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Abstract

In this paper we investigate spline wavelets on the interval with homo-
geneous boundary conditions. Starting with a pair of families of B-splines on
the unit interval, we give a general method to explicitly construct wavelets
satisfying the desired homogeneous boundary conditions. On the basis of a
new development of multiresolution analysis, we show that these wavelets form
Riesz bases of certain Sobolev spaces. The wavelet bases investigated in this
paper are suitable for numerical solutions of ordinary and partial differential
equations.
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Spline Wavelets on the Interval with Homogeneous Boundary Conditions

§1. Introduction

In this paper we investigate spline wavelets on the interval [0, 1] with homogeneous
boundary conditions. In [3] Chui and Wang initiated the study of semi-orthogonal wavelets
generated from cardinal splines. Following their work, Chui and Quak [4] constructed semi-
orthogonal spline wavelets on the interval [0,1]. In [10] Jia modified the construction of
boundary wavelets in [4] and established the stability of wavelet bases in Sobolev spaces.
Concerning applications of wavelets to numerical solutions of ordinary and partial dif-
ferential equations, we are interested in wavelets on the interval [0, 1] with homogeneous
boundary conditions. Using Hermite cubic splines, Jia and Liu in [11] constructed wavelet
bases on the interval [0, 1] and applied those wavelets to numerical solutions of the Sturm-
Liouville equations with the Dirichlet boundary condition. In this paper, starting with
cardinal B-splines, we will construct a family of wavelets on the interval [0, 1] which satisfy
homogeneous boundary conditions of arbitrary order.

Let us introduce some notation. We use IN, Z, IR, and C to denote the set of positive
integers, integers, real numbers, and complex numbers, respectively. Let INg := IN U {0}.
For a complex number ¢, we use ¢ to denote its complex conjugate.

For a complex-valued (Lebesgue) measurable function f on IR, let

p
1l = (/ Fa |pdx) for 1<p< oo

and let ||f||o denote the essential supremum of |f| on IR. For 1 < p < oo, by L,(IR)
we denote the Banach space of all measurable functions f on IR such that || f||, < co. In
particular, Lo(IR) is a Hilbert space with the inner product given by

= | reu@ s 1geLm).
The Fourier transform of a function f € Li(IR) is defined by
= / f(x)e ™ dx, €cTR.
R

The Fourier transform can be naturally extended to functions in Ly(IR). For p > 0, we
denote by H*(IR) the Sobolev space of all functions f € Ly(IR) such that the seminorm

) 1/2
vy = (52 [ 1F@PIe )

is finite. The space H*(IR) is a Hilbert space with the inner product given by

o g) sy = / FOTE O+ €Y de,  f.g e HA(R).



The corresponding norm in H*(IR) is given by || f||gx(r) = \/||f||2L2(IR) + |f|§1u(m).

Let (a,b) be a nonempty open interval of the real line IR. By C2°(a, b) we denote the
space of all infinitely differentiable functions on IR whose support is compact and contained
in (a,b). For u > 0, we use Hj(a,b) to denote the closure of C°(a,b) in H*(IR). For
w =0, Hy(a,b) is interpreted as the closure of C°(a,b) in La(IR). We identify this space
with Lo(a,b).

Let J be a (finite or infinite) countable set. By ¢(J) we denote the linear space of
all complex-valued sequences (u;),cs. Let o(J) denote the linear space of all sequences
(uj)jes with only finitely many nonzero terms. We use ¢5(J) to denote the linear space of
)Y

all sequences u = (u;), ey such that ||ullz := (ZjeJ ik ? < 0. For u = (uj)jes and

v = (vj) e, the inner product of u and v is defined as

(u, vy := Z u;T;.

jed

Equipped with this inner product, ¢5(.J) becomes a Hilbert space.
Let H be a Hilbert space. The inner product of two elements f and ¢ in H is denoted
by (f,g). The norm of an element f in H is given by ||f|| := /{f, f)- If (f,g) = 0,
we say that f is orthogonal to g and write f 1 g. For a subset G of H, we define
Gt :={fecH:{(fg)=0Vge G} Itis easily seen that G+ is a closed subspace of H.
A countable set F' in H is said to be a Riesz sequence if there exist two positive
constants A and B such that the inequalities

A(Z |Cf|2)1/2 < ‘ >, CffH < B(Z |Cf|2)1/2 (1.1)

feF ferF feF

hold true for every sequence (cs)sep in £o(F). If this is the case, then the series } . pcrf
converges unconditionally for every (cf)ser in £2(F'), and the inequalities in (1.1) are valid
for all (¢f)er in l2(F). We call A a Riesz lower bound and B a Riesz upper bound.
If F' is a Riesz sequence in H, and if the linear span of F' is dense in H, then F is a Riesz
basis of H.

In Section 2, we will establish a general theory of multiresolution analysis induced by
a pair of nested families of closed subspaces of a Hilbert space. This theory provides a
general method to construct Riesz bases of a Hilbert space.

For a positive integer m, let M,,, denote the B-spline of order m, which is the convo-
lution of m copies of x[g,1], the characteristic function of the interval [0, 1]. More precisely,
My := X(0,1) and, for m > 2,

1
M, (z) = / M, 1(x —t)dt, =€ R.
0

It follows from the definition immediately that M,, is supported on [0, m], M,,(x) > 0 and
M, (m — z) = M,,(x) for 0 < x < m. The Fourier transform of M,, is given by
. 1—e i
(o) - (o
©= (%

2
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For m > 2, M, has continuous derivatives of order up to m—2. Moreover, M,, € H'(0,m)
for 0 < p<m-—1/2.

Suppose that ;s € IN, r > s, and r + s is an even integer. Let ng be the least integer
such that 20 > r 4+ s. For j € Z, let

O j(x) =22 M, (2"x—7) and ¢, ;(x) == 2" M, (2"x—j—(r—s)/2), x€IR. (1.2)

Ifn>mngandj € [, :={0,1,...,2 —r} then ¢, ;(x ) = 0and ¢, ;(x) = 0 for z € R\ [0, 1].
Let V,, := span{¢,; : j € I,} and V,, := span{¢,; : j € I}, where span E denotes the
linear span of the set F in a linear space. Then dim(V,) = dim(V,) = 2" — r + 1.
Evidently, V,, C V41 and V, C Vn+1 for n > ng. Moreover, V,, is a subspace of H}'(0,1)
for 0 < p < r—1/2. For r > 2, each function f in V,, satisfies the homogeneous boundary
conditions

f®0o)y=fr®ay=0, k=0,1,...,r—2.

Some properties of the pair of families (¢, j)n>n,,jer, and (an,j)nzno,jeln will be discussed
in Section 3.

For n > ng, let W,, := V41 N VL and W,, := n+1 N VL It is easily seen that V,, 1
is the direct sum of V,, and W,, and Vn+1 is the direct sum of V and W Moreover,
dim(W,,) = dim(W,,) = 2". Let J, := {1,...,2"}. A desire to construct bases for W,, and
W, will lead us to study slant matrices in Section 4.

In Section 5, we will give a general method to construct a basis {¢, ; : j € J,} of W,
for each n = ng,ng +1,.... Finally, in Sections 6 and 7, we will complete the proof of the
main result that the set

{27 g j 15 € Ing } UURZ, {27 P 2 € T}

forms a Riesz basis of HJ(0,1) for 0 < pu <r —1/2.

For the two important cases s = 1 and s = 2, we are able to give explicit formulation
of wavelet bases as follows. The corresponding wavelets on IR were first constructed by
Jia, Wang , and Zhou in [13].

Suppose r is an odd positive integer and s = 1. Let

T o(_1\k
P(x) = Z ( 21) [Myi1(k) + Myy1(k+ 1) M, (22 — k), z€R.
k=0

For j=1,...,(r—1)/2, let

2j—

M,1(2j —1— k) + My y1(25 — k)| M, (22 — k), z€R.

For n > ng and z € IR, define

21/ 29 (2"7) ji=1,...,(r—1)/2,
Unj(z) = q 222" —j+ (r+1)/2) j=(+1)/2,...,2" —(r—1)/2,
2 24pon _j41(27(1 — z)) j=2"—(r—3)/2,...,2"



Theorem 1.1. For n > ng and j € J,, let v, ; be the functions as constructed above.
Then the set

{277 g j 25 € Ing } UURZ, {27 Y - € Jn}
forms a Riesz basis of Hy(0,1) for 0 < pu <r —1/2.

For example, in the case when r = 3 and s = 1, we have

1 ) 5 1
= —M;(2z) — — M2z — 1) + — M;5(2z — 2) — — M3(2z —
and

5 1
P1(x) = EMg(ZﬁC) - EM3(23: —1), zelR.

Now suppose that r is an even positive integer and s = 2. Let

a(k) == %[MHQ(I@' 1) £ 2Mya(k) + Mya(k+ )], keZ,
and o
Y(x) =Y (~)*a(k)M,(2z — k), z€R.
k=0

For j=1,...,7/2 and z € R, let

27 .
y(a) = S (-0a(2i — 20— k) = 2D a0y, 20)
k=0
For n > ng and = € IR, define
21/ 24 (2" ) j=1,...,1/2,

Unj(@) = V202" —j+7/24+1) j=r/2+1,...,2" —r/2,
2" 2pgn_jq (2M(L—x))  j=2"—r/241,...,2"

Theorem 1.2. For n > ng and j € J,, let ¢, ; be the functions as constructed above.
Then the set

{z_nou(bno,j WS Ino} U Uf:no{z_wlﬁn,j 1j€ Jn}
forms a Riesz basis of HY(0,1) for 0 < pu <r —1/2.

For example, in the case when r = 2 and s = 2, we have

1 1 5 1 1
W(z) = ﬁMQ(Q:c)—ZMQ(Q.I—I)—l—EMg(Zx—Q)—ZMQ(Qx—?))-l-ﬁMz(QSC—‘l), r € R,

3 1 1
’L,Ul(llf) = gMQ(QIIZ‘) — ZM2(2I — 1) + ﬂMQ(?l‘ — 2), z € IR.
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Let us consider the case when r = 4 and s = 2. In this case, we have

+ 119M4 (22 — 4) — 28 M4 (2 — 5) + My(2z — 6)], z € RR.
Moreover, for x € IR, we have

’g[)l (I) = L 7177M4(2I) - 28M4(2:L‘ - 1) + M4(2I - 2)

and

Yo(r) = ﬁ [118 My (2z) — 184 My (2x — 1) + 119My (2 — 2) — 28 M4 (22 — 3) + My(2z — 4)].

§2. Multiresolution Analysis

In this section we establish a general theory of multiresolution analysis induced by
a pair of nested families of closed subspaces of a Hilbert space. This theory is a further
development of the results in §2 of [13].

Let A = (ajr)jer kes be a matrix with its entries being complex numbers, where I and
J are countable sets. The transpose of A is denoted by AT. For an element u = (uy)res
in £(J), let v = (v;);jer be the element in ¢(I) given by

vj = g ajrug, J €I,
keJ

provided the above series converges absolutely for every j € I. We use the same letter A
to denote the linear mapping u — v from ¢(J) to ¢(I). In particular, if J is a finite set,
then the linear mapping A is well defined. In this case, we use ker A to denote the linear
space of all elements u € ¢(J) such that Au = 0.

Now suppose that Au is well defined and lies in ¢5(1) for every u in ¢5(J). Then A is
a linear mapping from ¢5(J) to ¢2(I) and its norm is defined by

[A]l = sup [|Au]2.

llull2<1

A sequence (f;)jes in a Hilbert space H is said to be a Bessel sequence if there
exists a constant K such that

ST < KNP vfen,

JjeJ
or equivalently, the inequality

2
<KD gl

JjeJ

> cifi

JjedJ




holds for every sequence (c;)jes in f2(J). This happens if and only if the norm of the
matrix ((f;, fx))jkes is no bigger than K. Similarly, the norm of the inverse of the
matrix ((f;, fx));kes is no bigger than K if and only if the inequality

S lelP <KD eifi

JjeJ jedJ

2

holds for every sequence (c;);es in f2(J). See the book [18] for discussions on Bessel
sequences and Riesz sequences.

Let H be a Hilbert space. Suppose that (V;,)p=1,2,... and (Vn)nzl’g’m are two nested
families of closed subspaces of H:

VicVoC--- and f/lc‘N/QC"-.

Forn=1,2,...,let W,, ==V, 11 ﬂf/nL and Wn = ~n+1 ﬂVnL. Let Wy :=V; and WO = Vl.

For each n € IN, let I,, be a countable index set. We assume that Iy C I C ---. Let
Jo =11 and J,, := Ip41 \ In, n =1,2,.... For each n € IN, suppose that {¢, ; : j € I,,}
and {ggn] : j € I,} are Riesz bases of V,, and f/n, respectively. For each n € INg, suppose
that {¢, ; : j € J,} and {@/;n,j . j € J,} are Riesz bases of W,, and W,,, respectively. We
assume that ¢ ; = ¢1 ; and @o,j = él,j for j € Jo = 1;.

Lemma 2.1. If there exists a constant K independent of n such that the norms of the

matrices ({fnj, $nk))jher,s (s Pui))jketns (Yngs¥ni))jkesns (s Pnp))jke,
({(bn.js bn.k))jkel,, and their inverses are bounded by K for all n € IN, then the norms of

the matrix ((n.j,¥n,k))jkes, and its inverse are bounded by a constant depending only
on K.

Proof. First, we assert that, for each n € IN, {¢,,; : j € In} U {1 j € Jp} is a Riesz
basis of V41 with Riesz bounds depending only on K.
Given f € H, we consider the system of linear equations

Z an,j<¢n,j>(zn,k> = <f7 én,k)v ke In~ (2‘1)

JEI,

Since the matrix ((¢, ;, b)) j.ker, is invertible and the norm of its inverse is bounded by
K, the above system of linear equations has a unique solution for (a, ;) er,, and

S Jang? < K2 [ due) |- (2.2)

JjEln kel,

Let g := Zjeln Ap,j¢n,; and h = f —g. Then (2.1) implies h L V,,. If f lies in Vi41,
then h € V11 N an = Wp. This shows that V,;; is the direct sum of V,, and W,.
Similarly, V41 is the direct sum of V,, and W,,. We may write h = ) e, b, Vn,j-
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By our assumption, the norms of the matrices ({¢n j, ®n.k))jker,, ((¥n.js¥n.k))jkes, and
their inverses are bounded by K. Hence, we have

K'Y an P < gl < KD fan (2.3)
Jj€ln jeI,
and
K78 7 fbngl? < |BIP < K Y [basl (2.4)
jeJ'n je]n
Consequently,
L1 = llg + Al < 2[lg]|* +2[[R]* < 2K[Z Jan P+ Ibn,jIQ}- (2.5)
Jj€ln Jj€JIn

Moreover, since the norm of the matrix ((én.;, dn.k))jrer, is bounded by K, we have
>orer, (s dni)? < K| f||?. This together with (2.2) yields

> lanl? < KPIIF)% (2.6)

JEIn

Taking (2.3) into account, we obtain ||g||* < K*| f||*>. It follows that |g|| < K?||f| and
IR < If]l + llgll < (1+ K?)|f]|. This in connection with (2.4) gives

Y gl < KJRJP < K(1+ K2)?|If)1%. (2.7)
J€In
Thus, our assertion is verified by (2.5), (2.6), and (2.7). In the same fashion it can be
proved that {¢,; : j € In} U{¢y; : j € J,} is a Riesz basis of V,, 1 with Riesz bounds

depending only on K.
In order to complete the proof, we set

D, 1= (<¢n,j><5n,k>)j,kefn and W, := (<¢n’j’¢”’k>)j,k€Jn'

There exists a complex-valued matrix Dy 41 = (djx)jker,,, such that

bnj= Y dixbnirk, JE€In and Pn;= > djgbnirn, J € Jn.
k€l i1 kel, 1

We observe that the set {¢,4+1, : j € I,4+1} is a Riesz basis of V41 with Riesz bounds
depending only on K, and so is the set {¢,, ; : j € I,} U{¢p ; : j € J,}. Therefore, the
norms of D,, 1 and its inverse are bounded by a constant depending only on K. Similarly,
there exists a complex-valued matrix D,41 = (dj)jker,., such that

k€l 1 k€lny1



The norms of Dn+1 and its inverse are bounded by a constant depending only on K.
Taking account of the fact that V,, L W,, and V,, L W,,, we obtain

T

o, O =
|: 0 \I/n:| = Dn+1q)n+1Dn+l .

This shows that the norms of ¥,, and ¥ ! are bounded by a constant depending only
on K. ]

The following lemma extends Theorem 3.1 of [13] to the general case.

Lemma 2.2. Suppose that (¥, j)neN, jes, and (Un j)nen,.jes, are Bessel sequences in
a Hilbert space H with the property that 1., ; L @nk whenever m # n. If the norm of
the inverse of the matrix ({¢y, ;, @En7k>)j7k€‘]n is bounded by a constant independent of n,
then {4, j :n € No,j € J,} is a Riesz sequence in H.

Proof. By our assumption, there exists a positive constant C such that the inequalities

STOS T HAwa < P and YN [(fdag) |t < LIS

n=0j5€J, n=0j5€J,

are valid for all f € H. Let f =3, ZjeJn by, j¥n,j. Since ¥y, ; L QZJnk for m # n, we
have

<f7 &n,k) = Z bn,j<wn,j71;n,k>-

J€In

But the norm of the inverse of the matrix (<¢n,j,¢n,k>)j,kejn is bounded by a constant
independent of n. Hence, there exists a positive constant Cs such that

ST gl < Co Y ()| Ve N

j€Jn keJn

It follows that

STN b0 [ )| < CLOIFI12.

n=0j€.J, n=0keEJ,

This shows that {1, ; : n € INg,j € J,,} is a Riesz sequence in H. []



§3. Splines on the Interval

Suppose that r and s are positive integers and r > s. Recall that ng is the least
integer such that 2™ > r + s, and I, = {0,1,...,2" —r}. For n > ng and j € Z, let
¢n,; and On i be the functions defined in (1.2). Under the condition that r + s is an even
integer, we will show that the norms of the matrices ((¢n,;, ®n.k))j kel ((Dn.j, &n k))jkel
(<¢n L ¢n k))j.ker, and their inverses are bounded by a constant independent of n.

Let us recall the concept of bracket products from [12] and [1]. The bracket product
of two compactly supported functions f and g in Ly(IR) is given by

[£,90(8) =D (frg(- —4))ye ¢ =D f(§+ 2km)g(€ + 2km), €.

JjEZ keZ

Clearly, [f, g] is a 2m-periodic function on IR.
For a compactly supported function ¢ in Ly(IR), define

6 = min {\/W} and Ty := max {\/[},¢](&)}.

£€[0,27] £el0,27]

We have
> u()é(- = j)

JEZ

In particular, if ¢ is the B-spline M,., then I'y = 1 and

7= _|o(r +2km)] _2( > D G E 2k+1 — e

kez k:O

< Tyllulla Vu € ls(2Z).
2

Yo llulle <

This shows that {M,.(- — j) : j € Z} is a Riesz sequence in Lo(IR).
Consider the matrix

(I)n = (<¢n7j’$n:k>)j,k61n'
We have

(i) = [ Mola =)Mo~k = (r = 9)/2)da
=Myis(r+j—k—(r—:s)/2) = Myys((r+5)/2+j — k).
Consequently, ®,, is a real symmetric matrix.

Lemma 3.1. The matrix ®,, and its inverse are bounded. More precisely, for all n,
10 <1 and [ @71 < 1/

Proof. For u = (u;);er, € ¢2(I,) we have

=3 > uiMey((r+9)/2+ 5 — k)ug

j€l, kel,

Z Ui Mr4s)/2(- — J)
JjEIL,

9



It follows that

Yrrslulld < D D uMeses((r+8)/2 4+ — kg < |lull; Vu € bo(I).
j€l, kely,

Therefore, ||®,| <1 and [|[®, ]| < 1/74s- []

Similarly, we see that the norms of the matrices ({(¢y, j, ®n.k))j kel (<¢~)n,jv $n7k>)j:ke—ln’
and their inverses are bounded by a constant independent of n.

Let V,, be the linear span of {(bn ;17 € I,} and let V;, be the linear span of {bn jiJE€
I,}. Clearly, {¢,; :j € I,,} and {gbn jijel, } are Riesz bases of V,, and V,,, respectively.

For n > ng, let W,, :==V,,11 N VL and W,, :==V,41 N V . A function g in V,, 4 is a linear
combination of {¢n+1,k ke In+1} It hes in W, if and only if g is orthogonal to gbm] or
all j € I,,. This motivates us to consider the inner product (¢n41,k, ¢n ;). We have

(Pnt1, k7¢n,]>_2n+1/2/ M, (2" e — k)M, (2" — j — (r — s)/2) dz
21/2/M 2z —k)Ms(x —j— (r—s)/2)dx
:21/2/IRMT(293-|—2]'+r—s—k:)Ms(:L')d:E
=220(s — 1+ k — 2j),

where a is the sequence on Z given by
:/ M,2x+r—1—k)My(x)dx, keZ. (3.1)
R

It is easily seen that a(k) > 0 for £ = 0,1,...,m, where m := r + 2s — 2. Moreover,
a(k) =0 for k < 0or k> m, and a(k) = a(m — k) for all k € Z. Consequently,

(D1 s Onj) = alr +s — 1425 — k).

Let

Sy = (alr+s—1+2j— (3.2)

k))jeln,keln+1'

Lemma 3.2. The matrix S, is of full rank. Consequently, the dimension of its kernel
space is 2™.

The proof of this lemma is based on properties of Euler-Frobenius polynomials. For
r=1,2 ... let

D=1 Y M), zeC.

10



Then F,(z) is called the Euler-Frobenius polynomial of degree r—1. The leading coefficient
of E.(z) is 1. The zeros A1, ..., A—1 of E,.(z) are simple and negative. We label them so
that

A1 < Ap_g < - < A1 < 0.

Moreover, A\jA,—; =1for j =1,...,7—1. If r is an odd integer, all the zeros of E,(z) are
different from —1. For these results and other properties of Euler-Frobenius polynomials,
the reader is referred to the book [16] of Schoenberg.

The B-spline M satisfies the following refinement equation:

M) =Y 2~ (Z) M,(2z — k), z€R. (3.3)

keZ
By (3.1) and (3.3) we have

a(j) = /]RMS(:I:)MT(Qx +r—1—j)dx

:/IRZT_S(Z)MS(%—k)Mr(2x+r—1—j)dm

keZ
1
:5/ 221_3(Z>M5(m—k)]\/[r(x+r—l—j)dx
R pez
1 1—s S .
2522 k Mr+s(1+]_k)'
kez

Consider the polynomial P(z2):= 3.z a(j)z?. We have

P(z) = % > 2t (Z) > My (145 - k)2

keZ jez

1 _. (s . i

Ly () S -
kezZ jez

B (1 ; Z) (fi:i(f;!'

Since all of the zeros of the Euler-Frobenius polynomial are negative real numbers, P(z)
and P(—z) do not have common zeros. Hence, the polynomials

Za(Qj)zj and Za(Zj—l)zj

jez jez

do not have common zeros. Moreover, it follows from P(—1) = 0 that

> (=1Ya(j) =0. (3.4)

11



§4. Slant Matrices

The matrix S,, is a slant matrix, according to the definition given by Goodman, Jia,
and Micchelli in [5], where the spectral properties of slant matrices were investigated. In
this section, on the basis of the work of Micchelli [15] on banded matrices with banded
inverses, we give a self-contained treatment of invertibility of slant matrices. Also, see the
work of Goodman and Micchelli [6] on refinement equations related to slant matrices.

Let C[z] denote the ring of polynomials over C. If p(z) = co + c12 + - - - + ¢, 2" with
cr # 0, then we say that k is the degree of p and write k = deg p. If p is the zero polynomial,
then we shall use the convention that degp = —o0. For k£ € INy, we use II; to denote the
linear space of all polynomials of degree at most k.

Lemma 4.1. Let py, p1, and f be polynomials in C[z] such that degpy = mg > 0,
degpy = m1 > 0, and deg f < mg + my. If po and p; have no common zeros, then there
exist qo,q1 € C[z] with deg gy < my and deg gy < myg such that

f =pogo + p1q1-

Proof. The proof proceeds with induction on m := mg + my. Suppose that f € C[z] and
deg f <mg+my. If m =0, then f = 0. In this case, one may choose gy = 0 and ¢; = 0.

Let m > 0 and suppose the lemma has been established for m’ < m. Without loss of
any generality we may assume m; < mg. If m; = 0, then p; is a nonzero constant; hence
we may write f = piq; with ¢; := p; ' f € C[z] and degq; = deg f < mg. Thus, in what
follows, we assume 1 < my < mg. By using the Euclidean algorithm, we can find g and h
in C[z] such that

f=pig+h,

with degg < deg f — degp; < mo and degh < degp; = my. Furthermore, we can find n
and 6 in C[z] such that

po=pin+06

with degn < degpy — degpy = mg — my and degf < degp; = my. Since py and p; have
no common zeros, we deduce that # # 0 and the polynomials p; and 6 have no common
zeros. We have degh < m; = degp;. By the induction hypothesis, there exist 79 and 73
in C[z] with deg 9 < my and degm < mg such that

h: 97’0 —l—p17'1.

It follows that
f=p1g+0m0+pi71 =p1g+ (po — p1n)70 + P171
= po7o + p1(g + 71 — N70).

Choose qp := 19 and ¢ := g+71 —n79. Then deg ¢y < m; and degq; < mg. This completes
the induction procedure. ]

Let a be a sequence of complex numbers on Z. Suppose that a(0) # 0, a(m) # 0 for
some m € IN, and a(j) =0 for j < 0 or j > m. Let

po(z) =Y a(2j)z and pi(2):=) a(2j—-1)z/, z€C.

JEZ JEZ
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Lemma 4.2. Let n be an integer such that n > m. If the polynomials py and p; have no
common zeros, then the matrices
and (a(l+42j—k))

(a(2j - k))ogjgn,ogkgm—m 0<j<n—1,0<k<2n—m

are of full rank.

Proof. Let us first consider the matrix (a(2j —k))o<j<n,0<k<2n—m. Note that 2n—m > n.
In order to prove that this matrix is of full rank, it suffices to show that its column vectors
span Ci0Lm} We associate each column vector [co,c1,...,ca]T with the polynomial
Z?:o c¢;jz?. Thus, it suffices to show that the polynomials corresponding to the columns
of the matrix span IL,,. Let f € II,.

Suppose m = 2[ is an even integer. Then the polynomials corresponding to the
columns of the matrix are

po(2), p1(2), 2po(2), zp1(2), ..., 2" ip1(2), 2" Ipo(2). (4.1)
We have degpy = [ and degp; < [. By using the Euclidean algorithm, we may write
f = pog + h, where degg = deg f — degpy < n —1[ and degh < [. By Lemma 4.1, there
exist qo,q1 € C[z] such that h = poqo + p1¢1, where deg gy < ! and degq; < . Hence, the
polynomials in (4.1) span f.
Suppose m = 2] + 1 is an odd integer. Then the polynomials corresponding to the
columns of the matrix are

po(2), p1(2), 2po(2), 2p1(2), -y 2" po(2), 2" pa(2). (4.2)

We have degpg < [ and degp; = [ + 1. By using the Euclidean algorithm, we may write

f =pig+ h, where degg = deg f —degp; <n—(I+1)=n—-1—1and degh <I[. By

Lemma 4.1, there exist gg,q1 € C[z] such that h = poqo + p1g1, where deggy < I and
deg ¢q1 < . Hence, the polynomials in (4.2) span f.

An analogous argument shows that the matrix (a(1+42j —k))o<;j<n—1,0<k<2n—m is of

full rank. ]

Lemma 3.2 is a consequence of Lemma 4.2. Indeed, let us consider the following
augmented matrix of .5,,:

Tn = (a(’r’ —|— S — 1 + 2] - k))—t§j§2n—r+t,0§k§2"+l_r’

where t := (r + s — 2)/2. We have
Tn = (a(l142j —k))

0<j<2n+5—2,0<k<2n+1—p

Note that 2" +s—1> (r+s)+s—1>r+2s—2=mand 2(2"+s—1)—m = 2"t —r. By
Lemma 4.2, the matrix T, is of full rank, that is, its row vectors are linearly independent.
Consequently, the row vectors of S, are linearly independent.

Choosing n = m in Lemma 4.2, we see that the matrix (a(2j —k))o<; k<m is invertible.
But a(2m — k) =0 for 0 < k < m. In other words, the last row of this matrix has exactly
one nonzero entry at the position (m,m). Therefore, the matrix (a(2j — k))o<jk<m—1 is
also invertible. This result was already established in Lemma 1 of [17].
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§5. Spline Wavelets on the Interval

Various methods of construction of spline wavelets on the real line were discussed in
[3], [14], [13], and [7]. In this section, we give a general method to construct spline wavelets
on the interval [0, 1] with homogeneous boundary conditions.

Let r and s be two positive integers such that » > s and r+ s is even. Recall that ng is
the least integer satisfying 2"° > r+s. For n > ng, V,, is the linear span of {¢,, ; : j € .},
where I, = {0,...,2" —r}, and ¢, ;(z) = 2"/2M,(2"x — j), € IR. Moreover, V,, is
the linear span of {¢, ; : j € I,,}, where ¢, j(z) = 2"/2M,(2"x — j — (r — 5)/2), = € R.
For n > ng, Wy, = Vupr V.2 and W, = V.41 N V5. By Lammas 2.1 and 3.1, V4 is
the direct sum of V,, and W,,, and Vn+1 is the direct sum of V,, and W,,. Consequently,
dim(W,,) = dim(W,,) = 2". In this section we will give a method to construct a basis for
Wiy. Let g € Viy1. Then g can be represented as } oy, w(k)@ni1,k- According to the
analysis given in §3, g lies in W,, if and only if w € ker S,,, where 5,, is the matrix given
in (3.2). Thus, for our purpose, it suffices to find a suitable basis for ker S,,.

Let a € {y(Z). Then we have

> (-Dfa(2j+1-k)a(k) =0 VjeZ. (5.1)
kez
Indeed, making the change of indices kK — 25 + 1 — k in the above sum, we obtain
>_(Dfa@j+1-Kak) = Y (~D¥ ' Fak)a(2j+1-k) = = > (=1 a(k)a(2j+1-k),
kez kez kez

from which (5.1) follows.
Now let a be the sequence given in (3.1). With m = r + 2s — 2 we have a(k) > 0 for
0<k<manda(k)=0for k <0 or k>m. Let b be the sequence on Z given by

b(k) := (—1)*a(k), ke Z.
It follows from (3.4) that ), 5 b(k) = 0. Moreover, by (5.1) we have
> a2j+1-kb(k)=0 VjeZ (5.2)
kez

It was demonstrated in §3 that Y- a(2k)z" and >";7, a(2k + 1)z* are two polynomials
having no common zeros. Consequently, Y ;- b(2k)z" and > p- b2k + 1)zF are two
polynomials having no common zeros.

For a real number x, we use |z]| to denote the integer such that |z| < x < |z] + 1.
For n > ng and j € Z, let u,, ; and v, ; be the elements in ¢(1,1) given by

Un,j(k):=a(r+s—1+2j—k) and v, (k) =br+s—2j+k), ke&lyt1. (5.3)

We claim that the vectors vy, ; (j = |(3 —s)/2],...,2" 4+ |s/2]) are linearly independent.
In order to justify our claim, it suffices to show that the matrix

B, = (b(?“ +s—25+ k)) [(8—s)/2]<j<2n+]|s/2],0<k<2n+1—p
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is of full rank. In light of the definition of the sequence b, this is equivalent to saying that
the matrix

An = (alr 5 =25+ K)) | (5 o)< oy [o2) oghzans
is of full rank. Note that a(r +s—2j+k)=a(m—(r+s—2j+k)) =a(s —2+2j — k).
If both r and s are even integers, then

An = (a(s=2421=k)) o) jacjcamyaposhcanti - = (@21 K)o jcan o pchconin

If both r and s are odd integers, then

An — (a(l + 2] - k))OSj§2n+S_2,OSkS2n+1_T‘

By Lemma 4.2, the matrix A, is of full rank in both cases. This justifies our claim.

We observe that u, ; (j € I,) are the row vectors of the matrix S,,. Note that
b(r+s—2j+k)=0fork¢ I,y and (r+s)/2<j7<2"—(r+s)/2+ 1. Hence, by (5.2)
we have

(Unjrvng) =Y a(r+s—142' —k)b(r+s—2j+k) =0 Vj €I,
keZ

This shows v, ; € ker S, for (r+s)/2<j <2"—(r+s)/2+ 1.
<J

Let J:={j € Z: [(3~5)/2] s(?+s)/2—1} For j € J and k > 21 — 1 we
have

r4+s—2j+k>k+2>2"" 4 3>20r4+5)—r+3=m+1,

and hence b(r + s — 2j + k) = 0. Moreover, for j/ > [(s — 2)/2| and k£ < 0 we have
a(r+s—1+ 25" — k) = 0. Consequently, for j' > (s —2)/2| and j € J,

(Un o, vng) =D alr+s—1+42j —k)b(r+s—2j + k) =0,
keZ

where (5.2) has been used to derive the last equality. This shows

span {v,; : j € J} Nker S, = span{v,; :j € J} N (span{u,;:j=0,...,[(s— 2)/2J})L
For j € J, let v; be the sequence on Z given by v;(k) := b(r +s —2j+ k) for k> 0

and vj(k) = 0 for k < 0. Then v, ; = vj|r,,,. For j =0,...,[(s —2)/2], let u; be the

sequence on Z given by u;(k) :=a(r +s—1+2j — k) for k > 0 and u;(k) =0 for k£ < 0.

Then uy, j = uj|z,,,. Consider the linear space

span{v; : j € J} N (spanfu; : j=0,..., [(s — 2)/2J})L
Choose a basis {w1,...,w;} for this space. Then we have
t>(r+s)/2-18-=9)/2]-[(s=2)/2] -1=(r+s—2)/2.

15



For n > ng and j = 1,...,t, let w,; := wj|r,,,. In light of the above discussion,
{wp1,...,wp+} is a basis of the linear space
span{vy ; : j € J} NkerS,.
For j=2" —t+1,...,2" let
Wy (k) == wany1_ (2" —r — k), k€l
By symmetry, we see that {wy on_¢41,...,ws 2n} is a basis of the linear space
span{vp ony1—j 1 J € J} NkerS,.
Consequently,

{wn,b SERE) wn,t} U {Un,(r+s)/27 SERE) 'Un,Q"f(rJrs)/QJrl} U {wn,2"—t+1a s 7wn,2"}
is a linearly independent set of vectors in the kernel space ker S,,. Since dim(ker S,) = 2",
we have 2t + 2" — (r + s) + 2 < 2", It follows that ¢t < (r + s — 2)/2. On the other hand,
t > (r+s—2)/2. Therefore, t = (r +s—2)/2. Let wy, ; :== v, ; for j=t+1,...,2" —¢.
Thus, {wn 1,...,Wn2n} is a basis of ker S,,. For j € J, ={1,...,2"}, let

77Z)n,j = Z wn,j(k)¢n—|—1,k-

kel

We conclude that {1, ; : j € J,} is a basis of W,.
The above discussion can be summarized as follows. Let {wq,...,w;} be a basis of
the linear space

span{v; : j = [(3—8)/2),...,(r+s)/2 =1} N (span{u; : 5 =0,...,[(s — 2)/2]}) .
Then t = (r+s)/2—1. For j =1,...,t, let

Yi(z) == Z w;i(k)2Y2M,(2z — k), z€IR.
keZ
Let
Y(x) ==Y b(k)2"?M, (22— k), z€R.
keZ
For n > ng and =z € R, let

2"/ 24 (2") for j=1,...,t,
Yni(x) = 272 2"e —j+t+1) forj=t+1,...,2" —t,
2 2pn 1 (27(1 —x)) for j=2" —t+1,...,2"

Theorem 5.1. The set {¢n,,j : J € Ing} UUsL,, {¥n,j : j € Ju} forms a Riesz basis of
L(0,1).

First, we claim that (¢n, j)jer,, and (¥n j)n>ne, jes, are Bessel sequences in Lo(0,1).
Indeed, [9, Lemma 3.2] tells us that (¢n, j)jer,, is a Bessel sequence in L3(0,1). Since
> rez (k) = 0, we have fol Yy j(x)dr =0 for n >ngand j=t+1,...,2" —t. Hence, by
19, Theorem 1.1], (¢, j)n>ng,j=t+1,...2n—t is a Bessel sequence in L2(0,1). The following
lemma shows that (Y ;)n>ng,je{1,...,¢} 15 a Bessel sequences in L3(0,1). By symmetry,
(Yn,j)n>no,jefan—t+1,...,2n} is also a Bessel sequence in Ly(0,1). This justifies our claim.
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Lemma 5.2. Let ¢ be a compactly supported function on R and K := ||¢||s < oo. For
n €N, let ¢, (x) := 2"/2¢(2"z), x € R. Then (¢, )ne is a Bessel sequence in Ly(IR).

Proof. Suppose that ¢ is supported on an interval [a,b] and L := b— a. For n,n’ € IN we
have

(s o) = 20747072 /}R (2" B2 x) dx = 27/ /R (2 2)p(w) der.

It follows that

‘<¢n7¢n’> < 2(”_”/)/2K2L.

Similarly,

‘<¢n7¢n’> < 2(n/_n)/2K2L.

Hence, there exists a positive constant C' such that

> |(¢n )| <C VneN and > |($n,én)

n’€N nelN

<C Vn €.

By [9, Lemma 4.1], the norm of the matrix ((¢y,, ¢n’))n,n’ e is no bigger than C. Therefore,
(¢n)new is a Bessel sequence in Lo (IR). ]

In §6 we will prove that there exist two positive constants C; and C5 independent of
n such that, for all n > ng, C is a lower Riesz bound for the basis {1, ; : j € J,} of the
space W, and C5 is an upper Riesz bound for this basis.

By using an analogous argument, for n > ng, we can find a Riesz basis {zﬁnj 17 € Jn}
for V~Vn~ with Riesz bounds being independent of n. Moreover, the bases can be so chosen
that (¢ng,j)jer,, and (¥, j)n>ng je, are Bessel sequences in Ly(0,1). Thus, in light of
Lemmas 2.1 and 2.2, {¢n,,; : J € I} UUSZ,, {¥n,; 1 J € Jn} is a Riesz sequence in
L5(0,1). The proof of Theorem 5.1 will be complete after we establish in §7 the result that
UpZ ., Vi is dense in Ly (0, 1).

Before concluding this section we investigate two important cases: s = 1 and s = 2.
For the case s = 1, we have ¢t = (r — 1)/2. In this case, we may choose w; as v; for
j=1,...,t. More precisely, w;(k) = 0 for k£ < 0 and, for k > 0,

wi(k) =bk +r+1-2j) = (=D a(k +r+1—-2j) = (~1)*a(2j — 1 — k).
For the case s = 2, we have m = r 4+ 2. In this case, for £ > 0,
vi(k) =b(r+2—2j+k) = (=1)*a(r +2—2j+k) = (-1)*a(2j — k)
and ug(k) = a(r+1—k) =a(k+1). A basis {wy,...,w;} of the linear space
span{v; : j =0,...,7/2} N (span {up})*"

can be constructed as follows:

b(2j+1) a2 +1)

ij:Uj—Wvo—Uj a(l) Vo, jzl,...,t,
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where t = r/2. Indeed, since a(k + 1) = 0 for k < —1, we have

oo

(uo,v) = alk+1)b(2j —k) = > a(k+ 1)b(2j — k) — a(0)b(2] + 1).
k=0 k=—o0

By (5.2), > pe o a(k +1)b(2j — k) = 0. It follows that
(uo,v;) = —a(0)b(2j + 1).
Consequently, w1, ..., w; are linearly independent vectors orthogonal to uy.

§6. Riesz Sequences

In this section we will prove that {1, ; : j € J,,} is a Riesz basis of W,, for n > ny with
Riesz bounds being independent of n. For this purpose, it suffices to show that (wy, ;)je,
is a Riesz sequence in ¢5([,,+1) with Riesz bounds being independent of n.

Let vy, j (j € Z) be the elements in ¢5(I,,+1) given in (5.3). Recall that w,, ; = v, ; for
j=t+1,...,2" —t, where t = (r+s—2)/2. In what follows, d;; stands for the Kronecker
sign: d;, = 1 for j = k and ¢, = 0 for j # k.

Lemma 6.1. There exists a sequence d on Z with the following properties: d(j) = 0 for
j <0orj>m—1, and the sequences yy, ; (j € Z) given by

Yn;i(k) :=d(r+s—2j+k), k€I,

satisfy (Up,j/,Yn,;) = 0j; forall j’ € Z and j =t+1,...,2" —t.

Proof. We divide our attention into two cases: both r and s are odd, and both r and s
are even.

First, suppose that both r and s are odd integers. In this case, m = r 4+ 2s — 2 is also
an odd integer. Let [ := (m—1)/2. We claim that the matrix (b(m —1—-2j4+k))o<jk<m—1
is invertible. Indeed, by making change of indices j - m —1—j and k - m —1— K, we
see that m — 1 — 2j + k = 25’ — k’. By Lemma 4.2, the matrix (a(2j' — k))o<j’ k' <m—1
is invertible. It follows that the matrix (b(25' — k’))o<j’ k<m—1 is invertible. Hence, the
matrix (b(m — 1 —2j + k))o<j k<m—1 is invertible. Thus, there exists a sequence d on Z
such that d(k) =0 for k<0 or k >m —1 and, for j =0,...,m —1,

m—1

> b(m—1-2j+k)d(k) = 5;. (6.1)
k=0

For j <0 and k >0, we have m — 1 —2j+ k > m + 1, and hence b(m — 1 — 25 + k) = 0.
Forj>m—-—landk<m—-1, wehavem—-1-2j+k<m—-1-2m+m—1< -2, and
hence b(m — 1 — 25 + k) = 0. This shows that (6.1) is valid for all j € Z.

For j, 7' € Z we have

(Un,j"s Ynj) = Z b(r+s—25 +k)d(r+s—2j+k).
k€lni1
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But, for j=t+1,...,2" —t,d(k+r+s—2j) =0 for k <0 or k> 2"t — . Therefore,

(Un,jrstng) = Y _b(r+s—25 +k)d(r+s—2j +k)

keZ

=) " b(2j — 2 + k)d(k)
keZ

=Y b(m—1-2(' +1—j)+k)d(k)
keZ

= 05— = 0jj-

Second, suppose that both r and s are even integers. In this case, m = r + 2s — 2 is
also an even integer. Let [ := m/2. By Lemma 4.2, the matrix (b(m — 2j + k))o<j k<m—1
is invertible. There exists a sequence d on Z such that d(k) =0 for k <O or k >m —1
and, for j =0,...,m —1,

i b(m — 2j + k)d(k) = 5. (6.2)
k=0

It is easily seen that (6.2) is valid for all j € Z. In the same way as above, we can show
that (v j/,ynj) =0, forall jy € Zand j=t+1,...,2" —¢. ]

Recall that
wy,; €spanf{v, ke J} for j=1,...,¢,
where J ={k e Z:|(3—5s)/2| <k <(r+s)/2—1}. Moreover,
Wy, ; € spanf{vponii_p ke J} for j=2"—t+1,...,2".
Therefore, by Lemma 6.1 we obtain
(Wi g7y Yn,j) =055 for j'€J, and j=t+1,...,2" —t. (6.3)

Lemma 6.2. For n > ng, (wy ;);es, is a Riesz sequence in {3(Iy,41) with Riesz bounds
being independent of n.

Proof. By using the method in the proof of Lemma 3.2 of [9], we assert that there exists
a constant B independent of n such that the inequality
1/2
) (6.4

Z cn,jwn,j < B<Z |CnJ

jejn jEJ

holds true for every sequence (¢, ;) e, in €a(Jyp).

In order to establish the lower bound, we set g := ) jed, Cn,jWn,j- Then it follows
from (6.3) that ¢, ; = (g, yn,;) for j =t+1,...,2" —t. By using the method in the proof
of Lemma 3.1 of [9], we see that there exists a constant Cy independent of n such that

<2it ‘C"”F)l ’ (2it| (9, Yn.s) ) - < Cil|g]f2 (6.5)

j=t+1 j=t+1

19



Let

2™ _¢ t 2"
Goi= D Cojwp; and gii=) Cpjwngt D Cojng.
j=t+1 J=1 J=2"—t+1

Then g = gop+g1. The total number of terms in the last two sums is equal to 2t = r+s—2,
which is independent of n. Since {wy ; : j € {1,...,t} U{2" —¢t+1,...,2"}} is linearly
independent, there exists a constant C5 independent of n such that

¢ 2n 1/2
(Z lensl?+ > ’Cn,j|2> < Collgillz < Ca(llgll2 +llgoll2)- (6.6)

j=1 j=2n—t+1

But it follows from (6.4) that

2" —t 1/2
||go||233( S Jens ) . (6.7)

j=t+1

Combining the estimates (6.5), (6.6), and (6.7) together, we conclude that there exists a
constant C' independent of n such that

1/2
(Z |cn,j|2> < Cllglla.

JE€In

This together with (6.4) shows that (wy ;);jes, is a Riesz sequence with Riesz bounds being
independent of n. ]

§7. Wavelet Bases in Sobolev Spaces

In this section we first establish some approximation properties of a scaled family
of B-splines on the interval [0,1]. This study is based on the work of de Boor and Fix
[2] on quasiinterpolants, and the work of Jia [8] on quasi-projection operators. With the
help of the results on spline approximation, we complete the proof of the main result that
{270l 50 J € Tng YUURZ,, {27 ™)y, ;= j € J,,} forms a Riesz basis of the space Hf'(0,1)
for 0 <p<r—1/2.

For a function f € L,(IR) (1 < p < c0), the modulus of continuity of f is defined by

w(f,t)p == sup [|[Viafllp, 0<t< o0,
|h|<t

where V), is the difference operator given by V,, f := f — f(- — h). For m € IN, the m-th
order modulus of smoothness of f is defined by

Wi (fit)p == ‘Slllp IV fllp, 0<t< 0.
h|<t
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We observe that the B-spline M, is supported on [0,r]. Consequently, M,(- — k)
vanishes on (0,1) for k£ < —r or k > 1. But the set {M,(- —k)|@1): 1 —r < k <0} is
linearly independent (see [2]). Hence, we can find a function v € C(IR) supported on [0, 1]
such that (u, M,.(- — k)) = dox for all k € Z. Similarly, we can find a function v € C(IR)
supported on [r — 1, 7] such that (v, M,.(- — k)) = ooy, for all k € Z.

Forne€ IN and j € Z, let ¢, ; and qg,w- be the functions defined in (1.2). For n € IN
and k € Z, let

50 () = | 220 e — k) for k< 2" -,
Pn k = 2”/21)(2nI —k) fork>2"—r.

It is easily seen that (¢, j, Pn.k) = jk-
Let us consider the quasi-projection operator @, given by

Qnf =D (fs@n.j)bn)

jez

where f is a locally integrable function on IR. We have Q,, (¢, ;) = ¢n ;. Moreover, the
splines ¢y, ; (j € Z) reproduce all polynomials of degree at most r — 1. Hence, Q,p = p
for all p € TI,,_;. By using the method in the proof of [8, Theorem 3.2] we see that there
exists a constant C7 independent of n such that

If = Qnfll2 < Crwn(f,277)2 Vf € La(IR). (7.1)

We claim that Up2,, V;, is dense in Lo (0, 1), where V,, = span{¢, ; : j € I,}. Indeed,
for k < 0 and z > 0, we have 2"z — k > 1; hence @, (z) = 2"/2u(2"x — k) = 0.
For k > 2" —r and = < 1, we have 2"z — k < 2" — (2" —r 4+ 1) = r — 1; hence
Gnx(r) = 27/20(2"z — k) = 0. This shows that ¢, x(z) = 0 for = € [0, 1], provided k < 0
or k > 2™ —r. Thus, if f is a function in Ly(IR) supported on [0, 1], then (f, $n k) =0
unless 0 < k < 2" — r. Therefore, @, f € V,,. It follows from (7.1) that

i [[Quf — fll2 = 0.

This justifies our claim.
For f € Ly(0,1) and n > ng, let P, f be the unique element in V,, such that

(Puf,0nge) = (fs dnk) Yk € L.
It is easily seen that P, is a projector from L5(0,1) onto V,,. Since the norms of the

matrices ((dn,;, b k))jketns ((Dnjs O i))jkerns ((Pnjs nk))jker, and their inverses are
bounded by a constant independent of n, we have K := sup,,>,,, || Pnl < oo. Moreover,

If = Pafllz = [I(f = @Qnf) = Pu(f = Quf)ll2 < AL+ [[PalDIIf — Qnfll2-

This together with (7.1) gives
1f = Pafllz < 1+ K)Ciw(f,27")2 Vn = no. (7.2)
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Forn > ng, Ppy1f— P, f liesin V44 ﬁf/nL = W,. Hence, there exist complex numbers
¢n,j (j € Jp) such that

Pn—i—lf - Pnf = Z cnajwnmj'

J€In

Moreover, there exist complex numbers by, ; (j € In,) such that

P, f = Z bn,jPro.j-

G€In,
By (7.2) we have
F=Paf + > (Pasrf =Paf) = D bugjbnoi+ D > Cnjtbny,  (7.3)
n=ngo J€In, n=ng j€J,

with the convergence being in the Ly-norm.
If 4 > 0 and m is an integer greater than pu, the Besov space B; 5(IR) is the collection
of those functions f € Ly(IR) for which the following seminorm is finite:

1/2
o = (S m(r2)

keZ

It is well known that H*(IR) = By, (IR). Moreover, the seminorms | f|zu(w) and | f|ps_(r)

are equivalent.
Recall that H}'(0,1) is the closure of C2°(0,1) in H*(IR). We have V,, C H}(0,1) for
O<pu<r—1/2.

Theorem 7.1. The set
{2—no,u,¢n07j j S Ino} U U;:O:no{z_nu¢n’j ] c Jn} (74)

is a Riesz basis of the Sobolev space H)'(0,1) for 0 < p < r—1/2.

Proof. Let f € H/'(0,1). Suppose f has a representation as in (7.3). By Theorem 1.2 of
[9], there exists a constant B such that

00 1/2
|flan < B( Z ‘Qn‘)”bno,jf + Z Z lzwcn,jf) : (7.5)
J€In, n=ng j€J,

provided the right-hand side of the above inequality is finite.
By (7.2) we have

[Pog1f — Puflle | Pagaf = flla + If = Pufll2 <2(1 + K)Crw,(f,277)2.
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Hence, there exists a constant C5 such that

00 1/2 00 1/2
< Z (27| Pygr | — Pnf||2}2> <2(1+ K)C, ( Z [2"w,.(f, 2")2}2) < Co|fl|men.

Since {¢n ; : j € Jn} is a Riesz basis of W), with Riesz bounds being independent of n,
there exists a constant C3 independent of n such that

1/2
(Z |Cn,j|2> < C3]|Posrf — Pufll2-

JE€Jn
It follows that

00 1/2 o0 1/2
( Z Z ‘Q"NCHJ‘Q) < (s ( Z [Zn”HPn_Hf — Pan2:| 2) < CgCg|f’Hu. (76)
n=ng j€J, n=ngo

Furthermore, there exists a constant C4 such that

1/2
(Zﬂmmﬂ < Cul[ Py fll2 < CuE]|f - (7.7)

€I,

Combining (7.5), (7.6) and (7.7) together, we conclude that the set in (7.4) is a Riesz
sequence in H{(0,1). The following theorem shows that U2, V;, is sense in H{(0,1).
This completes the proof of the theorem. ]

Theorem 7.2. For f € HY(0,1),0<pu<r—1/2,

Tinn [|Pf = i = 0. (75)
Consequently, U2, 'V, is dense in Hf(0,1).

Proof. Let f € Hy(0,1), 0 < u < r—1/2. Suppose that N; and N; are two integers with
N3 > N; > ng. We have
Na—1 Np—1

Pyn,f — PN, f = Z (Pt f — Puf) = Z Z Cn,j¥n.j-

n=N n=Nj j€J,
By (7.5) we have

No—1 ) 1/2
’Psz_P]\hf‘H“ SB( Z lenucn’j‘ ) .

n=N; j€J,
But (7.6) tells us that the series Y 7 37, 2" ¢, ;|? converges. Hence,

Nl,kfrgn—wo |PN2f - PN1f|H“ =0.

In other words, (P, f)n>n, is a Cauchy sequence in Hf'(0,1). Consequently, there exists a
function g € H}(0,1) such that

lim an - QHH# =0,
n—oo

where f,, := P, f € V,. On the other hand, lim,, . ||fn — f|]2 = 0. Therefore, g = f and
limy,— o0 || fr. — fllg» = 0. This shows that U5, V,, is dense in H}'(0,1). ]

n=ng
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