Skip to main content
Log in

Finite element error analysis of a variational multiscale method for the Navier-Stokes equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

The paper presents finite element error estimates of a variational multiscale method (VMS) for the incompressible Navier–Stokes equations. The constants in these estimates do not depend on the Reynolds number but on a reduced Reynolds number or on the mesh size of a coarse mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces (Academic, New York, 1975).

    MATH  Google Scholar 

  2. I. Babuška and J. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980) 41–62.

    Article  MathSciNet  Google Scholar 

  3. L.C. Berselli, C.R. Grisanti and V. John, On commutation errors in the derivation of the space averaged Navier–Stokes equations, Preprint 12, Università di Pisa, Dipartimento di Matematica Applicata “U.Dini,” 2004.

  4. L.C. Berselli and V. John, On the comparison of a commutation error and the Reynolds stress tensor for flows obeying a wall law, Preprint 18, Università di Pisa, Dipartimento di Matematica Applicata “U.Dini,” 2004.

  5. S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (2001) 1800–1806.

    Article  Google Scholar 

  6. A. Dunca, V. John and W.J. Layton, The commutation error of the space averaged Navier–Stokes equations on a bounded domain, in: Contributions to Current Challenges in Mathematical Fluid Mechanics, eds. J.G. Heywood, G.P. Galdi and R. Rannacher (Birkhäuser, 2004) pp. 53–78.

  7. G.P. Galdi, An introduction to the Navier–Stokes initial-boundary value problem, in: Fundamental Directions in Mathematical Fluid Dynamics, eds. G.P. Galdi, J.G. Heywood and R. Rannacher (Birkhäuser, 2000) pp. 1–70.

  8. V. Gravemeier, The variational multiscale method for laminar and turbulent incompressible flow, PhD thesis, Institute of Structural Mechanics, University of Stuttgart, 2003.

  9. J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN 33 (1999) 1293–1316.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem I: Regularity of solutions and second order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982) 275–311.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem III: Smoothing property and higher order estimates for spatial discretization, SIAM J. Num. Anal. 25 (1988) 489–512.

    Article  MATH  MathSciNet  Google Scholar 

  12. T.J. Hughes, L. Mazzei and K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Vis. Sci. 3 (2000) 47–59.

    Article  MATH  Google Scholar 

  13. T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401.

    Article  MATH  Google Scholar 

  14. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models, volume 34 of Lecture Notes in Computational Science and Engineering, (Springer, Berlin Heidelberg New York, 2004).

    Google Scholar 

  15. V. John and S. Kaya, A finite element variational multiscale method for the Navier–Stokes equations, SIAM J. Sci. Comput. 26 (2005) 1485–1503.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. John, S. Kaya and W. Layton, A two-level variational multiscale method for convection–diffusion equations, Comp. Meth. Appl. Math. Engrg. (2006) in press.

  17. V. John and W.J. Layton, Analysis of numerical errors in large eddy simulation, SIAM J. Numer. Anal. 40 (2002) 995–1020.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Layton and W. Lenferink, A multilevel mesh independence principle for the Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996) 17–30.

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Layton and L. Tobiska, A two-level method with backtracking for the Navier–Stokes equations, SIAM J. Numer. Anal. 35(5) (1998) 2035–2054.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Sagaut, Large Eddy Simulation for Incompressible Flows, 2nd edition (Springer, Berlin Heidelberg New York, 2003).

    Google Scholar 

  21. H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birhäuser Advanced Texts (Birkhäuser Verlag Basel, Boston, Berlin, 2001).

    Google Scholar 

  22. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, volume 2 of Studies in Mathematics and Its Applications (North-Holland, Amsterdam, New York, Oxford, 1977).

    Google Scholar 

  23. F. van der Bos and B.J. Geurts, Commutator erros in the filtering approach to large-eddy simulation, Phys. Fluids 17 (2005) 035108.

    Article  MathSciNet  Google Scholar 

  24. J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15(1) (1994) 231–237.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Xu, Two-grid finite element discretizations for nonlinear p.d.e.’s, SIAM J. Numer. Anal. 33(5) (1996) 1759–1777.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker John.

Additional information

Communicated by Jinchao Xu

This work is partially supported by NSF grants DMS9972622, DMS20207627 and INT9814115.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, V., Kaya, S. Finite element error analysis of a variational multiscale method for the Navier-Stokes equations. Adv Comput Math 28, 43–61 (2008). https://doi.org/10.1007/s10444-005-9010-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-005-9010-z

Keywords

Mathematics subject classifications (2000)

Navigation