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Abstract We present a meshless technique which can be seen as an alternative to
the method of fundamental solutions (MFS). It calculates homogeneous solutions
of the Laplacian (i.e. harmonic functions) for given boundary data by a direct
collocation technique on the boundary using kernels which are harmonic in two
variables. In contrast to the MFS, there is no artificial boundary needed, and there is
a fairly general and complete error analysis using standard techniques from meshless
methods for the recovery of functions. We present two explicit examples of harmonic
kernels, a mathematical analysis providing error bounds and convergence rates, and
some illustrating numerical examples.

Keywords Laplace equation · Meshless collocation · Harmonic kernels

1 Introduction

The method of fundamental solutions (MFS) solves a homogeneous boundary value
problem, for example a Dirichlet problem

−�u = 0 in �

u = f in ∂�
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for the Laplace equation via approximation of the boundary data by traces of
fundamental solutions centered at source points outside the domain in question. The
method has been used extensively in recent years, and there are excellent surveys
[1–3]. However, the method has two drawbacks:

1. It lacks a general error analysis, since the existing mathematical results are
confined to concentric circles as true and “fictitious” boundaries,

2. It needs source points outside the domain which are not easy to place properly.

This contribution proceeds differently by recurring to standard kernel-based recon-
struction of functions from scattered data.

We consider a domain � given in boundary-parameterized polar form

∂� := {
x ∈ IR2 : x = R(t), t ∈ [0, 2π ]}

R : [0, 2π ] → IR, 2π -periodic curve,

R(t) = ρ(t)(cos(t), sin(t)), t ∈ [0, 2π ]

and we assume that the domain is bounded by

0 < ρ(t) ≤ R < ∞ for all t ∈ [0, 2π ].

Furthermore, symmetric and positive definite harmonic kernels are constructed on
IR2 × IR2. If K is such a kernel, there are harmonic trial functions given by

s(x) :=
N∑

j=1

a jK(x, x j), x ∈ � (1)

for any set X := {x1, . . . , xN} of N pairwise distinct points

x j = R
(
t j
) = ρ

(
t j
)(

cos
(
t j
)
, sin

(
t j
))

, t j ∈ [0, 2π ], 1 ≤ j ≤ N,

on the boundary ∂� of � and arbitrary vectors a = (a1, . . . , aN)T ∈ IRN .
If the kernel is positive definite (see e.g. [8] for details on kernels and their

applications), one can collocate a given function f : ∂� → IR on the boundary
points by solving the system

N∑

j=1

a jK
(
xk, x j

) = f (xk), 1 ≤ k ≤ N.

Then one evaluates the boundary error and uses the maximum principle to have an
error bound

‖ f − s‖∞,� ≤ ‖ f − s‖∞,∂�.
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Thus the main problem is to guarantee a small boundary error via the collocation.
The error can be rewritten as a periodic function via

f (R(t)) − s(R(t)) = f (R(t)) −
N∑

j=1

a jK
(
R(t),R

(
t j
))

f̃ (t) − s̃(t) = f̃ (t) −
N∑

j=1

a jK̃
(
t, t j

)

where we used the tilde to denote the periodicized functions.
From this point on, one can forget the original setting and consider the problem

of recovering the periodic function f̃ from data using the periodic kernel K̃. For this,
a well-established theory is available (see e.g. [10]), but we shall have to establish the
necessary conditions for its applicability. It results in error bounds which are tightly
connected to the smoothness of f̃ and K̃.

2 General harmonic kernels

The most convenient source for harmonic functions in 2D are the real or imaginary
parts of complex analytic functions. We shall exploit this by writing a complex
variable

z = x + iy = r(cos(ϕ) + i sin(ϕ))

in polar coordinates (r, ϕ). The easiest case arises from

zn = rn(cos(nϕ) + i sin(nϕ))

and yields harmonic polynomials

rn cos(nϕ) and rn sin(nϕ), n ≥ 0.

For use in exterior domains one can also allow negative n above. In general, we
advise the reader to prefer harmonic polynomials in polar coordinates over those
in Cartesian coordinates, though there is some bias towards the special role of the
origin.

The next step considers real parts of power series

P�(z) :=
∞∑

n=0

λnzn

which are convergent in a disc of radius ρ > 0 around zero and which have real
coefficients. They lead to harmonic functions

F�(r, ϕ) :=
∞∑

n=0

λnrn cos(nϕ)

for all points (r, ϕ) with r < ρ.
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To get a kernel which is harmonic in two 2D variables (r, ϕ) and (s, ψ) in polar
coordinates, we can superimpose harmonic polynomials

rn cos(nϕ), rn sin(nϕ), sm cos(mψ), sm sin(mψ)

in an arbitrary way. Motivated by Mercer kernels from machine learning and by the
above observation, we consider a special superposition

K�,c((r, ϕ); (s, ψ))) :=
∞∑

n=0

λnc2nrnsn cos(n(ϕ − ψ))

= F�

(
c2rs, ϕ − ψ

)

to get a symmetric harmonic kernel under the summability condition

∞∑

n=0

λnc2nrnsn < ∞

with otherwise arbitrary positive weights λn and a scaling factor c > 0. Taking our
domain into account, we shall strengthen the above condition to

∞∑

n=0

λnc2n R2n < ∞

in order to be able to evaluate safely on the boundary.

Theorem 1 Harmonic kernels of the above form are positive definite, and this also
holds for their periodicized form.

Proof We look at the usual quadratic form for points (r j, ϕ j), 1 ≤ j ≤ N and get the
nonnegative result

N∑

j,k=1

a jak

∞∑

n=0

λnc2nrn
j r

n
k cos(n(ϕ j − ϕk))

=
∞∑

n=0

λnc2n
N∑

j,k=1

a jakrn
j r

n
k cos(n(ϕ j − ϕk))

=
∞∑

n=0

λnc2n

⎛

⎜
⎝

⎛

⎝
N∑

j=1

a jrn
j cos(nϕ j)

⎞

⎠

2

+
⎛

⎝
N∑

j=1

a jrn
j sin(nϕ j)

⎞

⎠

2
⎞

⎟
⎠ .

If the form vanishes, we necessarily have

N∑

j=1

a jrn
j exp(inϕ j) = 0

for all n ≥ 0, which means that a is in the kernel of the infinite Vandermonde
matrix with entries zn

j = rn
j exp(inϕ j), but this matrix must have rank N because

polynomials of unlimited degree always separate points. This implies a = 0 and
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positive definiteness. Clearly, the result extends to parameterized subsets of the
domain. �	

3 Special harmonic kernels

This section will borrow from the univariate periodic kernels provided by Anette
Meyenburg [4] in the early years of kernel techniques.

We start our construction of harmonic kernels with a very fast convergent case,
setting λn := 1

n! and using the entire exponential function P(z) = exp(z). The result
is the analytic 2π -periodic kernel


(exp(z)) = 

∞∑

n=0

zn

n!

=
∞∑

n=0

rn cos(nϕ)

n!

(exp(z)) = 
(exp(r cos(ϕ) + ir sin(ϕ)))

= exp(r cos(ϕ)) · 
(exp(ir sin(ϕ)))

= exp(r cos(ϕ)) · cos(r sin(ϕ))

which yields the globally harmonic “exponential” kernel

K�,c((r, ϕ); (s, ψ))) :=
∞∑

n=0

1

n!c2nrnsn cos(n(ϕ − ψ))

= exp
(
c2rs cos(ϕ − ψ)

) · cos
(
c2rs sin(ϕ − ψ)

)
.

Making c large results in a sharp spike, but does not affect global summability.
If we want to generate a kernel from a meromorphic function, we can work with

the geometric series to get the Poisson kernel



(

1

1 − z

)
= 


∞∑

n=0

zn

=
∞∑

n=0

rn cos(nϕ)



(

1

1 − z

)
= 


(
1

1 − r cos(ϕ) − ir sin(ϕ)

)

= 

(

1 − r cos(ϕ) + ir sin(ϕ)

(1 − r cos(ϕ))2 + r2 sin2(ϕ)

)

= 1 − r cos(ϕ)

1 − 2r cos(ϕ) + r2
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which requires r < 1. This yields the harmonic kernel

K�,c((r, ϕ); (s, ψ))) :=
∞∑

n=0

c2nrnsn cos(n(ϕ − ψ))

= 1 − c2rs cos(ϕ − ψ)

1 − 2c2rs cos(ϕ − ψ) + c4r2s2
.

Here, making c small enough helps to satisfy the summability condition

c2rs < 1,

and a large value within this range will again result in a sharp spike. But since the
second form of the kernel is the analytic continuation of the series form, we can drop
the summability condition to find that the Poisson kernel can be used everywhere
except for

c2rs = 1 and ϕ − ψ ∈ 2πZ,

where it has a singularity.

4 Singularities of the Poisson kernel

When using the Poisson kernel, the implicit placement of the singularities becomes
important. A single basis function written in a 2D variable in polar coordinates
(s, ψ) as

g j(s, ψ) := 1 − c2ρ js cos(t j − ψ)

1 − 2c2ρ js cos
(
t j − ψ

) + c4ρ2
j s

2

for a fixed point R j = (ρ(t j), t j) will have a singularity at the “reflected” point
(1/(c2ρ j), t j). Note that reflected points arise naturally in standard constructions of
Green’s functions for the Laplace operator [9]. The reflected points should lie outside
the domain in question, and since we here consider the origin to be inside a star-
shaped domain with boundary {(ρ(t), t), t ∈ [0, 2π ]} in polar coordinates, we need

1

c2ρ j
> ρ j or c <

1

ρ j

to see that c < 1/ρ j will place the singularity outside the domain, while c = 1/ρ j lets
the singularity coincide with our data point. To play safe, one must set

c <
1

maxt ρ(t)
(2)

to make sure that the resulting superposition of such functions on arbitrary boundary
points does not produce singularities inside the domain.

If c is fixed this way, each boundary point (ρ(t), t) has a reflected point
(1/(c2ρ(t)), t), and the reflected points come close to the boundary only where r
takes its extremal values. This means that incoming corners of the domain cannot
have close reflection points, and this will make it hard to work on such domains, as
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Fig. 1 Reflected boundary

we see later. Figure 1 shows the reflected points for both a rectangle and a cardioid.
The constant c was chosen to be

c = 0.95

maxt ρ(t)

in both cases. One can see how the singularities in the rectangle case come close to
the corners, while they stay away from the cardioid’s incoming corner.

For problems on exterior domains, one should of course choose

c >
1

mint ρ(t)

to get a similar argument.

5 Error bounds

For error analysis, we first invoke a local univariate sampling inequality of the form

‖u‖L∞[a,b ] ≤ chM−1/2|u|WM
2 [a,b ]

for functions u in Sobolev space WM
2 [a, b] with M > 1/2 which vanish on a set X of

points in [a, b] with fill distance

h := sup
x∈[a,b ]

min
x j∈X

‖x − x j‖ ≤ h0,

and the constant c does only depend on the domain and the numbers M, h0. See
[5, 11] for details of such inequalities.

This inequality applies to errors of interpolation processes, provided that the
Sobolev seminorm |s|WM

2 [a,b ] of interpolants on X can be bounded independent of
the fill distance h, as is the case with splines and other kernel-based techniques
minimizing certain norms or seminorms in certain “native ” Hilbert spaces in which
the kernels are reproducing.
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To apply these techniques, we have to prove that the native Hilbert space of the
periodicized kernel K̃ is continuously embedded in a Sobolev space WM

2 [a, b ] of
highest possible order. If we manage this for order M, we get a convergence rate
like hM−1/2 by the sampling inequality, and since this error bound extends to the
interior via the Maximum Principle, it holds on the whole domain.

Finally we remark that the above analysis applies locally to parts of the boundary.
Thus one can expect good convergence rates where there are no singularities induced
by the boundary shape or the boundary data. This will be confirmed by examples.

6 Smoothness results

To make the above argument work, we have to investigate the smoothness of our
trial functions more closely. We represent the 2π -periodic function

g(t) :=
N∑

j=1

a jK̃(t j, t)

=
N∑

j=1

a jK(ρ(t j), ρ(t))

as

g(t) =
N∑

j=1

a j

∞∑

n=0

λnc2nρn(t j)ρ
n(t) cos(n(t − t j))

=
∞∑

n=0

λnc2nρn(t) (cn cos(nt) + dn sin(nt)) .

with

cn :=
N∑

j=1

a jρ
n(t j) cos(nt j)

dn :=
N∑

j=1

a jρ
n(t j) sin(nt j).

In the native space for the periodicized kernel K̃, this function has the norm

‖g‖2
K̃

=
N∑

j,k=1

a jak K̃
(
t j, tk

)

=
N∑

j,k=1

a jak

∞∑

n=0

λnc2nρ
(
t j
)n

ρ(tk)n cos
(
n
(
tk − t j

))

=
∞∑

n=0

λnc2n(c2
n + d2

n

)
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which is finite due to our summability condition. To arrive at error bounds in Sobolev
spaces, we have to bound derivatives of g in terms of this norm. We assume the
boundary function ρ to be k-fold continuously differentiable. Then all functions of
the form of g are k-fold continuously differentiable. To bound derivatives of g from
above, we have to bound derivatives of the functions

ρn(t) cos(nt) and ρn(t) sin(nt)

from above, and we have to care for the behavior with respect to large n. The j-th
derivative of ρn has n j bounded terms, and then the product rule shows that the k-th
derivative of the above functions is bounded by a constant times 2knk. Then we get

g(k)(t) =
∞∑

n=0

λnc2n (
cn(ρ

n(t) cos(nt))(k) + dn(ρ
n(t) sin(nt))(k)

)

|g(k)(t)| ≤ C2k
∞∑

n=0

λnc2nnk
√

c2
n + d2

n

≤ C2k

√√√√
∞∑

n=0

λnc2n
(
c2

n + d2
n

)
√√√√

∞∑

n=0

λnc2nn2k

and

‖g‖2
Wk

2 [0,2π] ≤ C‖g‖2
K̃

4k
∞∑

n=0

λnc2nn2k.

The constant C above is formally independent of k, but contains a uniform bound of
all derivatives of the boundary function up to order k.

Theorem 2 If the boundary function is in Ck and if

c2
k := C 4k

∞∑

n=0

λnc2nn2k < ∞,

then the native space of the periodicized kernel K̃ is continuously embedded in
Sobolev space Wk

2 [0, 2π ] with norm ck of the embedding. Furthermore, interpolation
by harmonic kernels on the boundary has an error of order hk−1/2 in the L∞ norm.

7 Special cases

If we take the exponential kernel, there is no summability condition on the kernel pa-
rameters to be satisfied, because convergence is guaranteed for all parameter choices.
Consequently, the convergence rate is entirely determined by the smoothness of the
domain and the smoothness of the data function. For domains with smoothness Ck

in polar parametrization, there always is convergence of order k − 1/2 for smooth
enough data, because the condition in Theorem 2 is satisfied for all parameter
choices. For very smooth domains, i.e. when there is arbitrary smoothness order k
with k-independent bounds on the derivatives, the convergence rate is arbitrarily
high, provided that the data function is of arbitrary smoothness. This occurs for
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circles or ellipses, for instance. By invoking sampling inequalities for infinitely
differentiable functions [6], one can get exponential convergence rates, because the
constants in Theorem 2 are uniformly bounded with respect to k. However, all of this
is limited by the smoothness of the data function.

For the Poisson-type kernel, we saw that we have to be more careful. If we take
(2), everything works. However, the condition of Theorem 2 is satisfied for all k, but
not uniformly for k → ∞. Thus the convergence rate, depending on the smoothness
of the domain and the data function, can be arbitrarily high but is not necessarily
exponential.

8 Numerical results

We ran a series of test examples, and Table 1 contains some typical results we shall
explain now. After quite some experiments, we settled for choosing

c = 0.85

maxt ρ(t)

in view of (2) for the Poisson kernel, while we used

c = 1

maxt ρ(t)

for the exponential kernel, though there are no singularities to care for. The notations
for the columns of Table 1 are as follows:

Table 1 Results of test runs
Dom Fun Ker N n ε∞

circ y exp 200 24 7.622044e-010
circ y poi 200 121 3.422198e-009
circ poly exp 200 27 7.697248e-010
circ poly poi 200 108 3.593031e-009
circ abs exp 200 27 4.869433e-002
circ abs poi 200 184 4.738652e-003
rect poly exp 200 25 1.448961e-002
rect poly poi 200 74 6.848998e-004
rect abs exp 200 25 7.693859e-002
rect abs poi 200 78 2.498604e-002
card poly exp 200 25 1.286584e-003
card poly poi 200 97 7.384259e-004
card abs exp 200 24 2.175175e-001
card abs poi 200 98 1.764641e-001
card abs poi 200 124 7.695109e-002
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Fig. 2 Point configuration for
the last line of Table 1
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Dom = Domain, can be circle, rectangle or cardioid

ρ(t) =
√

c2 + | sin(t/2)|/
√

c2 + 1, c = 0.3218

Fun = Function f (x, y), can be y=y, poly=y3x2, abs=|y|
Ker = Kernel, can be exp = exponential or poi = Poisson kernel
N = number of data points for collocation on boundary
n = number of selected basis functions, = degrees of freedom used
ε∞ = L∞ error on 1000 test points on boundary

The algorithm used for providing the examples is a variant of the adaptive technique
presented in [7] which selects a certain subset of the collocation data locations
for use as trial points in a representation (1). In the table, N stands for the full

Fig. 3 Error behavior for the
last line of Table 1
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number of data and collocation points, of which n are adaptively selected for entering
into a representation (1) on the trial side. The selection is stopped when either a
relative improvement of 0.00001 or an absolute improvement by at least the machine
precision is impossible. A MATLAB© program reproducing all examples is available
from the author’s website.

Users should be aware that the exponential kernel will work best if the data come
from a globally harmonic singularity-free function. This occurs for the first two lines
of Table 1. Since the solution is singularity-free, the Poisson kernel needs 121 degrees
of freedom, while the exponential kernel uses only 24.

The next two lines of Table 1 show a case interpolating non-harmonic data from
f (x, y) = x2 y3 on the unit circle. This fits into our error analysis, and the rate of
approximation should be exponential. Again, the exponential kernel is superior.

We no go to the rectangle. By our theory, this induces nondifferentiability into the
problem, even if the data are smooth like poly = f (x, y) = x2 y3. The error for the
Poisson kernel now gets better, because due to Fig. 1 the singularities of the Poisson
kernel come close to the corners. If we take f (x, y) = |y| on the rectangle, we get
two additional derivative singularities on smooth parts of the boundary, but these
cannot be reached by singularities of the Poisson kernel due to Fig. 1. Consequently,
its performance drops.
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Fig. 4 Recovery of the harmonic function f (x, y)= y from scattered data, using the exponential
kernel
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On the cardioid, we cannot reach the incoming corner by singularities in reflected
points, due to Fig. 1. Even for smooth data, all algorithms have problems. But this
also occurs for other methods like the MFS, unless special singularity-dependent trial
functions are added manually.

Now for the separate final line of Table 1. There, we treated 100 points on the
boundary as before, but the other 100 got close-by reflection points by choosing a
point-dependent c according to the rule

c(t j) = 0.95

ρ
(
t j
) .

The 200 offered and 124 adaptively selected points are shown in Fig. 2. Note
that our convergence analysis still works, because we kept half of the points in
the standard setting, adding certain additional degrees of freedom which can only
decrease the error. Figure 3 shows the error behavior. Since our convergence analysis
is completely local, the error is everywhere small except near the singularities. Similar
results are obtained also in the other cases we treated before: the bad error behavior
is confined to neighborhoods of the singularities.

But one can also be as bold as to fit harmonic functions to scattered data. This
is an ill-posed problem, but algorithmically it will work, even for general non-
harmonic functions. However, due to the maximum principle, the error behavior
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Fig. 5 Harmonic interpolation of scattered data provided by the non-harmonic function y3x2, using
the exponential kernel
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will be disastrous if the data are not close to those of a harmonic function. Figure 4
shows the well-posed recovery of a harmonic function from its scattered data, while
Fig. 5 shows how our kernel method tries to do the impossible: providing a harmonic
interpolant to data coming from a non-harmonic function.

9 Conclusions

This paper seems to be the first to produce a fairly general quantitative error analysis
for a method which solves homogeneous boundary-value problems by a simple
superposition of homogeneous solutions centered at boundary points. In contrast
to the method of fundamental solutions, no “fictitious” or “artificial” boundary is
needed, and the convergence analysis works for general domains.

The method should be generalized to other differential operators, and possibly
applied to inverse problems. In general, it seems to be a promising strategy to use
kernel techniques which are tailored to solve certain PDE problems, using newly
designed kernels.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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