Skip to main content
Log in

On the choice of the SUPG parameter at outflow boundary layers

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the Streamline upwind/Petrov–Galerkin (SUPG) finite element method for two–dimensional steady scalar convection–diffusion equations and propose a new definition of the SUPG stabilization parameter along outflow Dirichlet boundaries. Numerical results demonstrate a significant improvement of the accuracy and show that, in some cases, even nodally exact solutions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazilevs, Y., Hughes, T.J.R.: Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. & Fluids 36, 12–26 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Christie, I., Griffiths, D.F., Mitchell, A.R., Zienkiewicz, O.C.: Finite element methods for second order differential equations with significant first derivatives. Internat. J. Numer. Methods Engrg. 10, 1389–1396 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 17–351. Finite Element Methods (pt. 1). North–Holland, Amsterdam (1991)

    Google Scholar 

  5. Grasman, J.: On the Birth of Boundary Layers. Mathematical Centre Tracts, vol. 36. Mathematical Centre, Amsterdam (1971)

    Google Scholar 

  6. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: part I – a review. Comput. Methods Appl. Mech. Engrg. 196, 2197–2215 (2007)

    Article  MathSciNet  Google Scholar 

  7. Knobloch, P.: Improvements of the Mizukami–Hughes method for convection–diffusion equations. Comput. Methods Appl. Mech. Engrg. 196, 579–594 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Madden, N., Stynes, M.: Linear enhancements of the streamline diffusion method for convection–diffusion problems. Comput. Math. Appl. 32, 29–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Madden, N., Stynes, M.: Efficient generation of oriented meshes for solving convection–diffusion problems. Internat. J. Numer. Methods Engrg. 40, 565–576 (1997)

    Article  Google Scholar 

  10. Roos, H.–G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion and Flow Problems, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Knobloch.

Additional information

Communicated by Martin Stynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knobloch, P. On the choice of the SUPG parameter at outflow boundary layers. Adv Comput Math 31, 369 (2009). https://doi.org/10.1007/s10444-008-9075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-008-9075-6

Keywords

Mathematics Subject Classifications (2000)

Navigation