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Abstract

The purpose of this paper is to develop a spectral analysis of the Hessenberg matrix
obtained by the GMRES algorithm used for solving a linear system with a singular matrix.
We prove that the singularity of the Hessenberg matrix depends on the nature of A and some
others criteria like the zero eigenvalue multiplicity and the projection of the initial residual
on particular subspaces. We also introduce some new results about the distinct kinds of
breakdown which may occur in the algorithm when the system is singular.
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1 Introduction

The Generalized Minimal Residual algorithm (GMRES) developped by Saad and Schultz in [9]

is an effective method for solving large systems of linear equations

Ax = b (1)

and its behavior is really well understood when the systems are nonsingular. We study in this

paper the theoretical behavior of GMRES applied to singular systems in exact arithmetic. We

use for this some special tools like the minimal polynomial associated to A and a particular

vector, the eigen subspaces and the geometric multiplicities. Several authors have already tried

to analyse the effects of a singular matrix on a Krylov subspace method and we give below a list

of their works. We remind that Brown and Walker have introduced in [3] conditions concerning

the singular matrix A under which the GMRES iterates converge safely to a solution of (1) and

remark that these theoretical results are still true for any mathematically equivalent method.

They also discuss about the distinct kinds of breakdown appearing in the GMRES algorithm by

considering the Krylov subspaces used for seeking the final solution. Ipsen and Meyer [5] also

deal within the general framework of the Krylov subspace methods when A is a singular matrix

and explain why the singular systems are different. Several results about homogeneous systems
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bâtiment H. Poincarré, 50 rue F. Buisson, BP 699, F-62228 Calais Cedex, France. Email: smoch@lmpa.univ-

littoral.fr

1



have also been developped by Freund and Hochbruck in [4] implying the Drazin inverse solution

of a system (Wang, Wei and Qiao have widely developped this special inverse in [12]). Freund

and Hochbruck discuss about linear systems arising in Markov chain modeling and properties

under which the QMR and TFQMR converge. More recently, Wei and Wu have extended in [13]

these results obtained with an index of A equal to 1 by considering more general parameters.

Sidi and Kluzner have developped in [10] a Bi-CG type Krylov subspace method suitable for the

general case in which A is not necessarily real symmetric, its index is arbitrary and its spectrum

is not necessarily real. At last, Reichel and Ye introduced in [7] an extension of GMRES

called BFGMRES (for Breakdown Free GMRES) that overcomes breakdown for consistent and

inconsistent linear systems of equations with a singular matrix. These works prove that some

alternatives exist for solving particular singular systems but we will not pursue this subject

here any further. All these authors have proved the important role played by the initial guess

used in the algorithm but nothing in the papers treats with accuracy the spectral nature of

the Hessenberg matrix produced by the GMRES. In exact arithmetic, if m is the termination

step of the algorithm, the nonsingularity of Hm is a necessary and sufficient condition to obtain

a solution, our purposes in this paper are first to establish some new results concerning the

spectral properties of the Hessenberg matrix and next, to state some links between the results

of the previous papers and those appearing in this work.

The remainder of this paper is organized as follows. In section 2, we briefly describe the Full

Orthogonalization Method (FOM) developed in [2], the GMRES algorithm and the tools which

will be used in section 3 to present some new results about the singularity of Hm. Some further

details are brought in section 4 about the distinct kinds of breakdown appearing in GMRES,

which are precisely assigned to the nature of the matrix Hm. In the fifth section, we will describe

some numerical examples which confirm our theory, and finally, in the last section, we will give

some concluding remarks.

2 Preliminaries

We start in this section with a brief description of the Arnoldi and GMRES algorithms [8, 9]

and we present some basic results of linear algebra which will be very useful in the following.

No restriction is put on the matrix A which is not necessarily hermitian or Hermitian positive

semi. Nevertheless, we put a restriction on the linear system (1) which has to be consistent to

admit a solution.

2.1 Presentation of Arnoldi and GMRES algorithms

We are interested in solving the linear system (1) where A ∈ is a singular matrix and x, b ∈ R
n.

If x0 is an initial guess of (1), letting x = x0 + z, we obtain the equivalent system

Az = r0

where r0 = b−Ax0 is the initial residual and z ∈ R
n. Arnoldi’s method and GMRES both find

an approximate solution

xl = x0 + zl with zl ∈ Kl,
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where Kl ≡ Kl(A, r0) is the Krylov subspace determined by A and r0, defined by

Kl ≡ span{r0, Ar0, . . . , A
l−1r0}.

The approximate solution is such that

1. (b − Axl)⊥Kl for Arnoldi’s method and

2. ‖b − Axl‖2 = min
x∈x0+Kl

‖b − Ax‖2 for GMRES.

Here ‖.‖2 denotes the Euclidean norm on R
n and orthogonality is meant in Euclidean sense, we

also note that (.,.) denotes the euclidean inner product.

The following algorithm is a version of the Full Orthogonalization Method (GMRES) algorithm.

First, Arnoldi’s method is used for the construction of an orthonormal basis {v1, v2, . . . , vl} for

Kl where the first vector v1 is obtained by normalizing r0 and next, the algorithm builds an

approximate solution xl which satisfies 1. (or 2. for GMRES).

1. Arnoldi process.

(a) Start. Choose an initial guess x0 and a tolerance ε, form r0 = b − Ax0 ∈ R
n and

v1 = r0/‖r0‖2.

(b) Iterate. For j = 1, 2, . . ., do

vj+1 ≡ Avj ,

for i = 1, 2, . . . , j do

hi,j ≡ vt
j+1vi, vj+1 = vj+1 − hi,jvi,

hj+1,j ≡ ‖vj+1‖2, vj+1 = vj+1/hj+1,j .

Compute the residual norm ρj = ‖b−Axj‖2 of the solution xj that would be obtained

if we stopped at this step.

If ρj ≤ ε set l = j and go to 2.

2. Form the approximate solution.

Arnoldi. Define Hl the l × l (Hessenberg) matrix whose nonzero entries are the coeffi-

cients hi,j, 1 ≤ i ≤ min{j + 1, l}, 1 ≤ j ≤ l and define Vl = [v1, v2, . . . , vl], compute

xA
l = x0 + zA

l where zA
l = βVlH

−1
l e1 with β = ‖r0‖2 and e1 ∈ R

l is the first vector of the

canonical basis of R
l, if Hl is nonsingular.

GMRES. Define H l the (l + 1) × l (Hessenberg) matrix whose nonzero entries are the

coefficients hi,j, 1 ≤ i ≤ j + 1, 1 ≤ j ≤ l and define Vl = [v1, v2, . . . , vl],

(a) find the vector yGM
l which verifies ∀y ∈ R

l, J(yGM
l ) ≤ J(y) with

J(y) = ‖βe1 − H ly‖2 where e1 = (1, 0, . . . , 0)t ∈ R
l+1.

(b) Compute xGM
l = x0 + Vly

GM
l .

From the Arnoldi process, it follows that

AVl = VlHl + hl+1,lvl+1e
t
l (2)
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where el = (0, . . . , 0, 1)t ∈ R
l.

This relation can be rewritten as

AVl = Vl+1H l. (3)

In contrast with the Full Orthogonalization Method algorithm, the approximation xGM
l obtained

with GMRES is defined for all l when A is nonsingular. We wonder if the situation is still true

when the matrix A is singular.

2.2 Basic theory

We only consider in this section the case where A is singular. Let Sp(A) = {λ1, λ2, ..., λp} be

the set of distinct eigenvalues of the matrix A, with p ≥ 2 to ensure that at least one eigenvalue

is nonzero. We note that all these eigenvalues are not counted with their algebraic multiplicity

α1, α2.., αp respectively. In the sequel, we assume that λ1 = 0 and α1 ≥ 1. We recall now some

classical definitions in matrix algebra.

The polynomial

PA(λ) ≡ λα1(λ − λ2)
α2 . . . (λ − λp)

αp (4)

is called the characteristic polynomial of A and we get by means of Cayley-Hamilton theorem

that PA(A) = 0. The annihilating polynomial of A of minimal degree such that its highest order

coefficient is one and is called the minimal polynomial of A. It can be written as described below

QA(λ) ≡ λν1(λ − λ2)
ν2 . . . (λ − λp)

νp (5)

where the νi’s are respectively called geometric multiplicities of the λi’s, ∀i ∈ {1, 2, . . . , p}.

It also satisfies QA(A) = 0. Using the previous notations, we point out that the following

decomposition holds

R
n =

p
⊕

i = 1
Nλi

, (6)

where Nλi
≡ Ker[(A − λiI)νi ] ∀i ∈ {1, 2, . . . , p}.

Finally, the normalized polynomial ΠA(λ) of minimal degree m such that ΠA(A)r0 = 0 is called

the minimal polynomial associated to A and r0. It can be written as follows

ΠA(λ) = λµ1(λ − λ2)
µ2 . . . (λ − λp)

µp (7)

with 0 ≤ µi ≤ νi ≤ αi, ∀i ∈ {1, 2, . . . , p}.

We also note that if the matrix A is diagonalizable, νi = 1, ∀i ∈ {1, 2, . . . , p} and Nλi
= Eλi

≡

Ker(A − λiI), ∀i ∈ {1, 2, . . . , p}.

In exact arithmetic, if m is the termination step of GMRES, the degree of ΠA equals to m

and ΠA(A)r0 = 0 simultaneously. In this case, hm+1,m = 0 and we get by using (2) the relation

AVm = VmHm (8)

We give the following
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Lemma 2.1

V t
mAkVm = Hk

m, ∀k ∈ N (9)

Proof. This lemma is proved by induction. The result (9) is obvious for k = 1 by using

the relation (8). We assume next that the relation is true at the rank k. Then, V t
mAk+1Vm =

V t
mAkAVm = V t

mAkVmHm = Hk
mHm = Hk+1

m .

Then, we give the

Proposition 2.2

∀A ∈ R
n×n, ΠA(A)r0 = 0 ⇒ ΠA(Hm) = 0 (10)

Proof. As seen before, when hm+1,m = 0, the degree of ΠA equals to m. The polynomial may

be written as

ΠA(λ) = a0 + a1λ + . . . + amλm =
m

∑

i=0

aiλ
i.

We also know that ΠA(A)r0 = 0 and r0 = ‖r0‖Vme1. Then,

m
∑

i=0

aiA
iVme1 = 0 ⇒

m
∑

i=0

aiV
t
mAiVme1 = 0.

By using (9) from the previous lemma, we obtain

m
∑

i=0

aiH
i
me1 = 0 ⇔ ΠA(Hm)e1 = 0.

We multiply this equality on the left by H j
m for j = 0, 1, . . . ,m − 1 and

Hj
mΠA(Hm)e1 = 0 ⇔ ΠA(Hm)Hj

me1 = 0 for j = 0, 1, . . . ,m − 1.

Since hj+1,j 6= 0 for j = 1, 2, . . . ,m − 1, the space Span{e1,Hme1, . . . ,H
m−1
m e1} equals to R

m.

This yields ΠA(Hm) = 0.

A similar result was stated by Van der Vorst and Vuik in [11] for the FOM method.

We also remind the definition of the index of A. First, for any matrix M ∈ R
l×k, we de-

note by R(M) ≡ {My|y ∈ R
k} the range of M . Therefore, the lowest nonnegative integer ν

such that R(Aν) = R(Aν+1) is called the index of A and is denoted by ind(A). Namely, the

index is the size of the largest Jordan block corresponding to the zero eigenvalue of A. We get

R
n = R(Aν) ⊕ Ker(Aν). (11)

It is straightforward by using the properties of the direct sum and (6) that ν = ν1, i.e. the

geometric multiplicity of the zero eigenvalue is also called the index of A.
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It is interesting now to state the connections between the previous multiplicities and the pro-

jections of r0 on the subspaces defined above. Since r0 ∈ R
n, by using (6), the initial residual

can be written

r0 = u1 + u2 + . . . + up (12)

with ui ∈ Nλi
, ∀i ∈ {1, 2, . . . , p}. Obviously some changes may occur when we consider particular

cases of A. The following proposition holds

Proposition 2.3

Let A ∈ R
n×n with ind(A) = 1 and b ∈ R(A) then, the initial residual r0 may be written as

r0 = u2 + u3 + . . . + up.

Proof. Suppose that r0 = u1 + u2 + . . . + up. Since ν1 = 1, u1 ∈ Eλ1
= Nλ1

= Ker(A).

We know that r0 = b − Ax0 then, if b ∈ R(A), r0 ∈ R(A). We have

(A − λiI)νi =
∑νi

k=0 Cνi

k Ak(−λiI)νi−k, ∀i ∈ {2, 3, . . . , p}

but (A − λiI)νiui = 0, ∀i ∈ {2, 3, . . . , p} then

∑νi

k=0 Cνi

k Ak(−λiI)νi−kui = 0, ∀i ∈ {2, 3, . . . , p}.

Thus

−(−λiI)νiui = A
∑νi

k=1 Cνi

k Ak−1(−λiI)νi−kui, ∀i ∈ {2, 3, . . . , p}

and then, ui ∈ R(A), ∀i ∈ {2, 3, . . . , p}. By letting

r0 = u1 + w where w = u2 + u3 + . . . + up,

we have u1 = r0 − w ∈ R(A), and then, u1 ∈ R(A) ∩ Ker(A) = {0}. Therefore, r0 =

u2 + u3 + . . . + up.

The previous result means that if the geometric multiplicity associated to the zero eigenvalue

equals 1, the decomposition of the initial residual on Ker(Aν1) is zero. Therefore, by using (11),

we get r0 ∈ R(Aν1).

Remark

The previous proposition is not true in the general case. We take as an example a singular

matrix A such that ν1 > 1 by letting

A =









1 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0









.

A is defective and Sp(A) = {0, 1}. Let λ1 = 0 and λ2 = 1 with α1 = 3 and α2 = 1. We also

take b = Ay = (4, 2, 1, 0)t where y = (1, 1, 1, 1)t and x0 = (0, 0, 0, 0)t . We assume that m is the

termination step in the algorithm in exact arithmetic. Then, in this case, hm+1,m = 0 if and

only if m = 3. We get r0 = (4, 2, 1, 0)t and the minimal polynomial of A for r0 is
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ΠA(A)r0 = A2(A − I)r0 = 0.

If r0 = u2 then, the minimal polynomial of A and r0 would have the form ΠA(A)r0 = (A− I)r0,

but as (A − I)r0 6= 0, r0 = u1 + u2.

The condition ν1 = 1 is satisfied by some particular matrices as shown below.

Corollary 2.4

Consider the matrix A ∈ R
n×n and the right-hand side b ∈ R(A). If A is diagonalizable and the

algebraic multiplicity of λ1 = 0 is such that α1 ≥ 1 then, r0 = u2 + u3 + . . . + up.

Proof. We have seen already that the diagonalizability of A yields the fact that νi = 1, ∀i ∈

{1, 2, . . . , p}. It is obvious that the assumptions which are used are the same as in the previous

proposition, which concludes the proof.

Next, we introduce K[λ] the space of the polynomials whose coefficients are in K where K is R

or C. Then, the following result holds

Lemma 2.5

Let P1, P2, . . . , Pr be some polynomials ∈ K[λ] such that Pi and Pj are prime among themselves,

∀i, j ∈ {1, 2, . . . , r} and P = P1 × P2 × . . . × Pr, then

Ker(P (A)) =
r
⊕

j = 1
Ker(Pj(A)) holds. (13)

Proof. This well known result can be proved by induction and Bezout’s identity [6].

We know that ΠA can be written as (7) where µ1 + µ2 + . . . + µp = m therefore, this suggests

the following proposition

Proposition 2.6

Assume that ΠA(A)r0 = 0. Then,

ui ∈ Ker[(A − λiI)µi ], ∀i ∈ {1, 2, . . . , p}.

Proof. Let r0 = u1 + u2 + . . . + up where ui ∈ Ker[(A − λiI)νi ], ∀i ∈ {1, 2, . . . , p}.

Then, ΠA(A)r0 = 0 implies (A − λ1I)µ1(A − λ2I)µ2 . . . (A − λpI)µpr0 = 0. By premultiplying

ΠA(A) by (A − λiI)νi−µi ,∀i ∈ {2, 3, . . . , p}, we have

(A − λ1I)µ1(A − λ2I)ν2 . . . (A − λpI)νpr0 = 0.

and this yields (A − λ1I)µ1(A − λ2I)ν2 . . . (A − λpI)νpu1 = 0 since ui ∈ Nλi
, ∀i ∈ {2, 3, . . . , p}.

Thus, u1 ∈ Ker[(A − λ1I)µ1(A − λ2I)ν2 . . . (A − λpI)νp ].

But (A − λiI) and (A − λjI) are prime among themselves for i 6= j, ∀i, j ∈ {1, 2, . . . , p} then,

by using Lemma 2.5, we have

u1 ∈ Ker[(A − λ1I)µ1 ] ⊕ Ker[(A − λ2I)ν2 ] ⊕ . . . ⊕ Ker[(A − λpI)νp ].
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Since u1 /∈ Ker[(A − λjI)νj ], ∀j ∈ {2, 3, . . . , p}, u1 ∈ Ker[(A − λ1I)µ1 ].

By using the same technique for the vectors u2, u3, . . . , up, we obtain

ui ∈ Ker[(A − λiI)µi ], ∀i ∈ {1, 2, . . . , p}.

This proposition simply means that we may specify the subspaces where the ui’s lie since 0 ≤

µi ≤ νi, ∀i ∈ {1, 2, . . . , p}, this provides us the decomposition of the initial residual. According

to this proposition, we can prove the following result

Proposition 2.7 We assume that A ∈ R
n×n is singular. Then,

r0 =

p
∑

i=1, µi 6=0

ui

where ui is the decomposition of r0 on the subspace Ker[(A − λiI)µi ] and µi is the multiplicity

of λi in the minimal polynomial ΠA of A and r0.

Proof. We assume first that r0 =
p
∑

i=1
i6=i0

ui for i0 ∈ {1, 2, . . . , p}. Then, by using the previous

proposition, we obtain ui ∈ Ker[(A − λiI)µi ], ∀i ∈ {1, . . . , p} such that i 6= i0 and by using

Lemma 2.5 once again, we obtain

r0 ∈ Ker[(A − λ1I)µ1 . . . (A − λi0−1I)µi0−1(A − λi0+1I)µi0+1 . . . (A − λpI)µp ]

or under a compact form
p
∏

i=1
i6=i0

(A−λiI)µir0 = 0. Due to the uniqueness of the minimal polynomial

of A for r0, we obtain µi0 = 0.

We prove now the other implication which seems obvious from Proposition 2.6. Indeed,
µi = 0 ⇒ ui ∈ KerI ⇔ ui = 0.

Both the previous propositions are easy to state, and they were proved noting the way the ui’s

and the µi’s took place in the minimal polynomial of A and r0. We would like to state some links

between these results and the singularity of the Hessenberg matrix obtained during the Arnoldi’s

process. For this, we use Proposition 2.2 which states in exact arithmetic that if ΠA(A)r0 = 0

then, ΠA(Hm) = 0. It means that the minimal polynomial of A and r0 is also the characteristic

polynomial of Hm. Then, if ΠA(0) = 0, it is equivalent to the fact that Hm admits at least one

zero eigenvalue.

Finally, the nonsingularity of Hm depends on the multiplicity µ1 by using (7) or u1 due to

Proposition 2.7. This proves the essential role played by the initial guess x0 in GMRES. In the

next section, we introduce some new results about GMRES applied to singular systems in exact

arithmetic. It deals first with the success of the determination of a solution of (1) and next, the

termination step of the algorithm when A is diagonalizable.
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3 Theoretical results

In this section, we wish first to state some links between the previous results and those obtained

by Ipsen and Meyer in [5]. We give the following

Proposition 3.1

In exact arithmetic, if ν1 6= 0,

r0 ∈ R(Aν1) if and only if Hm is nonsingular.

Proof. Assume first that Hm is nonsingular, we have seen previously that it is equivalent to

µ1 = 0. By using Proposition 2.7, we get r0 = u2 + u3 + . . . + up. Therefore, ΠA(A)r0 = 0 yields

(A − λ2I)µ2(A − λ3I)µ3 . . . (A − λpI)µpr0 = 0.

By multiplying the the left-hand side of this equality by (A − λiI)νi−µi , ∀i ∈ {2, 3, . . . , p} and

by using Lemma 2.5, we have

r0 ∈ Ker[(A − λ2I)ν2(A − λ3I)ν3 . . . (A − λpI)νp ] =
p
⊕

i = 2
Ker[(A − λiI)νi ].

From the equalities (6) and (11), it is clear that r0 ∈ R(Aν1) since the subspaces that we use

are complementary.

Assume now that r0 ∈ R(Aν1). Then,

r0 ∈
p
⊕

i = 2
Ker[(A − λiI)νi ].

Hence, (A−λ2I)ν2(A−λ3I)ν3 . . . (A−λpI)νpr0 = 0. But we can use the fact that (A−λ2I)ν2(A−

λ3I)ν3 . . . (A − λpI)νp 6= 0 since ν1 6= 0. Therefore, µ1 = 0 by using the fact that ΠA(λ) is a

factor of (x − λ2)
ν2(x − λ3)

ν3 . . . (x − λp)
νp due to its minimality. We get finally that Hm is

nonsingular.

This result according to Proposition 3.1 will be very useful in justifying the existence of a solu-

tion of (1).

Remark 3.1

The previous proposition states clearly that the choice of x0 may bring some alternatives about

the nonsingularity of the Hessenberg matrix Hm. The initial guess x0 must be chosen such that

b − Ax0 ∈ R(Aν1).

Then, if b = A(b1 + A(b2 + . . .)) and x0 = x0,1 + A(x0,2 + A(x0,3 + . . .)), r0 ∈ Im(Aν1) if and

only if

Ab1 + A2b2 + . . . + Aν1−1bν1−1 = Ax0,1 + A2x0,2 + . . . + Aν1−1x0,ν1−1.
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It seems impossible to obtain such a decomposition of x0. However, it gives a way to prevent

the singularity of Hm.

Let us discuss now about the singularity of Hm. The following proposition holds

Proposition 3.2

Let A ∈ R
n×n be a singular matrix such that Ax = b with b ∈ R(A). Let A be defective, and

x0 ∈ R
n an initial guess such that r0 = b−Ax0 = u1+u2+. . .+up with ui ∈ Ker[(A−λiI)µi ], ∀i ∈

{1, 2, . . . , p}. Then, in exact arithmetic

• if ν1 = 1, the Hessenberg matrix Hm produced by GMRES at the termination step m is

nonsingular and a solution of (1) is found by GMRES,

• if ν1 > 1, then

– if u1 is zero, the Hessenberg matrix Hm produced by GMRES is nonsingular and a

solution of (1) is found by GMRES,

– if u1 is nonzero, the Hessenberg matrix Hm produced by the GMRES is singular and

GMRES does not find any solution of (1).

Proof. These assertions are very easy to prove. If ν1 = 1, we have seen that u1 = 0 by

using Proposition 2.3. It is equivalent to µ1 = 0 by Proposition 2.7 and it yields ΠA(0) 6= 0,

i.e. Hm is nonsingular. Since hm+1,m = 0, we have ‖βe
(m+1)
1 − Hmy‖2 = ‖βe

(m)
1 − Hmy‖2 in

exact arithmetic at the termination step m, when the solution of (1) is found and is given by

xm = x0 + VmH−1
m βe

(m)
1 .

If ν1 > 1, Proposition 2.3 does not apply. Two cases may appear :

• r0 is such that its component on Ker(Aµ1) is zero. Then, by using Proposition (2.7), µ1 = 0

holds, which is equivalent to the fact that Hm is nonsingular and the same conclusions as

the previous case hold.

• r0 is such that its component on Ker(Aµ1) is not zero. Then, µ1 6= 0. Indeed if µ1 = 0, by

using Proposition (2.7), r0 = u2 + . . . + up which contradicts our hypothesis. This yields

Hm is singular because in this case, ΠA(0) = 0 and GMRES does not find a solution.

By using the previous result and Proposition 3.1, we get the same conclusions as obtained in

theorem 3 by Ipsen and Meyer [5], i.e. a square linear system Ax = b has a Krylov solution (a

solution which lies in the Krylov subspace Km(A, r0)) if and only if r0 ∈ R(Aν1).

We consider now the particular case of diagonalizable matrices. We know from Corollary 2.4

that u1 is zero. Therefore, ΠA(A)r0 = 0 yields

(A − λ2I)µ2(A − λ3I)µ3 . . . (A − λpI)µp(u2 + u3 + . . . + up) = 0, (14)

with µ2 +µ3 + . . .+µp = m and 0 ≤ µi ≤ 1, ∀i ∈ {2, 3, . . . , p}. We remind that Saad and Schultz

[9] have shown that the number of iterations required by GMRES to find the exact solution is
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equal to the degree of ΠA. Let see what happens when A is singular and diagonalizable.

We consider the following cases :

• We assume that r0 =
p
∑

i=2
ui. Then, the equality (14) holds if and only if µi = 1, ∀i ∈

{2, 3, . . . , p}, which yields m = µ2 + µ3 + . . . + µp = p − 1.

• Next, we assume that l − 1 vectors in the decomposition of r0 are zero with 2 ≤ l ≤ p − 1

and uij ∈ {u2, u3, . . . , up}, ∀j ∈ {1, 2, . . . , p − 1}. Then, it is evident that

r0 = uil + uil+1
+ . . . + uip−1

.

By using Proposition (2.7) and the uniqueness of the minimal polynomial of A for r0, we

get (A − λilI)µil (A − λil+1
I)µil+1 . . . (A − λip−1

I)µip−1 r0 = 0 which yields

µil + µil+1
+ . . . + µip−1

= m.

But µij = 1, ∀j ∈ {l, l + 1, . . . , p − 1}. Thus, µil + µil+1
+ . . . + µip−1

= p − l = m.

Therefore, when A is diagonalizable, 0 < p − l ≤ m ≤ p − 1. Finally we get the

Proposition 3.3

Let A be a n×n singular matrix such that Ax = b. We assume that A is diagonalizable, b ∈ R(A),

x0 ∈ R
n an initial guess. Then, the GMRES applied to (1) produces the solution in m = p − 1

steps if r0 = u2 + . . . + up and 0 < m = p − l steps in the case where l vectors are zero in the

decomposition of r0.

The same result is obtained in [5] and in [1] by Axelsson (under a more generally formulation).

We also note that no particular relation on p is found when A is nondiagonalizable. Indeed,

nothing is known about the µi’s in this case.

4 The distinct kinds of breakdown

In the following, we introduce some results from Brown and Walker [3].

We consider A(Kl) the l-th Krylov subspace defined by

A(Kl) ≡ span{Ar0, A
2r0, . . . , A

lr0}. (15)

We note that dimA(Kl) ≤ dim(Kl) ≤ l for each l ∈ N. We shall say that GMRES does not

break down at the l-th step if dimA(Kl) = l. In this case, dimA(Kl) = dim(Kl) and therefore,

the problem

min
x∈x0+Kl

‖b − A(x0 + z)‖2 = min
x∈x0+Kl

‖r0 − Az‖2 (16)

has a unique solution.

As it has been proved in [3], two distinct kinds of breakdown can occur in the algorithm,
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1. when there is a rank deficiency of the least-squares problem (16), which occurs when we

have the relation dimA(Kl) < dim(Kl),

2. when there is a degeneracy of the Krylov subspace Kl, which occurs when dim(Kl) < l.

Thus, we remind the following theorem from [3]

Theorem 4.1

We assume that we apply GMRES to the system (1). Then, at some step, either

1. GMRES breaks down through rank deficiency of the least-squares problem (16) without

determining a solution

or

2. GMRES determines a solution without breakdown and then, breaks down at the next step

through degeneracy of the Krylov subspace.

We also note that if A is nonsingular, GMRES does not break down until the solution of (1) has

been found.

Unfortunately these breakdowns are not precisely related to the singularity of the Hessenberg

matrix Hm. Our aim in this section is to state some connections between the results of the

previous chapter and those obtained by Brown and Walker, in order to understand why a

Krylov solution may be found or not and what kind of breakdown appears in this case.

We assume now that until the l-th step

dimA(Kl) = dim(Kl) = l, l > 1, (17)

i.e. no breakdown has occured.

The equality (17) yields the fact that the minimal polynomial of A for r0 has a greater degree

than l − 1.

Let us assume now that at the (l + 1) − th step,

dim(Kl+1) < l + 1. (18)

Therefore, dim(Kl+1) = l and Alr0 ∈ Kl, i.e. ∃α1, α2, . . . , αl ∈ R such that

Alr0 = α1r0 + α2Ar0 + . . . + αlA
l−1r0.

Hence, RA(A)r0 = 0 by letting RA(λ) ≡ α1+α2λ+ . . .+αlλ
l−1−λl. In this case, RA = ΠA is the

minimal polynomial of A for r0 by uniqueness and it admits a degree m = l. By supposing that

ΠA(0) = 0, we get α1 = 0 and dimA(Kl) < l, which contradicts (17). Thus, Hm is nonsingular.

Let us assume now that Hm is nonsingular. Then, the minimal polynomial of A for r0 is

such that

ΠA(A)r0 = (a0I + a1A + . . . + amAm)r0 = 0
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with am 6= 0 since the degree of ΠA equals to m and a0 6= 0 by assumption. Thus, Amr0 = (α0I+

α1A + . . . + αm−1A
m−1)r0 with αi = −ai/am for i ∈ {0, 1 . . . ,m − 1}. Thus, if dim(Km) = m,

dim(Km+1) < m + 1. Since α0 = −a0/am 6= 0, dimA(Km) = dim(Km). Hence, we obtain the

Proposition 4.2

We consider the system (1) with A ∈ R
n×n a singular matrix, x, b ∈ R

n and b ∈ R(A). We apply

GMRES to (1) which stops at the m-th step. Then, by supposing that dimA(Kl) = dim(Kl) =

l, ∀l < m and dim(Km) = m,

Hm is nonsingular if and and only if

{

dimA(Km) = dim(Km)
dim(Km+1) < m + 1

.

By using the same techniques as previously, it is quite easy to prove

Proposition 4.3

We consider the system (1) with A ∈ R
n×n a singular matrix, x, b ∈ R

n and b ∈ R(A). We apply

GMRES to (1) which stops at the m-th step. Then, by supposing that dimA(Kl) = dim(Kl) =

l, ∀l < m and dim(Km) = m,

Hm is singular if and and only if dimA(Km) < dim(Km).

Therefore, in exact arithmetic, the singularity or the nonsingularity of Hm is equivalent to a

particular breakdown. By using the results of chapter 3, we can state some links between the

multiplicity µ1 or the vector u1 as described above.

Theorem 4.4

We consider the system (1) with A ∈ R
n×n singular, x, b ∈ R

n and b ∈ R(A). We apply GMRES

to (1) which stops at the m-th step. Let r0 be the initial residual such that r0 = u1 +u2 + . . .+up

with ui ∈ Ker[(A − λiI)µi ], ∀i ∈ {1, 2, . . . , p}. Then

1. if u1 is zero, GMRES determines a solution of (1) without breakdown and breaks down at

the next step through degeneracy of the Krylov subspace,

2. if u1 is nonzero, GMRES breaks down through rank deficiency of the least-squares problem

(16) without determining any solution.

Proof. We have seen that r0 = u2+u3+ . . .+up implies µ1 = 0 by Proposition 2.7. Therefore,

Hm is nonsingular and it is equivalent by using Proposition (4.2) to

{

dimA(Km) = dim(Km)
dim(Km+1) < m + 1

.

If u1 is nonzero, it yields µ1 6= 0 from Proposition 2.7. Thus, Hm is singular and dimA(Km) <

dim(Km) by using Proposition (4.3).

These results allow us to understand why the nonsingularity of Hm plays an essential role in

GMRES in exact arithmetic. All the criteria like the determination of a Krylov solution or the

kind of breakdown which occurs in the algorithm depend on Hm and the analysis of this matrix

finds its convenience here. We introduce in the following section some examples, of small size

to ensure the exact arithmetic, that illustrate all the previous discussions.
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5 Numerical examples

In our numerical experiments, we take as right hand member b = Ay ∈ R
n, where y =

(1, 1, . . . , 1)t and the initial guess x0 = (0, 0, . . . , 0)t is such that r0 = b − Ax0 = b ∈ R(A).

• Experiment 4.1. We choose first some diagonalizable matrices and α1 ≥ 1.

We consider p ≥ 2 by taking A such that

A =



















0 1 0 . . . 0

−1
. . .

. . .
. . .

...

0
. . .

. . . 1 0
...

. . . −1 0 0
0 . . . 0 0 0



















.

We assume that n is odd, n = 21, in which case A is singular whose spectrum contains

one zero eigenvalue (α1 = 1).

By applying GMRES, we know help to the previous section that Hm is nonsingular. We

get hm+1,m = 0 if m = 20, this yields r0 = u2 + . . . + up where p = 21 = m + 1. We also

note that Sp(Hm) = {λ2, λ3, . . . , λp} = Sp(A)\{0}.

By taking n even such that n = 22 we get hm+1,m = 0 for m = 10. Hm is nonsingular

and Sp(Hm) ⊂ Sp(A)\{0}. We know that p = 22 and p− l = m by using Proposition 3.3.

Thus, we get l = 12 where l is the number of vectors which are zero in the decomposition

of r0.

We can also consider the case ν1 = 1 and α1 > 1 with the matrix

A =































0 1 0 . . . . . . . . . 0

−1
. . .

. . .
. . .

...

0
. . .

. . . 1
. . .

...
...

. . . −1 0 0
. . .

...
...

. . . 0
. . .

. . . 0
...

. . .
. . .

. . . 0
0 . . . . . . . . . 0 0 0































.

We take n = 25 and α1 = 5. Then, hm+1,m = 0 if m = 20 and Hm is nonsingular. This

yields r0 = u2 + . . . + up where p = 21. We also get Sp(Hm) = Sp(A)\{0}.

If we take n = 26, the matrix Hm is nonsingular and hm+1,m = 0 if and only if m = 10,

Sp(Hm) ⊂ Sp(A)\{0} and l ≥ 1 (l = 12) as in both the examples.

It is proved theoretically in the both examples that a Krylov solution is obtained and

we checked it numerically using Matlab on SunSparc station.

• Experiment 4.2. Now we look at defective matrices, we consider ν1 = 1 by means of the

matrix
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A =











0 1 . . . 1
0 1 . . . 1
...

. . .
. . .

...
0 . . . 0 1











.

We take n = 20. Then, Hm is nonsingular with hm+1,m = 0 if m = 19. This yields

u1 is zero. We also consider the same matrix with random values on the diagonal, i.e.

A(i, i) = rand(1, 1), ∀i ∈ {2, 3, . . . , n}. Therefore, Hm is still nonsingular but hm+1,m = 0

for a different m. A Krylov solution is determined by GMRES at the 19-th step and GM-

RES breaks down at the next step through degeneracy of the Krylov subspace.

We consider now the defective case and ν1 > 1. We work with the following matrix

A =































1 . . . . . . . . . . . . . . . 1

0
. . .

...
...

. . . 1 . . . . . . . . . 1
...

. . . 0 1 . . . 1
...

. . .
. . .

. . .
...

...
. . .

. . . 1
0 . . . . . . . . . . . . 0 0































.

We take n = 25 and ν1 = k = 5, i.e. the last k diagonal elements are zero. Then,

we get hm+1,m = 0 for m = 24 and Hm is singular. Consequently u1 is nonzero, and

ΠA(A)r0 = A4(A − I)20r0 = 0. Hence, we remark numerically that no solution is found

by GMRES.

By taking the same matrix with the first k = 5 diagonal elements equal to zero and

the last diagonal elements equal to 1, we obtain that hm+1,m = 0 if m = 20. Then, Hm

is nonsingular and u1 is zero. The minimal polynomial of A for r0 can be written under

the form ΠA(A)r0 = (A − I)20r0 = 0 and this time, a Krylov solution is determined by

GMRES. The vector u1 is nonzero and according to Theorem 4.4, GMRES breaks down

through rank deficiency of the least-squares problem (16).

These two examples show that when A is a defective matrix and ν1 > 1, the Hessenberg

matrix Hm may be either singular or not, we have seen that it depends on the definition

of the vector u1. Since r0 = b − Ax0, the nonsingularity of Hm depends on the choice of

the initial guess x0 as it has been shown in the Remark 3.1.

6 Conclusion

In exact arithmetic, the determination of a Krylov solution depends on the nonsingularity

of the Hessenberg matrix produced by the GMRES algorithm. An analysis of the nature

15



of Hm was given in this paper help to the notion of the minimal polynomial of A for the

initial residual r0. The results which are also obtained connect the discussion to break-

downs occurring in the GMRES when the system is singular and consistent. Nevertheless,

these results can not be used in practical applications since the method is generally termi-

nated prematurely and hl+1,l = 0 is not checked. It is clear that GMRES does not run to

completion and it would be interesting to obtain similar results in finite precision by using

this time the matrix H l.
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