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Abstract

Pointwise error estimates for approximation on compact homoge-
neous manifolds using radial kernels are presented. For a C2r positive
definite kernel κ the pointwise error at x for interpolation by translates
of κ goes to 0 like ρr, where ρ is the density of the interpolating set on
a fixed neighbourhood of x. Tangent space techniques are used to lift
the problem from the manifold to Euclidean space, where methods for
proving such error estimates are well established.

1 Introduction

There is currently significant interest in approximation on spheres, related
to many interesting geophysical problems. There are a number of different
approximation methods currently available on spheres, including wavelets
[5], piecewise polynomial splines [1], and the subject of this paper, radial
functions (sometimes called zonal splines or variational splines) [5, 8]. Error
estimates and convergence rates for radial approximation on spheres, of an
optimal nature, are recent in vintage [6, 7], and rely on some technically
demanding mathematics. In this paper we build on an idea of Bos and
de Marchi [3] in order to provide convergence rates for radial interpolation
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on a much wider class of manifolds: the reflexive, compact homogeneous
spaces. In fact, much of what is accomplished here can also be achieved on
a Riemannian manifold; see [9].

Let M ⊂ IRd+k be a d-dimensional embedded compact homogeneous
C∞ manifold in the sense of Definition 1.1 in [11]. In particular there is a
compact group G of isometries of IRd+k such that for some η ∈ M (often
referred to as the pole) M = {gη : g ∈ G}. The reflexive condition means
that for each pair x, y ∈ M there is a g ∈ G with gx = y and gy = x. A
kernel κ : M×M → IR is termed zonal (or G-invariant) if κ(x, y) = κ(gx, gy)
for all g ∈ G and x, y ∈M . Since the maps in G are isometries of Euclidean
space, they preserve both Euclidean distance and the (arc-length) metric
d(·, ·) induced on the components of M by the Euclidean metric. Thus the
distance kernel d(x, y) is zonal, as are all the radial functions, φ(d(x, y)),
which are kernels that depend only on the distance between x, y.

The manifold carries a unique normalised G-invariant measure which
we call µ (µ can be viewed either as the component of Lebesgue measure
tangential to M or as the measure induced by Haar measure on G). Then,
we can define the inner product of real functions

(f, g) =
∫

M
fgdµ.

An important part of analysing the interpolation process (and many
other processes) is the construction of polynomials on the manifold. If Πj is
the space of all polynomials of total degree j in the ambient space IRd+k then
Pj := Πj |M is the space of degree j polynomials onM . We can also construct
sets of harmonic polynomials Hj := Pj

⋂
P⊥

j−1, where the orthogonality is
with respect to the inner product (·, ·).

It is straightforward to show that Hj is G-invariant, in the sense that
pj(g−1·) ∈ Hj for all pj ∈ Hj and g ∈ G, and has an orthogonal decompo-
sition into irreducible G-invariant subspaces (i.e., subspaces with no proper
G-invariant subspace)

Hj = ⊕hj

l=1Ξj,l.

Now, if {Y 1
j,l, . . . , Y

dj,l

j,l } is an orthonormal basis for Ξj,l, then

Pj,l(x, y) =
dj,l∑

m=1

Y m
j,l (x)Y

m
j,l (y), x, y ∈M,
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is the unique G-invariant reproducing kernel for Ξj,l. In other words, if Tj,l

is the orthogonal projector onto Ξj,l,

Tj,lf(x) =
∫

M
Pj,l(x, y)f(y)dµ(y), x ∈M, (1)

or Tj,lf(x) = (f, Pj,l(·, x)), x ∈M,

for all f ∈ L2(M). In particular,

Tj,lf(x) = (Tj,lf, Pj,l(·, x)), x ∈M. (2)

It is clear that Pj,l is symmetric for all j = 0, 1, . . ., and l = 1, . . . , hj , i.e.,
Pj,l(x, y) = Pj,l(y, x). The self-adjoint projectors Tj,l associated with the
G-invariant kernels Pj,l are special cases of the general kernel operator Tκ

associated with a continuous zonal kernel κ(x, y) by

Tκf(x) =
∫

M
κ(x, y)f(y)dµ(y), x ∈M. (3)

All these operators are G-equivariant in the sense that

[Tκf ](g−1x) = [Tκf(g−1·)](x), x ∈M,

and, at least on reflexive spaces, commute with each of the projectors Tj,l

(Proposition 3.7 in [11]). Since Ξj,l is an irreducible G-invariant subspace,
the commuting properties of the self-adjoint Tκ imply TκTj,l = aj,lTj,l for
some scalar aj,l. Thus on reflexive spaces, by the density of polynomials,
each zonal kernel κ has an expansion (convergent as operators on L2(M))

κ(x, y) =
∞∑

j=0

hj∑
m=1

aj,lPj,l(x, y).

In [11] the fundamentality of the set {κ(·, y) : y ∈ M}, of translates
of a zonal kernel κ in the space of continuous functions on M is explored.
The crucial result is that a zonal kernel has dense translates if and only if
aj,l 6= 0 for all j, l, i.e. the associated integral operator, Tκ does not behave
like the null operator on any of the G-invariant polynomial subspaces. As is
shown in [9] the positive definiteness of a kernel κ is equivalent to κ being
positive definite on each of these G-invariant polynomial subspaces. Here,
κ is positive definite if the quadratic form

N∑
x,y∈Λ

cxcyκ(x, y)
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is non-negative for any choice of finite data point set Λ ⊂M and coefficients
{cx : x ∈ Λ}. It is strictly positive definite if the above quadratic form is
always positive for non–trivial coefficients and distinct data points.

A fixed strictly positive definite kernel κ gives rise to a reproducing kernel
Hilbert space W, often called the native space. Given the values of f on a
set Λ = {x1, . . . , xN} of distinct points in M , we approximate f ∈ W by the
κ-spline interpolant

sκ(x) =
∑
y∈Λ

cyκ(x, y),

where the coefficients {cy : y ∈ Λ} are determined by satisfying the inter-
polation equations sκ(x) = f(x), x ∈ Λ. This interpolation problem has a
unique solution if κ is strictly positive definite.

The reader should view the following work as tracking closely the corre-
sponding analysis on the sphere, but we depart from the rationale of Light
and v. Golitschek [6] as we try to convert error bounds to convergence rates.
They describe a scaling operation on the sphere under which the Lagrange
polynomials remain bounded, this being a key element of the analysis. The
novelty of our approach is that we transplant the scaling, and in fact the en-
tire error estimation onto the tangent space, and use well known properties
of the scaling of Lagrange polynomials in Euclidean space. This is possible
because distances on the manifold and its tangent space are comparable.

In Section 2 we develop the Hilbert space theory and show how to pro-
duce an error estimate for interpolation. In Section 3 we use this error
estimate to produce convergence rates for positive definite kernels which
are also radial (functions of geodesic distance on the manifold) or zonal. A
number of the results in what follows are standard, but we include them for
completeness.

2 Hilbert Space, Reproducing Kernel, and Error
Estimates

In this section we describe the construction of a Hilbert space from a positive
definite zonal kernel κ, and see that κ is the reproducing kernel for this
Hilbert space. This construction is very standard (see e.g. Atteia [2]), and
is only included for completeness.

As indicated above, when M is reflexive, every positive definite zonal
kernel κ whose translates are dense in C(M) has an expansion in terms of
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the reproducing kernels for the minimal G-invariant polynomial subspaces
of L2 (see Theorems 12 and 16 in [9]):

κ(x, y) =
∞∑

j=0

hj∑
l=1

aj,lPj,l(x, y), aj,l > 0.

For the rest of this paper we assume

∞∑
j=0

hj∑
l=1

dj,laj,l < ∞. (4)

Since dj,l = Pj,l(x, x)1/2Pj,l(y, y)1/2 ≥ |Pj,l(x, y)|, this condition ensures that
the positive definite zonal kernel defined by the sum above is jointly contin-
uous, so that point evaluation makes sense.

Define the inner product

[f, g] :=
∞∑

j=0

hj∑
l=1

a−1
j,l (Tj,lf, Tj,lg),

where we recall that (·, ·) is the usual L2 inner product. Let ‖f‖ = [f, f ]1/2.
Then, the Hilbert space W is the algebraic subspace of L2 satisfying

W := {f ∈ L2 : ‖f‖ <∞}.

Condition (4) also ensures that κ(·, x) ∈ W for every x ∈M .
It is easy to show that point evaluation at x ∈M in this space is realised

by inner product with κ(·, x) since

[f, κ(·, x)] =
∞∑

j=0

hj∑
l=1

a−1
j,l (Tj,lf, Tj,lκ(·, x))

=
∞∑

j=0

hj∑
l=1

a−1
j,l (Tj,lf, aj,lPj,l(·, x))

=
∞∑

j=0

hj∑
l=1

Tj,lf(x)

= f(x). (5)

In the penultimate line we have used Equation (2).
The following result is a standard one so we state it without proof.
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Proposition 2.1 Let sκ be the κ-spline interpolant to f ∈ W. Then sκ is
the interpolant to f from W with minimum norm.

Remark 2.2 In fact, one way of characterising the κ-spline interpolant is
via a minimum norm property (see e.g. Light and Wayne [10] for details of
such an approach).

The error estimate for κ-spline interpolation in W given next is also
standard.

Theorem 2.3 Let f ∈ W and sκ be the κ-spline interpolant to f on the
finite point set Λ. Then, for x ∈M ,

|f(x)− sκ(x)| ≤ ‖f‖P (x,Λ),

where

P (x,Λ) =

min
{νy :y∈Λ}⊂IR

κ(x, x)− 2
∑
y∈Λ

νyκ(x, y) +
∑

y,z∈Λ

νyνzκ(y, z)


1/2

.

3 Pointwise Convergence Rates for Zonal Kernels

In this section we consider zonal kernels and in particular radial kernels of
the form

κ(x, y) = ψ(d(x, y)),

where d(x, y) is the geodesic distance between x and y, and ψ : IR → IR is a
univariate, real-valued function. As we have already noted, the G-invariance
of d(x, y) shows radial kernels are clearly zonal. For the analysis in this
section we will assume that κ is positive definite and 2r-times continuously
differentiable near the diagonal in M ×M .

We are interested in establishing (pointwise) convergence rates for the
interpolants as the interpolation points x1, . . . , xN become dense about the
point x. Since we will not be concerned with global constants, we are able to
exploit the compactness of M and simply give local estimates. By passing
to the tangent space Tx = IRd at x it becomes possible to reduce all the
critical work to the Euclidean case.

Here are four simple results which lie at the heart of the Euclidean case.

6



Lemma 3.1 Let Z be a Π2r unisolvent set in IRd with card (Z) = dim(Π2r).
Let {pz : z ∈ Z} be the Lagrange polynomials based on Z, i.e. pz(y) = δy,z.
Then for any λ > 0,

i. λZ := {λz : z ∈ Z} is unisolvent.

ii. The Lagrange polynomials based on λZ are pλz = pz(·/λ), z ∈ Z.
In particular pλz(0) = pz(0).

Moreover, there exist d0 > 0 and C0 such that:

iii. Any set {σz : z ∈ Z} with ‖z − σz‖ ≤ d0 is Π2r unisolvent,

iv. If S = {σz : z ∈ Z} is as in (iii) and {pσz : z ∈ Z} is a Lagrange
basis for Π2r based on S then |pσz(0)| ≤ C0.

Proof: The proof of (i) and (ii) are elementary once one has observed
that the polynomials are invariant under scaling. As for (iii) and (iv), they
follow directly from the continuity of the map from unisolvent sets of distinct
centres to Lagrange polynomials.

The above lemma provides the basis for us to estimate the size of the
analog of P (x,Λ) for the Euclidean space case.

Proposition 3.2 Suppose K is a strictly positive definite symmetric func-
tion on some compact neighbourhood U ×U of (0, 0) in IRd× IRd. Let WK,U

be the native space for K on U . Further suppose K is in C2r(U ×U). Then
there exist constants ρ0 and C > 0 such that for any finite set V ⊂ U with

sup
u∈U

min
v∈V

‖u− v‖ ≤ ρ < ρ0, (6)

the following estimate holds:

min
{νv :v∈V }⊂IR

{
||K(·, 0)−

∑
v∈V

νvK(·, v)||2
}
≤ Cρ2r. (7)

Proof: Fix a Π2r unisolvent set Z in IRd and let d0 satisfy Lemma 3.1 (iii).
Let ρ0 be the largest number such that ρ/d0Z ⊂ U for all ρ < ρ0. Such
ρ0 exists since U is a compact neighbourhood of 0. Then, if ρ < ρ0, using
Lemma 3.1 (iii), for each z ∈ Z we can choose distinct vz ∈ V such that
‖z − d0vz/ρ‖ ≤ d0 so that VZ = {vz : z ∈ Z} is Π2r–unisolvent. Also, from
Lemma 3.1 (iv) the associated Lagrange basis for VZ , {pv : v ∈ VZ} satisfies
|pv(0)| ≤ C0, v ∈ VZ . Moreover, since the set Z is contained in ball of radius
C1d0 say, VZ is contained in a ball of radius C1ρ.
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The estimate (7) is obtained from Taylor’s theorem as follows. The left
hand side (LHS) of (7) is only increased by restricting the sums to be taken
only over VZ instead of all of V . But then if pv, v ∈ VZ are the Lagrange
polynomials based on VZ , setting νv = pv(0) and using the reproducing
properties of K(·, w) yields

LHS ≤ [K(·, 0)−
∑

v∈VZ

pv(0)K(·, v),K(·, 0)−
∑

v∈VZ

pv(0)K(·, v)]

=
∫
‖·‖≤C1ρ

(K(·, 0)−
∑

v∈VZ

pv(0)K(·, v))d(δ0 −
∑

v∈VZ

pv(0)δv).

But the discrete measure in the last integral annihilates any polynomial
p ∈ Π2r, since p(0) =

∑
v∈VZ

pv(0)p(v) by the Lagrange properties of pv. In
particular if T2r,w ∈ Π2r is the Taylor polynomial for K(·, w) centred at w,
then subtracting T2r,x −

∑
v∈VZ

pv(0)T2r,v from the last integrand changes
nothing and shows

LHS ≤
∫
‖·‖≤C1ρ

((K(·, 0)− T2r,0(·))−
∑

v∈VZ

pv(0)(K(·, v)− T2r,v(·)))

×d(δ0 −
∑

v∈VZ

pv(0)δv).

Since K ∈ C2r(U × U) and maxv,w∈VZ∪{0}{‖v‖, ‖v − w‖} ≤ 2C1ρ each of
the remainder terms under the integral is O((2C1ρ))2r on the support of
the discrete measure, where the order constant depends only on the 2r’th
derivatives of K(·, w). Hence,

LHS ≤ (1 + Γ)C2r(2C1ρ)2r(1 + Γ),

where C2r is a constant depending only on the suprema of the 2r’th deriva-
tives of K which enter into the remainder in Taylor’s formula, and Γ =
card (Z)C0.

To lift the analysis from the manifold to the tangent we need to show
that the distances on each of these spaces are comparable.

Proposition 3.3 There is a compact set U 3 0 such that for each x ∈ M
there is a one-to-one mapping φx : U →M , such that, for all w, z ∈ U ,

c1‖w − z‖ ≤ d(φx(w), φx(z)) ≤ c2‖w − z‖,

where constants c1, c2 are independent of x.
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Proof: Let us fix m ∈ M . Since M is a manifold, there is an open
neighbourhood V ⊂ IRd of the origin, and a one-to-one differentiable map-
ping φ : V → φ(V ), where φ(V ) is an open neighbourhood of m. Thus,
there exists a compact convex set U ⊂ V , containing the origin, such that
φ : U → φ(U) is a one-to-one differentiable mapping onto a compact neigh-
bourhood of m.

We begin with the upper bound in this case. Let w, z ∈ U , and Γ be the
set of differentiable curves in IRd starting at w and ending at z, parametrised
on [0, 1]. Then,

d(φ(w), φ(z)) = inf
γ∈Γ

∫ 1

0

∥∥∥∥ ddtφ(γ(t))
∥∥∥∥ dt

≤
∫ 1

0

∥∥∥∥ ddtφ((1− t)w + tz)
∥∥∥∥ dt.

However, writing φ(z) = (φ1(z), · · · , φd+k(z)), z ∈ U , we have

d

dt
φ((1−t)w+tz) = (∇φ1((1−t)w+tz)·(w−z), · · · ,∇φd+k((1−t)w+tz)·(w−z)).

Thus, by Cauchy-Schwarz,∥∥∥∥ ddtφ((1− t)w + tz)
∥∥∥∥ ≤ ‖w − z‖‖Dφ((1− t)w + tz)‖,

where Dφ(z) = (‖∇φ1(z)‖, · · · ,∇‖φd+k(z)‖). Since φ is infinitely differen-
tiable on U we have

d(φ(w), φ(z)) ≤ c2‖w − z‖,

where c2 depends only on φ.
For the lower bound we start with the obvious bounds

d(φ(w), φ(z)) ≥ ‖φ(w)− φ(z)‖
≥ max

j=1,...,d+k
|φj(w)− φj(z)|.

Using the mean value theorem we have

|φj(w)− φj(z)| = ‖w − z‖|Dw,z(νl)|,

where Dw,z is the directional derivative along the line segment connecting
w to z, and νl is some point along this line. Hence,

d(φ(w), φ(z)) ≥ ‖w − z‖ max
j=1,...,d+k

|Dw,zφj(νj)|.
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Since φ is a chart the derivatives of the component functions cannot
vanish simultaneously at a point. Thus, the last term on the right is a
continuous function of two variables on the compact set U × U , which is
bounded away from zero. So, there exists a positive constant, depending
only on φ such that

d(φ(w), φ(z)) ≥ c2‖w − z‖,

for all w, z ∈ Cσ.
For arbitrary x ∈ M there exists gx ∈ G such gxm = x. Also, for any

g ∈ G, and y1, y2 ∈ M , d(gy1, gy2) = d(y1, y2). We can now construct a
chart φx : U → Nx = {gxy : y ∈ φ(U)}, a compact neighbourhood of x:

φx(z) = gxφ(z).

Clearly,

c1‖w − z‖ ≤ d(φ(w), φ(z)) = d(φx(w), φx(z)) ≤ c2‖w − z‖,

and the constants c1, c2 are independent of x.

When we combine the purely local Proposition 3.2 with the metric equiv-
alence result above the principal local error estimate for sκ spline interpo-
lation is obtained.

Theorem 3.4 Let κ be a strictly positive definite zonal kernel on M ×M .
Assume κ is 2r-times continuously differentiable. Let x ∈ S ⊂ M . Suppose
that the interpolation point set Λ ⊂ S satisfies

max
y∈S

min
z∈Λ

d(y, z) ≤ ρ,

for some sufficiently small ρ. Then, for f ∈ W,

|f(x)− sκ(x)| ≤ C‖f‖ρr,

where C is independent of ρ and f .

Proof: Let πx be the projector onto the tangent space Tx to M at x,
as in the preceding discussion. So we assume the x ∈ Tx is the origin.
Also if φ is a local inverse to πx, then K(w, z) = κ(φ(w), φ(z)) defines a
positive definite function on a compact neighbourhood of 0, satisfying the
hypotheses of Proposition 3.2. Now taking account of the metric stretching
in Proposition 3.3, the result in (7) carries over to M . Combining this with
Theorem 2.3 yields the result.
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