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Abstract

We present a mathematical theory of the two-dimensional offset curves
from the viewpoint of medial axis transform. We explore the local geom-
etry of the offset curve in relation with the medial axis transform, culmi-
nating in the classification of points on the offset curve. We then study
the domain decomposition from the viewpoint of offsets, and in particular
introduce the concept of monotonic fundamental domain as a device for
detecting the correct topology of offsets as well as for stable numerical
computation. The monotonic fundamental domains are joined by peaks
or valleys of the medial axis transform, or by what we call the critical hori-
zonal section whose algebro-geometric properties are rigorously treated as
well.

Keywords: Offset curves, Medial axis transform, Domain decompo-
sition, Computer Aided Geometric Design

AMS(MOS) classification: 51N25 (Analytic geometry with other trans-
formation groups)

1 Introduction

Mathematically, an offset curve is a curve of fixed distance away from a given
curve. This simple enough definition begets very complicated problems which
can be crudely classified into of two types: One is the curve representation
problem of the so-called untrimmed offsets, and the other is a more global one,
namely, the trimming process of the untrimmed offset curves.

It is easy to see that even if the curve is a polynomial curve, the offset curve
need not be a rational curve (of the original parameter). This irrationality may
cause some serious problems in the handling of the offset curves in computer
aided geometric design. The first kind, i.e., the representation problem, thus
received a lot of attention, as far as we know, since Klass [26] had approximated
offset curves of cubic splines by using another cubic splines. Since then, there
has been a huge amount of work on the approximation of offset curves [7], 8 9]
101 151 221 23], 27, 28], 30}, B33}, 84, 36}, 87, 38 [41], [42] [43].

In addition to these efforts to approximate offset curves with existing spline
curves, other attempts have been made to invent new types of spline curves
whose offsets are easy to handle. Meek and Walton [3I] studied the offsets of
curves consisting of clothoidal splines. In this regard, an important pioneer-
ing work has been done by Farouki and Sakkalis [I4]. They introduced the
Pythagorean hodographs, which are special kinds of splines admitting ratio-
nal offset curves. This feature makes it easier to manipulate the offset curves.
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Later, Pottmann [39, [40] introduced a rational generalization. Namely, he char-
acterized the rational curves with rational offsets. Jittler [25] devotes to cu-
bic Pythagorean hodograph (PH) curves which enjoy a number of remarkable
properties, such as polynomial arc-length function and existence of associated
rational frames. Moreover, geodesic offsets and general offsets are active re-
search areas related to offsets. In [I], general offset curves are treated in the
context of Minkowski geometry of the two-dimensional plane, stemming from
the consideration of a strictly convex, centrally symmetric given curve as its
unit circle. An algorithm to offset curves on offset is presented with tessellated
representation for both curves and surfaces by Holla [T9].

The second kind, the trimming problem, is of somewhat different nature.
This kind of problem occurs due to the presence of a cut or focal loci. An
obvious approach to this type of problem would be to compute the intersection
of the untrimmed offset curves and decide which portion should be removed to
generate the genuine offset curve [21], [42] [31], [30], [16], [3] [32] 24 20} 29].

A well-known way of getting around this difficulty is to use the medial axis.
For domains whose boundary consists of circular arcs and line segments, the
Voronoi diagram, which is almost equivalent to the medial axis, has been widely
used for a long time in the NC machining industry [6l [I7, 18, [35]. The trouble,
however, is that most algorithms for finding the medial axis are restricted to
the domain whose boundary is made up of circular arcs and line segments. And
when the boundary of the domain is free-form, finding the medial axis becomes
an even more difficult problem, thereby begging the question.

Some studies on medial axis transform for free-form boundary curves have
been done more carefully by few of the present authors: In [4] and [5], a new
mathematical theory and algorithm for approximately finding the medial axis
transform are presented. They are based on the so-called Domain Decomposi-
tion Lemma, which enables one to decompose a complicated domain into sim-
pler, hence easier to handle, subdomains. Chiang et al. [2], have also carried
out some works on this feature.

The purpose of this paper is to present a mathematically rigorous theory on
offsets from the viewpoint of medial axis transform. We first study the relation
between the medial axis transform and offset curves. In particular, we study
the local geometry of the medial axis transform and then present our solution
of the problem of complete local geometric classification of the points on the
offsets. We then present a new approach to the domain decomposition from
the viewpoint of offsets, and in particular introduce the concept of monotonic
fundamental domain as a device for facilitating the offset computation while
preserving the correct topological properties of offsets as well as for stable nu-
merical computation. The monotonic fundamental domains are joined by peaks
or valleys of the medial axis transform, or by what we call the critical horizonal
section. We also present a theoretical algorithmic procedure of determining
whether a given fundamental domain is a critical horizontal section, which is
perhaps the most subtle part of the offset computation.

What we are aiming at in the paper is not finding a numerically stable
workable algorithm that embodies all the local and global geometric information



presented in this paper. Rather, our aim is to provide a theoretical foundation
or framework for doing so, and for that purpose various results of theoretical
bent presented in this paper — the domina decomposition lemma for offsets, the
local geometric classification results, the results on the monotonic fundamental
domain, and the method of determining the critical horizontal section, and etc.
— should prove essential.

2 Local geometry of medial axis transform from
the viewpoint of offset curves

The offset curve considered throughout our discussion is an inner offset curve
of a planar region. We investigate the offset curve by analyzing the medial
axis transform of the region. Regarding to the medial axis transform, we will
just adopt all the concepts, notations, and results from [4]. Also, as in [4], by
the term domain, we mean a noncircular region ) which is the closure of a
connected bounded open subset in R? bounded by a finite number of mutually
disjoint simple closed curves such that each simple closed curve in 92 consists
of a finite number of pieces of real analytic curves. Even though all the theoretic
results in this paper are valid for the region of which boundaries consist of any
real analytic curves, some algorithms are valid only for rational curves. Thus,
we restrict the domains to those regions of which boundaries only consist of
rational curves.

Now, we present here the basic definitions of the offset of a domain and the
fundamental relationship between the offset and the medial axis transform.

For a positive number d, we define the d-offset curve O4(Q2) as the inner
offset curve to the boundary 02 at a distance d, i.e., the set

04(22) = {p € Q[ dist(p,00) = d},

where dist(A, B) is the Euclidean distance between two sets A and B. We also
define the d-offset region €1y as the set inside the d-offset curve, i.e.,

Qg = {p € Q| dist(p, 90) > d}.

A set in R? is called an offset region, if it is a d-offset region of a domain for
some d > 0. Finally, for a subset A of R? x R, we denote by R(A) the region
recovered by the disks of A, i.e., the set

R(A)= |J B.(p)={aeR?|3(p.r) € 4, st. [pq <r}.
(p,r)EA

Then, it is obvious by the definition of the medial axis transform that
Q =R(MAT(Q)),

i.e., the domain is the union of all of its maximally inscribed disks. Recall that
MAT(Q) denotes the medial axis transform of  [4].



To investigate the relationship between the offset and the medial axis trans-
form, we need to define d-cutoff Ay of A C R2 x R for d > 0 as

Ag={(p,r) eR* xRy [(p,r +d) € A}.

That is, to get Ay, we first pull A down in the negative z-axis by d, then remove
what is below the xy-plane. Then, the remainder is A4. Then, it is obvious to
see that MAT(Q)y = MAT(Qg). From this observation, we can get

04(Q) = 9
= OR(MAT(Q))
OR(MAT(Q),).

That is, the d-offset curve is the boundary (or envelope) of the region saturated
by the disks corresponding to the d-cutoff of the medial axis transform of the
original domain.

The various geometric aspects of the medial axis transform is revealed in [4].
Especially, we could characterize the medial axis transform as a geometric graph:
A geometric graph is a usual topological graph with a finite number of vertices
and edges, where a vertex is a point in R® and an edge is a real analytic curve
with finite length and with limits of tangents at the end points.

As a continuing investigation of the geometry of the medial axis transform,
here we explore some local geometric property of the cross sections of the me-
dial axis transform cut by horizontal planes. To classify all the possible con-
figurations of the offset curve around its self-intersection points, it is crucial to
understand the geometric nature of the cross section, since the self-intersection
points of the d-offset curve fall on the cross section by the horizontal plane with
height d. Before we start, let us fix some terminologies that will be used in the
subsequent discussion.

For ¢ > 0, we call a connected component of the set

{(p,r) e MAT(Q) [r = c}

a c-horizontal section of MAT(Q). Since MAT() is a finite geometric graph
embedded in R? as mentioned earlier, it is easy to see that there is a finite
number of ¢-horizontal sections of MAT(£2) for given ¢ > 0, and each horizontal

section is either a point or a graph (i.e., a finite geometric graph which is a subset
of MAT(R2)).

Lemma 1. Let Q be a domain and let ¢ > 0. Let H be a c-horizontal section
of MAT(Q)). Then H is either a point or a C' curve segment (possibly a closed
curve). Moreover, if H is a curve segment (or a closed curve), every point in
H, with possible exception at the end points, is a 2-prong point of MAT(Q).

Proof. Suppose H is not a point. Suppose (p,r) € H is an n-prong point of
MAT(?), but not an end point of H. Let T'(p) be the union of the line segments
joining p and the contact points of B,.(p). Then, B, (p) \ 7T'(p) has n connected



components. We denote them by Uy, ..., U,. In [], it is proved that the medial
axis emanating from p consists, near p, of exactly n curves s1,...,s,. We may
assume each s; is contained in U; for ¢ = 1,...,n. We define 6; > 0 to be the
angle of U; at p for i = 1,...,n. Let r; be the segment of the medial axis
transform emanating from (p,r) corresponding to s;. Let ¢; be the angle at
(p,r) between r; and the xy-plane. The sign of ¢; is chosen to be positive if r;
lies above the plane R? x {r} near (p,r). Then, as shown in [4], we have
0;

tan ¢; = — cos > (1)
for : = 1,...,n. Note that n > 2 and at least two of ¢;’s, say ¢, and ¢, are
non-negative, since (p,r) is not an end point of H. If ¢; > 0, then 6, > 7, which
implies 03 < 7. This in turn implies ¢ < 0. Thus, we should have ¢; = ¢ = 0.
But then 6; = 63 = 7 by Equation (), so n must be 2 from the fact that
Z?:l 0; < 2w, and 0; > 0 for 1 < i < n. So the two contact components of
(p,r) must be isolated contact points. For the C! connectivity near (p,r), one
may refer to Section 8.2 in [4]. O

Definition 1 (Peak, valley, and slope). Let Q be a domain and H is a
c-horizontal section of MAT(Q) for ¢ > 0. H is called a peak, if it is locally
maximal in r, i.e., there exists a neighborhood N of H in R? x R such that
r < ¢ for any (p,r) in N N MAT(Q). Similarly, H is called a walley, if it is
locally minimal in r. Finally if H is neither a peak nor a valley, it is called a
slope.

Remark 1. Note that the results in [4] easily implies that the number of peaks
and valleys of MAT(Q) is finite.

Remark 2. Note that a c-horizontal section can be a peak and a valley at the
same time. This is the case when, for example, {2 is a stadium defined by

Q={(z,y) eR’| —a<y<a,—Va>—y?—a<z <\a®—y? +a},
and ¢ = a, the half of the stadium’s width.

Theorem 2 (Shape of valley). Let Q be a domain. Suppose V' is a valley of
MAT(Q?) and not a 0-horizontal section of MAT(Q). Then V has the following
properties:

(1) V is either a point or a C' (possibly closed) curve segment. If V is a
(closed) curve segment, each point on V', which is not an end point of V,
is a 2-prong point of MAT(Q).

(2) None of the points in V (including the possible end points) is a bifurcation
point of MAT(Q).

(3) Suppose V is a curve segment. If an end point (p,r) of V is a 2-prong
point of MAT(Q), then MAT(Q) is a C' curve near (p,r).



(4) If V is a connected component of MAT(Q), then it is either a closed
curve or a curve segment both of whose end points are 1-prong points of
MAT(9Q).

Proof. The first property is just Lemmal[ll Let (p,r) be a point in V. We will
show that (p,r) cannot be a bifurcation point of MAT(2). We can assume
that V is a curve segment and (p,r) is an end point of V. Suppose (p,r) is
an n-prong point of MAT(Q) with n > 1. For 1 <14 < n, let r;, 6;, and ¢; be
given as in the proof of Lemma [II Note that ¢; > 0 for each ¢, since V is a
valley. Thus by Equation (I)) and the fact that Y1, 6; < 27, we have n < 2.
The third property immediately follows from the similar argument to the latter
part of the proof of Lemma [Tl

Now assume V is a connected component of MAT(2). Note that if V
is a closed curve, then it is a connected component of MAT(Q). Suppose
V is not a closed curve. Then by the second property, each of the two end
points of V is either a 1-prong point or a 2-prong point of MAT(f2). But if
one of the end points of V is a 2-prong point of MAT(Q), then V is not a
component of MAT(f2). So both of the two end points of V are 1-prong points
of MAT(Q). O

Lemma 3. Let Q be a domain and let r : [0,1] — MAT(Q), r(t) = (p(¢),r(t))
be a continuous path with no self-intersections. (Here we allow the possibility
that r(0) = r(1).) Suppose there exist a and b (0 < a < b < 1) such that the
function r(t) takes a local minimum on [a,b]. That is, r is constant on |a,b] and
there exists a neighborhood N of [a,b] in [0,1] such that r(t) < r(7) for every
t € [a,b] and 7 € N\ [a,b]. Then r([a,b]) is a valley of MAT().

Proof. We may assume r([a, b]) > 0.The assumption says that r([a, b]) is a local
minimum in the “path” r([0, 1]). It remains to show that r([a, ]) is also a local
minimum in the “whole” MAT(). To show this property, it remains to prove
that there is no bifurcation point on r([a,b]). Let (p,r) be any n-prong point
of MAT(Q) on r([a,b]). For 1 <i<mn,let r;:[0,¢] - MAT(Q) and 6;, ¢; be
given as in the proof of Lemma [II By the assumption, there are at least two
¢;’s, say ¢1 and ¢o, greater than 0. By the similar argument to the proof of
Lemmal[ll (p,r) is a 2-prong point. O

Theorem 4 (Existence of valley between two peaks). Let 2 be a domain
and Py and Py be two (not necessarily distinct) peaks of MAT (). Suppose that
r: [0,1] - MAT(Q), r(t) = (p(t),r(t)) is a continuous, not self-intersecting
path (possibly closed if Py = Py) in MAT(Q) with the following properties:

(1) The path r connects Py and Py, i.e., we have r(0) € Py and r(1) € P;.
(2) There exists a tg € [0,1] such that r(tg) ¢ P1 U Ps.
Then, there is a valley of MAT(Q) on the path r.



Proof. In view of Lemma [ it is sufficient to show that there exist a and b
(0 < a < b < 1) such that r(t) takes a local minimum on [a,b] in the sense
of the lemma. Suppose not. Then r(¢) must be either non-decreasing or non-
increasing. Note that r(t) is not constant since there exists a point on r which
is not in P; U Py. But if (¢) is non-decreasing (respectively, non-increasing), P;
(respectively, P3) cannot be a peak. O

3 Classification of points on offset curves

Now we are ready to investigate the local geometry of the offset curves of a
domain. For a real analytic curve “segment”, the geometric and topological
features of its offset curve are already familiar in the CAGD context. When the
offset distance d is relatively small, its offset curve is very similar to the original
one. As d increases, however, the offset curve exhibits irregular points such as
cusps, infinite curvature points, or self-intersections. For more information on
the irregularity of offset curves, one is referred to [T} 12].

The domain of our concern is bounded by many rational curve segments.
Therefore, the offset curve of the domain is a subset of the union of the offset
curve segments to the boundary curve segments. In addition to the irregularity
of the offset curve segments, caused by the corresponding boundary segments
by itself, now the offset curve segments can intersect themselves (depending on
the global geometry of the domain) to introduce another kind of irregularity.

Observing that the irregular points always occur on the medial axis of the
domain, we will separately treat points of the offset curve that are on the medial
axis and off the medial axis after a brief review of the offset of a curve segment.

3.1 Untrimmed offset curves

Definition 2. By the untrimmed d-offset curve to a boundary curve segment
r(t) for d > 0, we mean the curve

rq(t) = r(t) + dn(t),

where n(t) is the unit normal vector of r(¢) pointing inside the domain. Due
to the orientation convention of the boundary, the normal vector n(t) can be
obtained by rotating the vector r'(¢)/|r'(t)| counterclockwise by 7 /2.

The unit tangent vector 74(¢) and curvature x4(t) of the untrimmed offset
curve ry(t) can be readily computed [12] by

1 —dk(t)

Td(t) - |1 _ dli(t)‘ T(t) (2)
_ k()

0] “

where 7(t) is the unit tangent vector and «(¢) is the curvature of r(¢). Note
that rq(t) exhibits singularities in its tangent vector (abrupt change of its direc-
tion) and curvature (infinite curvature) where k(t) = 1/d, i.e., at the center of



curvature of r(¢). For more analytic properties of the untrimmed offset curve,
one is referred to [12].

3.2 Points of offset curve off medial axis

We first consider points of the offset curve which is not on the medial axis.

Theorem 5. Let p be a point on Og(2). If p is not on MA(Q), the following
are true:

(1) There is a unique foot point q of p on OS).

(2) Letr(t) be a parameterization of O near q with r(0) = q. There exists an
€ > 0 such that the untrimmed offset curve rq(t) fort € (—e,€) is Oq(£2)
near p.

(3) p is not a singular point of rq(t).

Proof. If there is more than one foot point of p on 02, we should have p €
MA (). Now we prove the second claim. Let B,(x) be the maximal disk of
Q tangent to 9N at q. Clearly, we have r > d. Since the mapping from the
boundary to the medial axis transform (the medial azis transform map in [4)])
is continuous, there exists an € > 0 such that the corresponding maximal disk
contacting at r(t) has a larger radius value than d for t € (—e¢,¢). We show
that the untrimmed offset curve rq(t) for t € (—e,€) is the d-offset curve of Q2
near p. It suffices to show that for any point r4(t), we have dist(rq(t), 9Q) = d.
Draw disks By(ry(t)) and B, (p’), where B,.(p’) is the maximal disk at r(¢).
By our choice of €, we have ' > d. Since the two disks B4(rs(t)) and B, (p’)
are tangent to each other at r(¢), we have By(rq(t)) C B,/ (p’). Hence there is
no other point of 9Q which is closer to ry(t) than r(t).

To prove the last claim, it suffices to show k(0) < 1/d, where k(t) is the
curvature of r(t). Since we have r < 1/k(0) (the radius of the contact disk
cannot be larger than the radius of curvature), we have d < r < 1/x(0). O

In summary, around the point which is off the medial axis, the offset curve of
the domain is essentially the untrimmed offset curve for some boundary curve
segments of the domain, and the tangent vector and the curvature are well

defined by Equation (2) and (3]).

3.3 Points of offset curve on medial axis

Now we study points of the offset curve which are on the medial axis. Let p
be a point on Og(2) and MA(Q). Note that p is basically a self-intersection
point of the offset curve. Let H be the d-horizontal section of MAT((2) having
(p,d). By Lemmal[ll H is either a single point or a C! curve segment. We first
consider the case in which H is a single point.



’ prong \ valley \ peak \ slope ‘

1 yes yes no
2 yes yes yes
n(> 3) no yes yes

Table 1: Single-point horizontal section

Single point horizontal section

Let p be a point on O4(2). Suppose, the single point (p,d) is a d-horizontal
section of MAT(2). We list the possible status of (p,d) as a medial axis
transform point in Table[Il Here, there is no 1-prong slope by definition and 3-
prong valley is also impossible by Theorem 2l Other possible cases are depicted
in Figure [l

Case 1 (1-prong valley). The contact disk B4(p) corresponding to (p,d) is
an inscribed osculating disk. The (only one) contact component C' of Bg(p)
is either a point or an arc, but cannot be the whole circle. Let C(t) be a
parameterization of C' for ¢ € [0, ¢], where ¢ is the angle over which the arc C
extends. (See Figure[2l) Since (p,d) is a valley, we have 0 < ¢ < . The case
¢ = 0 occurs when C is a point. Let a and b be the boundary curve segments of
Q connected by C. (See Figure[2l) Assume that a and b are parameterized in the
intervals (—e, 0] and [0, €), respectively, such that a(0) = C'(0) and b(0) = C(¢).

Theorem 6. The d-offset curve of  near p is the union of the untrimmed
offset curves ag and by.

Proof. Since (p,d) is a valley point and the mapping from the boundary to the
medial axis transform is continuous, we can assume that the contact disk at a(t)
or b(t) has radius greater than d for ¢t # 0. Now the proof can be the same as
that for Theorem O

Remark 3. Note that ag or by has infinite curvature at p if the curvature of
a(t) or b(¢) is 1/d at t = 0. Hence, if ¢ = 0, at least one of az and by must have
an infinite curvature at p while having a continuous tangent direction. And if
¢ = 7, one can easily show that none of az and by can have infinite curvature
at p.

In summary, the d-offset curve near p can be decomposed into two curve
segments at p. The interior angle of the offset curve at p is m# — ¢. If ¢ = 0,
in particular, the offset curve has a continuous tangent direction but infinite
curvature at p.

Case 2 (1-prong peak). Since (p,d) is a peak point, we can assume that any
contact disk near p (except By(p) itself) has a smaller radius value than d. This
means that any point near p (except p itself) cannot have d distance to 0f.
Hence d-offset curve near p is just p itself.

10



offset curve medial axis

1-prong valley 1-prong peak

2-prong valley 2-prong peak 2-prong slope

3-prong peak 3-prong slope

Figure 1: Typical figures near single-point horizontal sections

C

O<d<m

Figure 2: Typical figures near 1-prong valleys

11



Figure 3: Near a curve segment horizontal section

Case 3 (2-prong valley). If we decompose ) at By(p) into Q; and 9, then
(p, d) is a single 1-prong valley point for each §2;. Now we can apply Theorem [
Since the contact components C; and Cs are isolated points, Og4(Q2) is the union
of O4(21) N A} and O4(Q2) N A,. Note that we have examined each O(€;)
in Case [1l with ¢ = 7. Hence, the d-offset curve near p is composed of four
untrimmed offset curve segments emanating at p with the same tangent line.
None of them have infinite curvature at p. See Figure[Il

Case 4 (2-prong peak). Applying Theorem Bl and Case [2] we can see that
the d-offset curve near p is just p itself.

Case 5 (2-prong slope). Decompose Q at By(p) into ©; and Qs such that
(p,d) is a valley for MAT(Q;) and a peak for MAT(£). By Cases [[ and 2]
we can see that Og4(£2) near p is just the same as Oq(€2;) near p, which we have
described in Case [l with ¢ # 0.

Case 6 (n-prong peak (n > 3)). Applying Theorem [§ and Case 2] we can
see that the d-offset curve near p is just p itself.

Case 7 (n-prong slope (n > 3)). Decompose Q at By(p) into Q4,...,8,
where (p, d) is a valley for only one of the medial axis transforms, say MIAT ()
and a peak for MAT({ys),..., MAT(Q,). By Cases Il and 2] we can see that
04(Q) near p is just the same as O4(21) near p, which we have described in
Case [T with ¢ # 0.

Curve segment horizontal section

Now we consider the case in which H is a C' curve segment. First, suppose
(p, d) is not an end point of H. Since H is a d-horizontal section, for every point
(q,d) of H, we have dist(q, Q) = d, i.e., the whole H is a d-offset curve of Q.
Since every point of H except the end points is a 2-prong point, there are two
corresponding boundary segments near (p,d). (See Figure[3l) And H and the
corresponding two boundary curve segments are d-offset curves to each other.
In summary, the d-offset curves of Q near p is a C* untrimmed offset curve to
the corresponding boundary curve segments.

12



’ prong \ “valley” | “peak” | “slope”

1 N - -
2 yes yes -
n(> 3) no yes -

Table 2: At the end point of horizontal section

Case 8 (Curve segment horizontal section). If (p,d) is in the C* curve
segment d-horizontal section H, but it is not an end point of H, then the d-
offset curves of 2 near p is a C'' untrimmed offset curve to the corresponding
boundary curve segments.

Now it remains to investigate whether the case p is an end point of H. We
can classify this case as in Table[Il Here, we temporarily modify the definitions
of the peak, valley, and slope. Note that they were defined for the whole hori-
zontal section. We will call a single point (p,r) a “peak” of MAT((Q), if there
is a neighborhood N of (p,r) such that r is a locally maximal radius value in
NNMAT(). A “valley” and “slope” are similarly modified for the single point
case.

We list the possible status of (p,d), which is an end point of the C* curve
segment horizontal section H, in Table Note that the concept “slope” is
irrelevant here since the radius value of MAT(£?) is constant in the direction of
H near (p,d). And for the 1-prong case, there is no need to artificially divide
it into a “valley” and “peak”. Typical examples of Table [2 are depicted in
Figure [

Case 9 (1-prong end point). This case is just Case B except that there is
only one d-offset curve segment emanating from p. That is, the d-offset curve of
Q near p is a C'' untrimmed offset curve to the corresponding boundary curve
segments emanating from p.

Case 10 (2-prong “valley” end point). By dividing the domain at By(p),
we have two subdomains 2; and Q9 such that p is a 1-prong valley point of
MAT(Q;) with ¢ = 7 (Case [[) and a 1-prong end point of MAT(Qs) as
in Case @ Hence, the d-offset curve of the domain near p consists of three
untrimmed offset curve segments emanating at p with the same tangent line
and none of them have infinite curvature at p. See Figure [l

Case 11 (2-prong “peak” end point). Decompose Q at By(p) into 4
and Qo such that MAT(Q,) = H. Since (p,d) is a peak for g, there is no
contribution to the d-offset curve from the subdomain 25 except the point p
itself. Hence the d-offset curve near p is the same as in Case

Case 12 (n-prong “peak” end point (n > 3)). Decompose Q at By(p)
into Q1,...,8Q, such that MAT(Q;) = H. Now (p,d) is a peak for all other
Qa,...,9Q,. As we have seen in Case[I] there is no contribution to the d-offset
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1-prong end point 2-prong "valley" end point

2-prong "peak" end point 3-prong "peak" end point

Figure 4: Typical figures near end points of C! curve horizontal sections

curve from the subdomains s, ..., €, except the point p itself. Hence the
d-offset curve near p is the same as in Case [0

Now that we have exhausted all the possible cases of the offset curve points
of a domain, we can summarize the classification in the following theorem. For
the convenience of the enumeration, we introduce the following term.

Definition 3. A point p of O4(Q?) is an n-fork point if there are n pieces of
curve segments of Oy4(§2) emanating from p.

Remark 4. We use the term “fork” to distinguish it from the term “prong” used
in the description of the medial axis transform in [4] B5].

Theorem 7 (Classification of points on offset curves). Let p be a point
of the d-offset curve of a domain with d > 0. Then p is one of the following
types; (See Figure[7)

(0) a 0-fork point, i.e., an isolated point;

(1) a 1-fork point, where a C' curve segment is emanating with finite curva-
ture;

(2) a 2-fork point,
(a) where two O curve segments are emanating with finite curvature and

in opposite tangent directions;

14



Figure 5: A domain and the offset curve

(b) where two C! curve segments are emanating with opposite tangent
directions and at least one of them having an infinite curvature;

(¢) where two C* curve segments are emanating with an interior angle
0 < ¢ <7 and each of them may or may not have an infinite curva-
ture;

(d) where two C' curve segments are emanating with the same tangent
direction and finite curvature;

(3) a 8-fork point where three C! curve segments are emanating with finite
curvature such that two of them have the same tangent direction but the
third has the opposite tangent direction;

(4) a 4-fork point where four C! curve segments are emanating with finite
curvature such that two of them have a common tangent direction and the
other two have also a common tangent direction but opposite to the first
one.

Remark 5. Near a 2-fork point with discontinuous tangent direction, the d-offset
region is on one side of d-offset curve such that the interior angle at that point
is less than 7, i.e., there is no “dull” corner point on the boundary of d-offset
region.

Remark 6. One can show that the number of fork points except (2a) is finite.
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For one curve segment, much literature exists on the geometric and topo-
logical features of its offset curve. However, for many pieces of curve segments
bounding a planar region, the interference of the offset curve segments with
each other makes the analysis much more cumbersome. Using the medial axis
transform, which holds the complete data of the region, we were able to rigor-
ously give a full description of the offset curve of the region, albeit people in
the CAGD community are well aware by experience. In a subsequent section,
we will present an approach to compute the offset curve using the medial axis
transform.

4 Domain decomposition for offsets

One of the weak points of the medial axis transform is that it is very sensitive to
the perturbation of the domain’s boundary. A small wrinkle of a smooth segment
of the boundary will produce many branches of the medial axis transform coming
out toward the wrinkled portion of the boundary. However, the dependence of
the medial axis transform on the domain’s boundary is in substance local. That
is, the wrinkled boundary affects only the contact disks that do contact the
boundary. In addition to this localized property, on the other hand, the global
information about the medial axis transform can be obtained by combining local
information about the medial axis transform (Domain Decomposition Lemma
).

The domain decomposition method was the basic tool for the construction of
the medial axis transform in [5]. Now, we have at hand the relation between the
medial axis transform and the offset curve. It is advantageous if we know how the
domain decomposition method can be applied to the offset curve construction.

Theorem 8 (Domain decomposition lemma for offset). Let (p,r) be an
n-prong point of MAT(Q) and let C1,...,Cy be the corresponding contact com-
ponents. Let B,.(p) be the corresponding contact disk. Suppose Ay, ..., A, are
the connected components of Q\ B,.(p). Let S; = 0B,.(p) N A;, a segment of
0B,.(p). Let U; be the union of the closed sectors of B,(p) corresponding to S;.
That is, U; = {z € Pq|q € S;}. Denote Q; = A; UB,(p) and A; = A, UU;
for i =1,...,m. Then, the d-offset curve Oq(2) can be decomposed into the
following components;

(1) Oa()N AL fori=1,...,m,
(2) d-offset curves to the arcs Cj, for j=1,...,n.

Furthermore, each pair of the above components can, at best, share their end
points. See Figure [0

Proof. Let T; be the sector of 0B, (p) corresponding to the contact component
Cj,ie, T ={zepq|qe C;}. It is easy to see that Oy(2) N T} is the d-offset
curve to the arc C}, which is just the same arc as C; with the same center but
r — d radius. (If d > r, no such arc exists.)
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Figure 6: The partition of the offset curve

Since the union of all A} and Tj is the whole domain €, we have
0u(Q) = J (©a(@) n A U | (0a(@) NT).
i=1 j=1

Now let us show that Og4(Q;) N AL = O4(2) N AL for each i. It suffices to show
that dist(z, 99Q;) = dist(z, 0N) for any z € Al.

Denote dist(z, 9€;) by d. Let w be a foot point of z on 9€;. We first show
that w is on 9 and thus we have dist(z, 9€;) > dist(z, Q). Suppose w is not
on dQ but on S;. Since z is inside A} (including the boundary) but w is outside
A%, zw intersects the boundary of A}, which is (0A4; N 9Q) U pa; U Pqy, where
q1 and qgs are the end points of S;. By the assumption, ZzZw must intersect pq;
or Pq;. (Otherwise, the intersection point on 9A; N IN realizes dist(z, I;)
with a smaller value than d.) Then it is easy to see that there are points on S;
realizing dist(z, 9€2;) with a smaller value than d.

Now we show that dist(z, 0€2;) < dist(z, 0€2). Let v be a foot point of z on 9
realizing dist(z, 0€2). If v is on 0€);, we have dist(z, 9Q;) < |zv| = dist(z, 09).
If v is not on 0€;, then zZv must intersect 0f2;. Let y be the intersection point.
Then we have dist(z, 09);) < |zy| < |zv| = dist(z, 0f).

Therefore, we proved O4(9;) N A, = O4(2) N AL. Finally, note that any
pair of distinct A} and Aj or A} and T; can at best share their boundary line
segments. O

Although the medial axis transform does not allow in general any closed-
form expression via the parameterization of the boundary, one can find the
contact disk corresponding to any boundary points. In [5] and [13], algorithms
to pinpoint the medial axis transform point (p,r) corresponding to a given
boundary point q are presented. In [5], one draws a suspect disk contacting
the boundary curve at q and intersecting the other boundary curve, and then
reduces this disk until it is tangent to the other boundary curve. On the other
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Figure 7: A subdomain around p

hand, the second algorithm [I3], called curve/curve-bisector, is based on the
observation that p is the intersection point of the normal line of the boundary
curve at q and the point/curve bisector of q and the other boundary curve.
These algorithms are the 'workhorse’ of our algorithm and we will call them, in
a general term, the medial axis transform engines.

The medial axis transform can be approximated by interpolating the points
found by the medial axis transform engines. The very property of the medial
axis transform that makes this process possible is that the medial axis transform
is a finite geometric graph.

If we have an approximation of the medial axis transform, we can find the
shape of a domain since the medial axis transform is a strong deformation re-
tract of the domain. To get a more accurate approximation of the medial axis
transform, we must find more contact disks using the medial axis transform
engines, and include them in the interpolation scheme. Now, when we run the
medial axis transform engines to find those additional contact disks, we do not
have to consider the whole domain. We only need to consider the region around
such contact disks. For example, if we want to find a medial axis point p in Fig-
ure[7, we can concentrate on the shaded region only, not the whole domain; this
is the idea of the domain decomposition. Thus, each contact disk decomposes
the domain into subdomains. Especially, if we find all the bifurcation points
(where at least three edges meet) of the medial axis transform, then the orig-
inal domains are decomposed into subdomains whose medial axis transforms
are piecewise real analytic curves. We call such a subdomain a fundamental
domain, and Domain Decomposition Lemma [4] says that it is sufficient to
deal with fundamental domains only. (For the ease of computation, we can as-
sume that the boundaries of the fundamental domains are rational rather than
piecewise-rational after placing a disk at every juncture in the boundary curve.)

The idea of domain decomposition is also the cornerstone of our approach
to offset. We have seen in Theorem [§] that once the offset curves of the original
boundary curve segments in fundamental domains are constructed, then domain
decomposition links them into the whole offset curve of the domain. In Figure8]
for example, the offset curve of each subdomain does not interfere with the offset
curves of other subdomains, but can be easily linked with each other, forming
the offset curve of the whole domain.
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Figure 8: Domain decomposition for offset curves

In addition, the self-intersection points of the d-offset curve lie on the medial
axis where its radius is d. As we have seen in Lemma [Il the set of all medial
axis transform points whose radius component is ¢, for a given ¢ > 0, are
composed of a finite number of points or piecewise C' curves. The various
geometries of a c-horizontal section and the offset curve near self-intersection
points are thoroughly discussed in the preceding sections. Hence, d-horizontal
section must be located to capture the exact nature of a d-offset curve.

However, given a fundamental domain Qp and d > 0, locating such d-
horizontal section in Qp is difficult. If we assume that MAT (2 ) is represented
by a piecewise real analytic curve (p(t),r(t)), the problem is equivalent to solv-
ing the equation r(t) = d. But we do not have any closed form expression for
the function r(¢). What we have is some engines that compute the value of
p(t) and r(¢) for given ¢t. To incorporate such engines into a stable root-finding
schemes, one must carefully examine the problem space beforehand.

Thus, to prepare, we are going to further decompose the domain such that
the medial axis transform of each subdomain has a monotone increasing /decreasing
radius component. Once this decomposition is done, the solution of the equa-
tion r(t) = d can be efficiently and stably obtained by any traditional numerical
methods, such as Newton-Raphson method. Thus, a special c-horizontal sec-
tion, which has a local maximum or minimum radius value, called peak or valley,
respectively, needed to be located in advance. To do so, we use iterative pro-
cedure to approximately locate peaks and valleys. If we know, in advance, that
there are no other points nearby which have extreme value in radius, these
iterative algorithms work well. The problem occurs when there are other, some-
times infinite, points nearby which have extreme value in radius. These must be
roughly counted by looking at the boundary geometry. In particular, it is ad-
vantageous to decompose the domain such that each curvature of the boundary
curve segments of its subdomains does not change sign.

In doing so, one can also encounter the situation where there are infinitely
many points which have extreme value in radius. Since the medial axis transform
our domain is real analytic curve, infinitely many such points occur only when
the fundamental domain is parallel; this is, the two boundary curve segments
are offset to each other. Using Bezout’s theorem, we will provide an algorithm
to determine whether a given domain is parallel.
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In Section Bl we will describe the decomposition of the domain into subdo-
mains, whose medial axis transform has a monotone radius components. Then
in Section [6] we can easily compute the points satisfying the equation r(t) = d.

5 Critical horizontal section

We now discuss how to locate horizontal sections with a critical radius value.
Such horizontal sections will be shortly called critical horizontal sections. Peaks
and valleys are kinds of critical horizontal sections.

We begin with fixing some conventions on the boundary which will be used
throughout this discussion. We assume that every curve segment r(¢) composing
the boundary is positively-oriented. That is, the parameter t is so chosen that
if one is going along the curve in the direction of increasing ¢, then the domain
remains to the left.

Let Qp be a fundamental domain at hand and r and s be its two boundary
curves of the domain defined on the interval [0, 1]. Let p(¢) be the corresponding
medial axis point of r(¢), and let s(u) be the foot point of p(t) on s. The

opening angle 6(t) of p(t) (or r(t)) is the angle from p(¢)r(t) to p(¢)s(u) in
the counterclockwise direction. If p(t) is on a critical horizontal section, then
0(t) = m since we know that

cos 07 = — tan ¢(t) (4)

where ¢(t) is the angle between the tangent vectors (p’(t),r'(¢t)) and p’(¢).
Thus locating critical horizontal sections is equivalent to locating m-opening
angle sections.

We have found that it is advantageous to further decompose the fundamental
domain such that the curvature of its boundary curves have constant sign. To
do that, we need to locate the boundary parameter where the curvature changes
its sign. Candidates are those parameters where the curvature is discontinuous
or zero.

The curvature x(t) of a boundary curve r(t) is defined by

_det(r'(t),r"(2))
0= e )

According to this definition, a curve with positive (resp., negative) curvature
will bend to the left (resp., right) as one is going along the curve in the direction
of increasing t. See Figure

For a rational r(t) = (z(t)/w(t), y(t)/w(t)), we have

1.0 1,11 ",

wi(z(y'w” — y"w') + y(w'z" — w"a’) + w(a'y” — 2"y'))
((zw" — 2'w)? + (yw' — y'w)?)3/?

(6)

R =
Thus, if r(t) is a rational curve of degree n, locating zero-curvature points of r

amounts to solving 3n —4 order univariate polynomial equations (2n — 4 if poly-
nomial curve). At the zero-curvature points on the boundary, we can get the
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Figure 9: Curvature sign convention

corresponding medial axis transform points. By these medial axis transform
points, the original domain is further decomposed into fundamental domains
whose boundary curves have constant curvature sign except possibly at the end
points. We can classify these fundamental domains into four possible cases
according to the curvature sign. For convenience, we adopt the following con-
ventions for the curvatures x, and kg of r and s, respectively: we denote k., > 0
if k«(t) > 0 for all ¢ except possibly for ¢ = 0,1 and ks > 0if k. > 0 or k.(t) =0
for all t. Similarly k. < 0 and k., < 0 are defined.
Now we describe how to locate m-opening angle sections case by case.

Case 1: k, <0 and x5 <0

For any given contact point r(t) on r, let s(u) be the corresponding contact
point of r(¢) on s. Note that u = u(t) is a decreasing function of ¢ due to the
orientation convention of the boundary curve. Let «(t) and B(u) be the angles
of r'(t) and s’(u) with respect to the positive z-axis, respectively such that

0(t) = B(u) — aft), (7)

which means that the opening angle 0(¢) is equal to the angle from r'(¢) to s’(u).
(See Figure[IOl) Since B(u) is a decreasing function of u and u = u(t) and «(t)
is decreasing functions of ¢, 6(¢) is an increasing function of ¢.

From this observation, we have the following result.

Proposition 9. If 0(0) > m or 8(1) < =, there is no critical horizontal sections
in Qp. If 0(0) < 7 and 6(1) > m, there exists exactly one critical horizontal
section, which is a valley in Qp. In this case, if both r and s are line segments,
ie., ky = 0 and ks = 0, then the whole MAT(Qp) is a critical horizontal
section. Otherwise, the critical horizontal section is a single point.

Case 2: k. >0, kg >0

This case is analogous to the Case 1. Proposition [ can be adapted as follows.
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Figure 10: x, <0, ks <0

s(u)

r(1)

Figure 11: x, >0, ks >0

Proposition 10. If0(0) < m or 6(1) > =, there is no critical horizontal sections
in Qp. If 0(0) > 7 and 0(1) < w, there exists exactly one critical horizontal
section, which is a peak in Qp. In this case, if both r and s are line segments,
i.e., ke = 0 and ks = 0, then the whole MAT(QF) is a critical horizontal
section. Otherwise, the critical horizontal section is a single point.

The locating algorithm is similar as in Case 1.

Case 3 k., >0, ks <0

In this case, we cannot determine the existence of peak or valley, or how many
there are, if any, with only the data of 6(0) and #(1). In general, one can
formulate an example which has as many peaks and valleys as one wishes with
given 0(0) and (1) and under the condition k, > 0, ks < 0. For example, in
Figure [12] we have one peak and one valley between p; and p3 whereas none of
them between p2 and ps. (Note that p; and ps have the same opening angle
and radius.) Moreover, we cannot exclude the possibility that portions of r and
s are offset curves to each other. We begin with this problem. Since MAT(Q)
is a real analytic curve at every generic 2-prong point and our fundamental
domain consists of generic 2-prong only (except possibly at the end points),
MAT(QF) is a real analytic curve. By the real analyticity of radius component
of MAT(QF), we have the following:

*By changing the roles of r and s, we can also cover the case that Ky < 0, ks > 0.
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Figure 12: k. > 0, ks <0

N0

Theorem 11. FEither the whole MAT (Qr) is a c-horizontal section for some
¢ > 0, or every c-horizontal section of MAT(Qp) consists of a finite number of
points.

That is, either the whole r and s are offset curves to each other (in this case
we call Qr a parallel fundamental domain), or there is a finite number of critical
radius points. The decision of whether or not Qp is parallel can be made in
finite steps. The criterion for this is given in Theorem [[3 Bezout’s theorem is
crucial in proving this theorem.

Theorem 12 (Bezout’s Theorem). Two relatively prime polynomials f, g €
Clz,y] of degree di and ds can have at most dydy simultaneous solutions.

For a given polynomial h(z,y), the equation h(z,y) = 0 usually defines a
curve in R?. But in some cases, the solution of h(z,y) = 0 consists of a single
point. (For example h(z,y) = 2% + y?.) We call such a solution an isolated
solution. To be precise, a point (xg,yo) is called an isolated solution of the
equation h(z,y) = 0, if for some neighborhood V' of (xg, o), there is no other
solution than (zg,yo) in V.

The next is then an easy corollary of the Bezout’s theorem.

Corollary. Let h(x,y) be an irreducible polynomial over R of positive degree d.
Then h(x,y) = 0 can have at most d(d — 1) isolated solutions.

Proof. If (z0,y0) is an isolated solution of h(z,y) = 0, then Z%(zg,y0) =
%Z(a:o, yo) = 0. That is, (zo,yo) is a simultaneous solution of

Mey) = 0 ©
D) = 0 0
oh

ey = 0 (10)
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Since h is irreducible, h and % (or g—Z) are relatively prime. Now the result

follows from Bezout’s theorem. O

Theorem 13. Let Qg be a fundamental domain with boundary curves r and s.
Suppose r and s are rational curves of degree m and n, respectively. Then Qp
1s parallel if and only if:

(i) the radii at ends are same, i.e., r(0) = r(1), and

(i) For some distinct N +1 points 0 = to,...,txy =1, where N = (2m+2n —
1)2, we have O(ty) = --- = O(ty) = .

If Qp is parallel, then for any N 4 1 points, the second condition is satisfied.
What this theorem says is that any one set S of N + 1 points is enough. If one
of ¢; in S does not satisfy the condition, then 2 is not parallel. Otherwise, i.e.,
if every t; in S does satisfy the condition, then Qg is parallel.

Proof. One way is obvious. Conversely, let s(u;), ¢ = 0,..., N be the corre-
sponding contact points of r(¢;) on s. Since 6(t;) = m, (t;,u;) are solutions
of

If one substitutes
1

r(t) = @(a(t), b(t)) (13)
1

the above equations are reduced to polynomial equations
Pt,u) = (af —cd)(a'c—ad)+ (bf —ce)(t/c—bc)=0 (15)
Qt,u) = (af —cd)(df—df')+ (bf —ce)(e'f —ef')=0.  (16)

Note that both P and @ have total degree of, at most, 2m + 2n — 1. In view
of Bezout’s theorem, P and @ must have a common factor of positive degree.
Let h be the greatest common divisor of P and ). Suppose h is written as a
product

h=hyh, (17)

of irreducibles over R of positive degree di,...,d,.. Now if we write P = Pih
and @ = Q1 h, then (¢;,u;) are simultaneous solutions of

Pi(t,u) = 0 (18)
Qi(t,u) = 0 (19)
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or solutions of one of the equations

hi = 0

h, = 0.

Substitute dg = 2m + 2n — 1 — d where d = dy + -+ - + d,.. Since P; and Q1
are relatively prime polynomials of degree dy, they have at most do? solutions
and each h; has at most d;(d; — 1) isolated solutions. The number of all these
solutions amount to d2 +dq(dy — 1)+ +d.(d, —1) < (do+---+d,)> < N+1.

Thus, at least one of (¢;, u;) is the solution of h; which is not isolated. That
is, for some ,j we have h;(t;,u;) = 0 and one of the partial derivative, say
% (ti,u;), is not equal to zero. By the implicit function theorem, there is ¢ € C*
such that (¢, ¢(t)), for some neighborhood of ¢;, is the solution of h;(¢,u) and
hence Equations (8) and (9). In addition, L(t,u) = (r(t) — s(u)) - (r(t) — s(u)),
under the constraints of (8) and (9), measures the diameter of the contact
disks. If we substitute u = ¢(t), then it is easy to see that %L (t,¢(t)) = 0
in a neighborhood of ¢;, which means that {2z contains a parallel fundamental
domain. By Theorem [II] the whole Qr must be parallel. O

Let us now study the discrete critical horizontal sections in Qg as stated in
Theorem [[Il We first introduce an iterative procedure of securing regions that
are free of any critical horizontal sections.

Let us continue to suppose ky > 0 and kg < 0 as in Case 3. Let «(t) be the
angle of r'(t) and B(u) be that of s’(u) as in the proof of Proposition[@ Assume
also that total angle variations of r'(¢) and s'(u) do not exceed 7, i.e.,

1
Aa = /Onr(t)|r (t)|dt < , (20)

Ap

/O o)’ (w)|du > —. (21)

The reason behind this assumption is that we do not want to deal with exces-
sively bent fundamental domains. And this assumption can be easily satisfied
by inserting some contact disks, if necessary, in the fundamental domain con-
cerned. Now we are ready to start the procedure. Take r(t;) for any 0 < t; < 1
and let s(up) be the corresponding contact point on s. Let 6; be the opening
angle at r(t1). Note that r/(¢) rotates positively and s’(u) negatively as the cor-
responding parameters increase. Suppose first 6; > 7. Since G(u1) = a(t1)+ 01,
the parameter to such that a(te) +m = ((u1), i.e., such that r'(t2) is parallel to
s'(uy) satisfies to > t;. Then we can claim that

Proposition 14. The fundamental domain defined by contact disks r(t1) and
r(t2) has no critical horizontal sections.

Proof. Let s(uz) be the corresponding contact point of r(¢2), p be a medial axis
point in the fundamental domain, and r(¢) and s(u) be the contact points of p.
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Figure 13: Monotone Region

To prove that p is not a critical horizontal section, we only need to show that the
opening angle of p, i.e., f(u) — a(t) never equals 2km + 7 for any integer k. Note
that we have t; < ¢t < to and u; > u > ug. Since S(u1) < f(u) < B(uz) and
a(ty) < a(t) < a(tz), we have B(uy) —a(tz) < B(u) —a(t) < B(uz) —a(t;). Now
the result follows by the observation that 5(u1) — a(te) = 7 and B(uz) —a(t;) =
ﬂ(UQ)—ﬁ(U1)+91<7T+91<37T. O

Let 65 be the opening angle at r(¢2). Since 6 > 7, by applying the above
procedure recursively, we can obtain an increasing sequence {t;} such that the
opening angle at r(t) is larger than 7. In the same way, but in an opposite
direction, we can also obtain a decreasing sequence {t} } such that ¢} = ¢; and
the opening angle at r(t)) is larger than 7. So, we can obtain two sequences
{tr} and {t} } each of which is marching in each direction.

Now if 1 < 7, the procedure follows similarly except that the opening angle
is smaller than 7. So, we can also obtain two sequences {t;} and {¢}.} each of
which is marching in each direction.

Theorem 15. If the sequence {t} ( or {t}}) obtained from the above procedure
converges to some 0 < 1 < 1, then the medial azis transform point corresponding
to r(7) is a critical horizontal section.

Proof. Since a(tx) + 60, = B(ur) and B(uk) — a(tg+1) = m, we have a(trr1) —
a(ty) = 0 — 7. Furthermore, we have

althr1) — alty) = / k(O (0)]de.

Since 6(t) is continuous and 0(t;) — ™ = a(tx+1) — a(tx), we must have 6(7) =
. O

Given any fundamental domain Qg with k. > 0 and kg < 0, we first take the

medial axis transform point corresponding to the boundary point r(%) From
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this medial axis transform point, we march (in both directions) to the nearest
critical horizontal section in Qp. If we are out of Qp during the march, then Qp
has no critical horizontal section. Otherwise, if we come to a critical horizontal
section p, we keep the record of p and restart with the fundamental domain
defined by p and one of the medial axis transform points p(0) and p(1) that is
closer to p. In this way, we can locate all critical horizontal sections in Qp.

6 Monotonic fundamental domain

Following the procedures of the previous sections, we can decompose the orig-
inal domain into many fundamental domains containing no critical horizontal
sections, i.e., no local maximal or minimal radius component. Thus all of our
fundamental domains have monotone increasing or decreasing radius function.
We will call them monotonic fundamental domains.

Now we discuss how to utilize the monotonic fundamental domain Q5 to
locate the offset curve segments in ;. We can assume that a parameterization
(p(v),r(v)) of MAT(QF), defined on the interval [0, 1], so chosen that r(v)
is monotone increasing. First of all, then, with the data of r(0) and r(1), we
can answer the question whether or not there exists any self-intersection points
of the d-offset curves. Recall that the self-intersection points of d-offset curves
are the medial axis points with a d radius value. We have also seen in Section
that d-offset curve is the envelope of d-cutoff of MAT(Qyr).

Now, if d < r(0), there exists no self-intersection point since r(v) > d for
all 0 < u < 1. And the d-offset curves consist of a pair of curves rg(t) and
sq(u) for t,u € [0,1]. On the other hand, if 7(0) < d < r(1), then r(v) = d for
exactly one v € [0,1]. (Unless r(0) = r(1), i.e., Qp is a parallel fundamental
domain. In this case, the d-offset curve is MA (Qr) itself.) Finally, if (1) < d,
then the d-cutoff of MAT(Qysr) is an empty set, which means that there is no
d-offset curve at all in Qp;F. We summarize these results as follows (see also

Figures [[4TH and [I6]):

e d < r(0): Since r(v) > d for all v € [0,1], (p(v),r(v) — d) is a parame-
terization of MAT(Qsp)q for v € [0,1], and there is no self-intersection
points.

e 7(0) < d < r(1): Since r(v) is monotonic increasing, there exists unique
¢ € [0,1] satistying r(c) = d. Then (p(v),r(v) —d) for ¢ <u < 1lisa
parameterization of MAT (Qp/r)q4, and p(c) is the self-intersection point.

e (1) < d: Since r(v) < d for all v € [0,1], MAT(Qr)q is empty, and so
is the d-offset curve.

So, as we go through each monotonic fundamental domain Q,;r, one by
one, of the original domain €2, we do nothing and just ignore it if d > r(0) and
d>r(1). If d < r(0) and d < r(1), we compute ry and sg and record them
as d-offset curve of Qpp. Finally, if 7(0) < d < r(1) or r(0) > d > r(1), we
first check if Qprp is parallel. If so, rq, sq, and MA(Qr) are all the same
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Figure 14: d < r(0) <r(1)

r

Figure 15: 7(0) < d <r(1)

Figure 16: 7(0) <r(1) <d

and each of them is the d-offset curve of Qup. If Qur is not parallel, the
unique self-intersection point can be located as follows. We can consider that
MAT(Q)r) is parameterized by ¢ or u, the parameters of the boundary curve
r or s, respectively. The fact that we can get the medial axis transform point
(p(t),r(t)) for any given boundary point r(t) for ¢ € [0, 1] amounts to that we can
“evaluate” the MAT (Qrr) as a function of ¢, especially the radius component
r(t). Recall that the self-intersection point is equivalent to solution of r(t) = d.
Thus we can apply any numerical approximation scheme to solve this equation,
for example the Newton-Raphson method. (Note that we can evaluate the
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derivative 1/ (t) by the Equation #]).) After we find the self-intersection point, or
equivalently the contact disk with radius d, the monotonic fundamental domain
QO is divided by the contact disk. The resulting two monotonic fundamental
domains are just same as those considered above and we treat them accordingly.
This procedure relies on numerical computation. Thus there may be numerical
errors. However, the global, i.e., topological, nature remains unaltered.

7 Illustrated example

In Figure a domain with a hole inside is decomposed into three fundamen-
tal domains. This process was addressed in [5]. In Figure [17(b), we inserted
three contact disks that correspond to the inflection points of the boundary
curve. Now, the boundaries of the resulting fundamental domains have con-
stant curvature signs. In Figure all peaks and valleys are found, if any, in
each fundamental domain. Now the resulting fundamental domains are mono-
tonic fundamental domains. In Figure the self-intersection points for a
given value d are found, if any, in each monotonic fundamental domain. Finally,
in Figure offset curves are computed in each valid fundamental domain.

(a) Step 1 - Fundamental Domains (b) Step 2 - Constant curvature sign

(¢) Step 3 - Monotonic Fundamental Do- (d) Step 4 - Self-intersection points
mains

(e) Step 5 - Final offset curves
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