 2 < x, y > +|y|2

)j
= |x|2j − 2j < x, y > |x|2j−2

+
(
j|x|2j−2|y|2 + 2j(j − 1) < x, y >2 |x|2j−4

)
+ terms of lower degree inx .

Substituting this expansion into the expression forC2j reveals that
C2j is a polynomial of degree2j in x. From Lemma 5.1 this con-
volution of radial functions yields a radial function. Hence from
Lemma 5.2C2j is a polynomial of degreej in |x|2.

The term involving|x|2j in the expressionC2j is

1

2
ad,2jc

d+2j

∫
Rd

|x|2j (|y|2 + c2
)−(d+j)

log
(
|y|2 + c2

)
dy

= |x|2j 1

2
ad,2jσdc

d+2j

∫ ∞

0

rd (r2 + c2
)−(d+j)

log
(
r2 + c2

) dr
r

= |x|2j 1

2
ad,2jσdc

d+2jM(d, d+ j)

= |x|2j

{
log(c) +

1

2
ψ(d+ j)− 1

2
ψ

(
2j + d

2

)}
where we have employed (3.3).

Combining the expressions forA2j andB2j , with the expression
above for the coefficient of|x|2j in C2j we find that the terms in
|x|2j cancel and therefore the convolution has the form given in
equation (6.3) of the Theorem.

We proceed to identify the constant partb2j,0 of the polynomial
p2j . It follows from formula (6.3) that((

| • |2j log | • |
)
? kd,2j,c

)
(0) = Ξ2j,c(0) + b2j,0. (6.6)

Using the radial symmetry the left hand side can be rewritten as the
univariate integral

σdad,2jc
d+2j

∫ ∞

r=0

r2j log(r)
(
r2 + c2

)−(2j+2d)/2
rd−1dr

Applying the notation and results of Lemma 3.2 this becomes

2

B
(

d
2
, 2j+d

2

)cd+2jI(d+ 2j, j + d)

=
c2j

2

{
log(c2) + ψ

(
j +

d

2

)
− ψ

(
d

2

)}
.

Observing thatΞ2j,c(0) = c2j log(c) it follows that

b2j,0 =
c2j

2

{
ψ

(
j +

d

2

)
− ψ

(
d

2

)}
.

Employing the recurrence [Abramowitz and Stegun 1965, (6.3.5)
and (6.3.6)]

ψ(n+ z) =
1

(n− 1) + z
+

1

(n− 2) + z
+ · · ·+ 1

z
+ ψ(z)

the expression forb2j,0 can be rewritten as

b2j,0 = c2j

{
1

(2j − 2) + d
+

1

(2j − 4) + d
+ · · ·+ 1

d

}
,

establishing formula (6.4). Substitutingj = 1 gives the for-
mula (6.5).

As an application of the mollification formula of Theorem 6.1
consider implicit smoothing of an ordinary thin-plate spline of form

s(x) = p1(x) +

N∑
i=1

λi|x− xi|2 log |x− xi|

in R2. Implicit smoothing of such a fit is illustrated in Figure 3. If
the RBF coefficientsλi satisfy the usual side conditions

N∑
i=1

λi = 0 and
N∑

i=1

λixi = 0, (6.7)
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then the sum of all the constant parts arising from smoothing,∑
i

(
λic

2/d
)
, is zero. Thus the smoothed thin-plate spline is

s̃(x) = p1(x) +

N∑
i=1

λi

(
|x− xi|2 + c2

)
log
√
|x− xi|2 + c2 .

Further, when (6.7) holds, one can form a far field expansion

A log(|x|) + P1(x) +
P2(x)

|x|2 +
P3(x)

|x|4 + . . . ,

of s(x) wherePj denotes a polynomial of degreej. This expansion
converges tos(x) with a geometric rate for all sufficiently large|x|.
It follows that the gradients(1)(x) = ∇s(x) is bounded and hence
s ∈ LipM (1) with

M = sup
x∈Rd

|∇s(x)|.

Hence noting from (4.11) that
∫
Rd |x|αkd,2,c(x)dx < cα for all

0 < α < 2 and applying the Korovkin theorem Proposition 4.2 we
find that in this case

‖s− s̃‖∞ < Mc.

Consider now using the triharmonic spline inR2 based on sums
of shifts of|x|4 log |x| plus quadratics

s(x) = p2(x) +

N∑
i=1

λi |x− xi|4 log |x− xi|.

The triharmonic spline isC3. It is natural to use such a triharmonic
spline, rather than the usual thin-plate spline, if the function be-
ing approximated is smoother, or if a smoother approximation is
required.

The usual side conditions for the triharmonic spline are that the
coefficientsλi are “orthogonal to” quadratics. That is that

N∑
i=1

λiq(xi) = 0, for all quadraticsq. (6.8)

These conditions imply that the polynomial parts arising from
smoothing of the weighted shifts of| • |4 log | • | cancel to give
the zero polynomial. Therefore the smoothed RBF has the form

s̃(x) = q2(x) +

N∑
i=1

λi

(
|x− xi|2 + c2

)2
log
√
|x− xi|2 + c2 ,

whereq2 = p2 ? kd,4,c will usually differ fromp2.
Further, when the side conditions (6.8) hold, one can form a far

field expansion

Q1(x) log(|x|) + P2(x) +
P3(x)

|x|2 +
P4(x)

|x|4 + . . . ,

of s(x) whereQ1(x) is a polynomial of degree1, and for allj, Pj

denotes a polynomial of degreej. This expansion converges tos(x)
with a geometric rate for all sufficiently large|x|. It follows that all
the second partials ofs are bounded. Hence the first total derivative
s(1) ∈ LipM (1) for some constantM . Noting from (4.11) that∫
Rd |x|αkd,4,c(x)dx < cα for all 0 < α < 4 and applying the

Korovkin theorem Proposition 4.2 we find that in this case

‖s− s̃‖∞ < Mc2.

7 Bessel kernels and Matern functions

This section discusses mollification formulas for Bessel kernels and
the scaled versions known as Matern functions. These mollification
formulas can be exploited in an implicit smoothing technique for
Matern RBFs.

Recall the Bessel kernelsGd,α for Rd given forα > 0 by

Ĝd,α(ξ) =
(
1 + |ξ|2

)−α/2
,

and

Gd,α(x) =
1

πd/22(d+α−2)/2Γ(α/2)
K(d−α)/2(|x|)|x|(α−d)/2.

Good references for the many wonderful properties of these func-
tions are [Aronszajn and Smith 1961] and [Donoghue 1969]. The
properties that we will need in the following are

• Gd,α ∈ L2, α > d/2.

• Gd,α is continuous whenα > d.

• Gd,α(x) = Dd,α|x|(α−d−1)/2e−|x| (1 + o(1)) as|x| → ∞.
HereDd,α is a constant depending ond andα .

• Gd,α is positive definite forα > d.

• Gd,α ? Gd,β = Gd,α+β , α, β > 0.

The Bessel kernels are also basic functions corresponding to natural
smoothest interpolation problems. [Schaback 1993] and [Schaback
1995] having shown that fork > d/2 RBF interpolation with basic
functionGd,2k yields the interpolant minimizing the Sobolev inner
product forW k

2 (Rd)

‖g‖2W k
2 (Rd) =

∫
Rd

|ĝ(ω)|2
(
1 + |ω|2

)k
dω

over all sufficiently smooth interpolants.
More explicit forms for some of the Bessel kernels are

Gd,d+1(x) =
π−(d−1)/2

2dΓ
(

d+1
2

)e−|x|,
which is Lipschitz,

Gd,d+3(x) =
π−(d−1)/2

2d+1Γ
(

d+3
2

) (1 + |x|)e−|x|,

which is twice continuously differentiable and

Gd,d+5(x) =
π−(d−1)/2

2d+2Γ
(

d+5
2

) (3 + 3|x|+ |x|2)e−|x|.

which is four times continuously differentiable. These formulas
and others can be derived using [Abramowitz and Stegun 1965,
(10.2.15) or (10.2.17)].

Introduce a parameterc by considering the dilated version scaled
to have integral1

Md,α,c(x) = c−dGd,α(x/c). (7.1)

We have used the letterM for these functions as in the Statistics
literature they are often called Matern functions rather than scaled
Bessel kernels (see e.g. [Stein 1999]). From (7.1) and its immediate
consequence∫

Rd

|x|Md,α,c(x)dx = c

∫
Rd

|x|Gd,α(x)dx (7.2)
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it is clear thatc is a length scale associated with the kernelMd,α,c.
The positive definiteness of theGd,α’s implies that of the

Md,α,c’s. Hence the scattered data interpolation problem of finding
a Matern RBF of the form

s(•) =
∑

i

λiMd,α,c(• − xi).

taking given valuesfi at a finite number of given distinct pointsxi

is guaranteed to have a unique solution. [Mouat and Beatson 2002]
discuss an application of Matern RBFs to the numerical solution of
PDEs in which they significantly outperform multiquadrics.

The convolution property of theGd,α’s implies

Md,α,c ? Md,β,c = Md,α+β,c, α, β > 0.

Therefore given an RBF built upon the basic functionMd,α,c we
can carry out implicit smoothing in the form

s =
∑

i

λiMd,α,c(• − xi)

−→

{∑
i

λiMd,α,c(• − xi)

}
? Md,β,c

=
∑

i

λiMd,α+β,c(• − xi) =: s̃.

The RBFs based on the kernelMd,α,c is Lipschitz wheneverα ≥
d+ 1. Hence, the Korovin theorem and the moment estimate (7.2)
imply that

‖s− s̃‖∞ ≤
(∫

Rd

|x|Gd,β(x)dx

)(
sup

x∈Rd

|∇s(x)|

)
c,

wheneverα ≥ d+ 1.

8 Mollification formulas for compactly
supported RBFs

This section discusses mollification formulas for compactly sup-
ported RBFs. These mollification formulas can be exploited in im-
plicit smoothing techniques for compactly supported RBFs.

In this section we abuse notation and do not distinguish between
radial functions in terms of the dimension of their Euclidean do-
main. Thus we writef(x) for a radial function which when writ-
ten asg(|x|) we can consider as having any finite dimensional
Euclidean domainRn. Consequently we need to identify the di-
mensionality of the domain differently and do so by writing?d for
the convolution inRd. Following [Wendland 1995] given anL∞
compactly supported radial functionf form from it another radial
function (If ) by defining (viewingf as a function of the variable
r = |x|)

(If)(t) =


∫ ∞

s=t

sf(s)ds, 0 ≤ t <∞,

(If)(−t), t otherwise.
(8.1)

Also define fort > 0

(Df)(t) = −1

t

d

dt
f(t).

In the interior of intervals of continuity off the fundamental theo-
rem of calculus implies

(DIf)(t) = f(t).

Then Wendland derives from the work of [Schaback and Wu
1996] formulas for the convolutions of compactly supported radial
functions one of which should read

I(f ?d+2 g) = 2π(If) ?d (Ig). (8.2)

Now let kc be the characteristic function of the ball radiusc
in 3D, normalised to have integral one. By Bochner’s theorem
C3(x) = (kc?3kc)(x) will necessarily be positive definite. Statisti-
cians call this function the spherical covariance, but it is also known
as the Euclid hat. The latter name derives from the analogy with the
univariate piecewise linear hat function, or linear B-spline, on a uni-
form mesh, which is the convolution of two characteristic functions.
It follows easily from formula (8.2) that the spherical covariance,
normalised to have value1 at zero, and to be supported on a ball
radius1, is

C3(x) =

(
1− 3

2
|x|+ 1

2
|x|3
)
.

Other frequently used positive definite compactly supported ba-
sic functions inR3 are the Askey functionA and the Wendland
functionW given by

A(r) = ψ2,0(r) = (1− r)2+, which is Lipschitz (8.3)

W (r) = ψ3,1(r) = (1− r)4+(4r + 1), which is C2. (8.4)

To use these functions at a length scaleR one simply replacesr by
|x|/R.

We consider implicit smoothing of these basic functions by con-
volving them with the kernelkc defined above. The resulting func-
tion will clearly be supported on{x : |x| ≤ 1 + c}. Looking in
the Fourier domain we see that the smoothed function will not be
positive definite. Positive definiteness is important as it guarantees
the existence of solutions to interpolation problems. However, it
does not matter for our implicit smoothing application, in which
one smooths a previous fitted RBF. If one wants the smoothed ba-
sic function to be positive definite then clearly one should choose
a compactly supported positive definite function such as the Askey
function or spherical covariance, normalised to have integral1, as
the smoothing kernel rather thankc.

Maple code based on (8.2) yields piecewise definitions for the
smooth approximationsΨ = Φ ?3 kc to these basic functionsΦ
when0 < c < 1/2. In particular(A ?3 kc) (r) equals



1

10c3
r4 +

(
1− 1

c

)
r2 +

(
1− 3

2
c+

3

5
c2
)
, 0 ≤ r < c,

r2 − 2r +

(
1 +

3

5
c2
)
−
(

2c2

5

)
1

r
, c ≤ r < 1− c,

1

80c3
r5 − 1

20c3
r4 +

1− 3c2

16c3
r3 +

1 + c

2c
r2

−1 + 6c2 + 16c3 + 9c4

16c3
r +

1 + 10c3 + 15c4 + 6c5

20c3

−1− 5c2 + 15c4 + +16c5 + 5c6

80c3
1

r
, 1− c ≤ r < 1 + c.
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Also (C3 ?3 kc) (r) equals

− 1

140c3
r6 +

3

40c

(
2 +

1

c2

)
r4

+
3c

4

(
1− 1

c2

)
r2 +

(
1− 9

8
c+

1

4
c3
)
, 0 ≤ r < c,

1

2
r3 +

(
3

5
c2 − 3

2

)
r

+1 +

(
3

70
c4 − 3

10
c2
)

1

r
, c ≤ r < 1− c,

1

280c3
r6 − 3(1 + 2c2)

80c3
r4 +

1 + 4c3

16c3
r3

+
3(1− c2)

8c
r2 − 3(1 + 5c2 + 10c3 − 4c5)

40c3
r

+
1 + 8c3 + 9c4 − 2c6

16c3

−3(3− 14c2 + 35c4 + 28c5 − 4c7)

560c3
1

r
, 1− c ≤ r < 1 + c.

Finally, (W ?3 kc) (r) equals

−1

42c3
r8 +

(
6

7c
− 2

7c3

)
r6 +

(
−15 + 9c+

6

c

)
r4

+
(
−10 + 30c− 30c2 + 10c3

)
r2

+

(
1− 6c2 + 10c3 − 45

7
c4 +

3

2
c5
)
, 0 ≤ r < c,

4r5 − 15r4 +
(
20 + 12c2

)
r3

−
(
10 + 30c2

)
r2 +

(
24c2 +

36

7
c4
)
r

+

(
1− 6c2 − 45

7
c4
)

+

(
12

7
c4 +

4

21
c6
)

1

r
, c ≤ r < 1− c,

1

84c3
r8 − 15

224c3
r7

+
1− 3c2

7c3
r6 − 1− 15c2 − 16c3

8c3
r5

−3(2 + 5c+ 3c2)

2c
r4 +

1 + 30c2 + 160c3 + 225c4 + 96c5

16c3
r3

−5
(
1 + 3c+ 3c2 + c3

)
r2

−
3
(
1 + 7c2 − 105c4 − 224c5 − 175c6 − 48c7

)
56c3

r

+
1 + 14c3 − 84c5 − 140c6 − 90c7 − 21c8

28c3

−5− 36c2 + 126c4 − 420c6 − 576c7 − 64c9

672c3
1

r
,1− c ≤ r < 1 + c.

These smoothing formulas can be usefully employed when the
original unsmoothed compactly supported RBF,s, contains many
shifts of a single basic function,Φ, with a constant value of the
radiusR. Then the coefficients of the powers ofr = |x|/R above
can all be precomputed, and the smoothed piecewise basic function,
Ψ, evaluated reasonably efficiently by Horner’s method applied to
r or r2 as appropriate.

References

ABRAMOWITZ , M., AND STEGUN, I. A., Eds. 1965.Handbook
of Mathematical Functions. Dover, New York.

ARONSZAJN, N., AND SMITH , K. T. 1961. Theory of Bessel
Potentials. Part 1.Ann. Inst. Fourier., Grenoble 11, 385–475.

BEATSON, R. K., AND DYN , N. 1996. Multiquadric B-splines.J.
Approximation Theory 87, 1–24.

BEATSON, R. K., AND L IGHT, W. A. 1993. Quasi-interpolation
by thin plate splines on the square.Constructive Approximation
9, 407–433.

CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL ,
T. J., FRIGHT, W. R., MCCALLUM , B. C., AND EVANS, T. R.
2001. Reconstruction and representation of 3d objects with ra-
dial basis functions. InComputer Graphics SIGGRAPH 2001
proceedings), 67–76.

CARR, J. C., BEATSON, R. K., MCCALLUM , B. C., FRIGHT,
W. R., MCLENNAN, T. J., AND M ITCHELL , T. J. 2003.
Smooth surface reconstruction from noisy range data. In
GRAPHITE 2003, ACM Press, New York, 119–126.

DONOGHUE, W. F. 1969.Distributions and Fourier Transforms.
Academic Press, New York.

DUCHON, J. 1977. Splines minimizing rotation-invariant semi-
norms in Sobolev spaces. InConstructive Theory of Functions
of Several Variables, Springer-Verlag, Berlin, W. Schempp and
K. Zeller, Eds., no. 571 in Lecture Notes in Mathematics, 85–
100.

DYN , N., LEVIN , D., AND RIPPA, S. 1986. Numerical procedures
for surface fitting of scattered data by radial functions.SIAM
J. Sci. Stat. Comput. 7, 2, 639–659.

DYN , N. 1989. Interpolation and approximation with radial and
related functions. InApproximation Theory VI, Academic Press,
C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds., vol. 1, 211–
234.

FASSHAUER, G. E. 1999. On smoothing for multilevel approxi-
mation with radial basis functions. InApproximation Theory IX,
Vanderbilt University Press, C. K. Chui and L. L. Schumaker,
Eds., vol. 2, 55–62.

GELFAND, I. M., AND SHILOV, G. E. 1964.Generalized Func-
tions, vol. 1. Academic Press, New York.

HUTCHINSON, M. F., AND GESSLER, P. E. 1994. Splines – more
than just a smooth interpolator.Geoderma 62, 45–67.

JONES, D. S. 1982. The theory of generalised functions. Cam-
bridge University Press, Cambridge.

MOUAT, C. T., AND BEATSON, R. K. 2002. RBF collocation.
Tech. Rep. UCDMS 2002/3, Department of Mathematics and
Statistics, University of Canterbury.

SCHABACK , R., AND WU, Z. 1996. Operators on radial functions.
J. Computational and Applied Mathematics 71, 257–270.

SCHABACK , R. 1993. Comparison of radial basis function inter-
polants. InMultivariate approximation from CAGD to wavelets,
World Scientific, Singapore, 293–305.

SCHABACK , R. 1995. Multivariate interpolation and approxima-
tion by translates of a basis function. InApproximation Theory
VIII, Vol. I, World Scientific, Singapore, 491–514.

STEIN, M. L. 1999. Interpolation of Spatial Data: Some theory
for Kriging. Springer-Verlag, New York.

WAHBA , G. 1990.Spline Models for Observational Data. No. 59
in CBMS-NSF Regional Conference Series in Applied Math.
SIAM.

WENDLAND , H. 1995. Piecewise polynomial, positive definite and
compactly supported radial functions of minimal degree.Ad-
vances in Computational Mathematics 4, 389–396.


