Skip to main content

Advertisement

Log in

The Coulomb energy of spherical designs on S 2

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work we give upper bounds for the Coulomb energy of a sequence of well separated spherical n-designs, where a spherical n-design is a set of m points on the unit sphere S 2 ⊂ ℝ3 that gives an equal weight cubature rule (or equal weight numerical integration rule) on S 2 which is exact for spherical polynomials of degree ⩽ n. (A sequence Ξ of m-point spherical n-designs X on S 2 is said to be well separated if there exists a constant λ > 0 such that for each m-point spherical n-design X ∈ Ξ the minimum spherical distance between points is bounded from below by \(\frac{\lambda }{{{\sqrt m }}}\).) In particular, if the sequence of well separated spherical designs is such that m and n are related by m = O(n 2), then the Coulomb energy of each m-point spherical n-design has an upper bound with the same first term and a second term of the same order as the bounds for the minimum energy of point sets on S 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anni, R., Connor, J.N.L., Noli, C.: Improved nearside-farside decomposition of elastic scattering amplitudes. Khimicheskaya Fizika 23(2), 6–12 (2004)

    Google Scholar 

  2. Antonov, V.A., Holševnikov, K.V.: An estimate of the remainder in the expansion of the generating function expansion for the Legendre polynomials (Generalization and improvement of the Bernstein’s inequality). Vestnik, Leningrad University. Mathematics 13, 163–166 (1981) (English translation)

    MATH  Google Scholar 

  3. Bajnok, B., Damelin, S.B., Li, J., Mullen, G.L.: A constructive finite field method for scattering points on the surface of d-dimensional spheres. Computing 68(2), 97–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brauchart, J.S.: About the second term of the asymptotics for optimal Riesz energy on the sphere in the potential-theoretical case. Integral Transforms Spec. Funct. 17(5), 321–328 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, X., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44(6), 2326–2341 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dahlberg, B.E.J.: On the distribution of Fekete points. Duke Math. J. 45(3), 537–542 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Erber, T., Hockney, G.M.: Equilibrium configuration of N equal charges on a sphere. J. Phys. A. 24, L1369–L1377 (1991)

    Article  Google Scholar 

  9. Erdélyi, A. (ed.), Magnus, W., Oberhettinger, F., Tricomi, F.G. (research associates): Tables of Integral Transforms, vol. 2, Bateman Manuscript Project, California Institute of Technology. McGraw-Hill, New York, Toronto, London (1954)

  10. Fejes Tóth, L.: On the densest packing of spherical caps. Amer. Math. Monthly 56(5), 330–331 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hardin, R.H., Sloane, N.J.A.: McLaren’s improved Snub cube and other new spherical designs in three dimensions. Discrete Comput. Geom. 15, 429–441 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hesse, K., Sloan, I.H.: Worst-case errors in a Sobolev space setting for cubature over the sphere S 2. Bull. Austral. Math. Soc. 71, 81–105 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hesse, K., Sloan, I.H.: Cubature over the sphere S 2 in Sobolev spaces of arbitrary order. J. Approx. Theory 141(2), 118–133 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hobson, E.W.: On a general convergence theorem, and the theory of the representation of a function by series of normal functions. Proc. London Math. Soc. 6, 349–395 (1908)

    Article  Google Scholar 

  15. Hobson, E.W.: On the representation of a function by a series of Legendre’s functions. Proc. London Math. Soc. 7, 24–39 (1909)

    Article  Google Scholar 

  16. Korevaar, J., Meyers, J.L.H.: Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere. Integral Transform. Spec. Funct. 1(2), 105–117 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Amer. Math. Soc. 350(2), 523–538 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lorch, L.: Alternative proof of a sharpened form of Bernstein’s inequality for Legendre polynomials. Appl. Anal. 14(3), 237–240 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lorch, L.: Alternative proof of a sharpened form of Bernstein’s inequality for Legendre polynomials: Corrigendum. Appl. Anal. 50, 47 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1(6), 647–662 (1994)

    MATH  MathSciNet  Google Scholar 

  21. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Electrons on the sphere. In: Computational Methods and Function Theory 1994 (Penang), Series in Approximations and Decompositions, No 5, pp. 293–309. World Scientific Publishing, River Edge, NJ (1995)

    Google Scholar 

  22. Reimer, M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory 104, 272–286 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sansone, G.: Orthogonal Functions. Interscience, New York (1959)

    MATH  Google Scholar 

  24. Szegö, G.: Orthogonal polynomials. In: American Mathematical Society Colloquium Publications, 4th edn, vol. 23. American Mathematical Society, Providence, RI (1975)

    Google Scholar 

  25. Wagner, G.: On means of distances on the surface of a sphere (lower bounds). Pacific J. Math. 144(2), 389–398 (1990)

    MATH  MathSciNet  Google Scholar 

  26. Wagner, G.: On means of distances on the surface of a sphere. II (upper bounds). Pacific J. Math. 154(2), 381–396 (1992)

    MATH  MathSciNet  Google Scholar 

  27. Yennie, D.R., Ravenhall, D.G., Wilson, R.N.: Phase-shift calculation of high-energy electron scattering. Phys. Rev. 95(2), 500–512 (July 1954)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Hesse.

Additional information

Communicated by: Tomas Sauer.

Dedicated to Edward B. Saff on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, K., Leopardi, P. The Coulomb energy of spherical designs on S 2 . Adv Comput Math 28, 331–354 (2008). https://doi.org/10.1007/s10444-007-9026-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-007-9026-7

Keywords

Mathematics Subject Classifications (2000)

Navigation