Skip to main content
Log in

Restriction matrices for numerically exploiting symmetry

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we develop a technique for exploiting symmetry in the numerical treatment of boundary value problems (BVP) and eigenvalue problems which are invariant under a finite group \(\mathcal{G}\) of congruences of \({\rm{I\!R}}^{m}\). This technique will be based upon suitable restriction matrices strictly related to a system of irreducible matrix representation of \(\mathcal{G}\). Both Abelian and non-Abelian finite groups are considered. In the framework of symmetric Galerkin boundary element method (SGBEM), where the discretization matrices are typically full, to increase the computational gain we couple Panel Clustering Method [30] and Adaptive Cross Approximation algorithm [13] with restriction matrices introduced in this paper, showing some numerical examples. Applications of restriction matrices to SGBEM under the weaker assumption of partial geometrical symmetry, where the boundary has disconnected components, one of which is invariant, are proposed. The paper concludes with several numerical tests to demonstrate the effectiveness of the introduced technique in the numerical resolution of Dirichlet or Neumann invariant BVPs, in their differential or integral formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aimi, A., Diligenti, M.: Stima dell’errore nel calcolo degli autovettori nel problema del “BUCKLING” di una piastra incastrata al bordo. Calcolo 30(2) 171–187 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aimi, A., Diligenti, M., Monegato, G.: New numerical integration schemes for applications of galerkin BEM to 2D problems. Int. J. Numer. Methods Eng. 40 1977–1999 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aimi, A., Diligenti, M.: Numerical integration in 3D Galerkin BEM solution of HBIEs. Comput. Mech. 28, 233–249 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aimi, A., Diligenti, M., Lunardini, F., Salvadori, A.: A new application of the Panel Clustering Method for 3D SGBEM. CMES 4(1), 31–49 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Aimi, A., Bassotti, L., Diligenti, M.: Groups of congruences and restriction matrices. BIT 43(4), 671–693 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aimi, A., Diligenti, M., Freddi, F., Salvadori, A.: Restriction matrices for SGBEM applications. Comput. Mech. 32, 430–444 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aimi, A., Diligenti, M., Lunardini, F.: Panel clustering method and restriction matrices for symmetric Galerkin BEM. Numer. Algorithms 40, 355–382 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Allgower, E.L., Böhmer, K., Georg, K., Miranda, R.: Exploiting symmetry in boundary element methods. SIAM J. Numer. Anal. 29, 534–552 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Allgower, E.L., Georg, K., Miranda, R., Tausch, J.: Numerical exploitation of equivariance. Z. Angew. Math. Mech. 78, 795–806 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Allgower, E.L., Georg, K.: Numerical exploitation of symmetry in integral equations. Adv. Comput. Math. 9, 1–20 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bassotti, L.: Linear operators that are T-invariant with respect to a group of homeomorphims. Russ. Math. Surv. 43(1), 67–101 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bassotti, L.: Sulla molteplicitá degli autovalori di operatori lineari T-invarianti rispetto ad un gruppo di omeomorfismi. Rend. Accad. Naz. Sci. Detta dei XL 19, 35–45 (1989)

    Google Scholar 

  13. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86, 565–589 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70, 1–24 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bonnet, M., Maier, G., Polizzotto, C.: Symmetric Galerkin boundary element method. Appl. Mech. Rev. 51, 669–704 (1998)

    Article  Google Scholar 

  16. Bonnet, M.: Exploiting partial or complete geometrical symmetry in 3D symmetric Galerkin indirect BEM formulations. Int. J. Numer. Methods Eng. 57, 1053–1083 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bossavit, A.: Boundary value problems with symmetry and their approximation by finite elements. SIAM J. Appl. Math. 53(5), 1352–1380 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bossavit, A.: On the computation of strains and stresses in symmetrical articulated structures. Lect. Appl. Math. 29, 111–123 (1993)

    MathSciNet  Google Scholar 

  19. Brezzi, F., Douglas, C.C., Marini, L.D.: A parallel domain reduction method. Numer. Methods Partial Differ. Equ. 5, 195–202 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Costabel, M., Wendland, W.: Strong ellipticity of boundary integral operators. Crelle’s J. Reine Angew. Math. 372, 34–63 (1986)

    MATH  MathSciNet  Google Scholar 

  21. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Diligenti, M., Monegato, G.: Integral evaluation in the BEM solution of (hyper)singular integral equations. 2D problems on polygonal domains. J. Comput. Appl. Math. 81, 29–57 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Douglas, C.C., Mandel, J.: An abstract theory for the domain reduction method. Computing 48, 73–96 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Douglas, C.C., Smith, B.F.: Using symmetries and antisymmetries to analyze a parallel multigrid algorithm: the elliptic boundary value problem case. SIAM J. Numer. Anal. 26, 1439–1461 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Douglas, C.C.: Some nontelescoping parallel algorithms based on serial multigrid aggregation and disaggregation techniques, Multigrid Methods. Lect. Notes Pure Appl. Math. 110, 167–176 (1988)

    Google Scholar 

  26. Faessler, A., Stiefel, E.: Group Theoretical Methods and their Applications. Birkhauser Boston, Boston, MA (1992)

    MATH  Google Scholar 

  27. Giebermann, K.: Multilevel approximation of boundary integral operators. Computing 67(3), 183–207 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput Phys. 73(2), 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hackbusch, W.: A sparse matrix arithmetic based on \(\cal H\)-matrices. Part I: Introduction to \({\cal H}\)-matrices. Computing 62(2), 89–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hackbusch, W., Sauter, S.: On the efficient use of the Galerkin method to solve Fredholm integral equations. Appl. Math. 38, 301–322 (1993)

    MATH  MathSciNet  Google Scholar 

  33. Hartmann, F.: Introduction to Boundary Elements. Springer, Berlin Heidelberg New York (1989)

    MATH  Google Scholar 

  34. Kurt, G., Miranda, R.: Symmetry aspects in numerical linear algebra with applications to boundary element methods. Lect. Appl. Math. 29, 213–228 (1993)

    Google Scholar 

  35. Kurz, S., Rain, O., Rjasanow, S.: Application of the adaptive cross approximation technique for the coupled BE-FE solution of symmetric electromagnetic problems. Comput. Mech. 32, 423–429 (2003)

    Article  MATH  Google Scholar 

  36. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I. Springer, Berlin Heidelberg New York (1972)

    MATH  Google Scholar 

  37. Lobry, J., Broche, C.H.: Geometrical symmetry in the boundary element method. Eng. Anal. Bound. Elem. 14, 229–238 (1994)

    Article  Google Scholar 

  38. Lutz, E., Ye, W., Mukherjee, S.: Elimination of rigid body modes from discretized boundary integral equations. Int. J. Solids Struct. 35(33), 4427–4436 (1998)

    Article  MATH  Google Scholar 

  39. Nedelec, J.: Curved finite element method for the solution of singular integral equations on surface \({\rm{I\!R}}^{3}\). Comput. Methods Appl. Mech. Eng. 8, 61–80 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sauter, S.A.: Variable order panel clustering. Computing 64, 223–261 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schwab, C., Wendland, W.: Kernel properties and representations of boundary integral operators. Math. Comput. Methods Appl. Mech. Eng. 83, 69–89 (1990)

    Article  Google Scholar 

  42. Serre, J.P.: Linear Representations of Finite Groups, Graduate Texts in Mathematics 42. Spinger Berlin Heidelberg, New York (1977)

    Google Scholar 

  43. Smirnov, V.I.: Linear Algebra and Group Theory. McGraw Hill, New York (1961)

    Google Scholar 

  44. Smith, G.F.: Projection operators for symmetric regions. Arch. Ration. Mech. Anal. 54, 161–174 (1974)

    Article  MATH  Google Scholar 

  45. Tausch, J.: A generalization of the discrete Fourier transform. In: Allgower, E.L., Georg, K., Miranda, R. (eds.) Exploiting Symmetry in Applied and Numerical Analysis, Lectures in Applied Mathematics 29, pp. 405–412. AMS, Providence, RI (1993)

    Google Scholar 

  46. Verchery, G.: Régularisation du systéme de l’équilibre des structures élastiques discrètes. C.R. Acad. Sci. Paris 311(II), 585–589 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aimi, A., Diligenti, M. Restriction matrices for numerically exploiting symmetry. Adv Comput Math 28, 201–235 (2008). https://doi.org/10.1007/s10444-006-9019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-006-9019-y

Mathematics Subject Classifications

Keywords

Navigation