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ON STABILITY OF SAMPLING-RECONSTRUCTION

MODELS

ERNESTO ACOSTA-REYES, AKRAM ALDROUBI, AND ILYA KRISHTAL

Abstract. A useful sampling-reconstructionmodel should be sta-
ble with respect to different kind of small perturbations, regardless
whether they result from jitter, measurement errors, or simply from
a small change in the model assumptions. In this paper we prove
this result for a large class of sampling models. We define differ-
ent classes of perturbations and quantify the robustness of a model
with respect to them. We also use the theory of localized frames to
study the frame algorithm for recovering the original signal from
its samples.

1. Introduction

The sampling and reconstruction problem includes devising efficient
methods for representing a signal (function) in terms of a discrete (finite
or countable) set of its samples (values) and reconstructing the original
signal from the samples (see e.g., [1, 3, 8, 9, 17, 22] and the reference
therein). In this paper we consider a very general sampling model where
the signal is assumed to belong to a finitely generated shift invariant
space and the sampling is performed on an irregular separated set and
is averaged by finite Borel measures. The main focus of this paper is on
describing and quantifying “admissible” perturbations of the sampling
model which may result from altering the sampling set (jitter) (see e.g.
[6, 7, 14]), or the averaging sampling measures (measuring devices) or
the generators of the underlying shift-invariant space (see e.g., [5, 18]).
As recently became customary in sampling theory (see e.g. [1, 3,

11, 19, 20, 21, 22]), we mesh operator theory techniques and those of
shift invariant and Wiener amalgam spaces [13]. The latter provide
us with relatively straight-forward proofs while the former allow us to
keep in sight our objective. In section 2 we show that all the properties
of our sampling model can be encoded in the sampling operator U .
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The sampling model admits reconstruction if its sampling operator is
bounded both above and below. Our first goal is to show that any
and all of the small perturbations mentioned above result in a small
perturbation of U in the operator norm. This will prove the stability
of sampling in our model with respect to those perturbations and the
corresponding estimates we obtain will quantify this stability. Our
second goal is to show how a frame algorithm can be used to reconstruct
signals in our sampling model. Finally, our last goal is to show that the
reconstruction error due to the perturbations we describe is controlled
continuously by the perturbation errors.
The paper is organized as follows. In section 2 we describe our

sampling model, introduce relevant notions and notation, and cite a
few preliminary results. The main results are presented in section 3.
Perturbation results addressing our first goal are in subsection 3.1.
There we prove that a set of sampling remains such under a small
perturbation of the sampling measures and/or the generators of the
shift invariant space. It is also shown that sampling remains stable with
respect to a perturbation of the sampling set itself. In subsection 3.2
we show that, in case of a signal in a Hilbert space, a frame algorithm
can be used to reconstruct the function from its samples. We also use
the results of the previous subsection and the theory of localized frames
to show that under mild additional assumptions a set of sampling for
a Hilbert shift invariant space is also a set of sampling for a chain of
Banach shift invariant spaces to which the frame algorithm extends.
In subsection 3.3 we study the dependence of the reconstruction error
upon the perturbation errors. The proofs of the results in section 3 are
relegated to section 4.

2. Description of the sampling model

This section is primarily devoted to introduction of the sampling
model we use in this paper. We also present most of the necessary
notation and cite some of the preliminary results that will be used
later.
The signals we are studying in this paper are represented by functions

f ∈ Lp(Rd), for some p ∈ [1,∞] and d ∈ N. Moreover, we assume that
f belongs to a shift invariant space

(2.1) V p(Φ) = {
∑

k∈Zd

CT
k Φk : C ∈ (ℓp(Zd))(r)}.

Here Φ = (φ1, . . . , φr)T is a vector of functions, Φk = Φ(·−k), and C =
(c1, . . . , cr)T is a vector of sequences belonging to (ℓp(Zd))(r). Among
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the equivalent norms in (ℓp(Zd))(r) we choose

‖C‖(ℓp(Zd))(r) =

r∑

i=1

‖ci‖ℓp(Zd).

In order to avoid convergence issues in (2.1) we assume that the set
{φ1(· − k), . . . , φr(· − k); k ∈ Zd} generates an unconditional basis for
V p(Φ). In particular, we require that there exist constants 0 < mp ≤
Mp <∞, such that

(2.2)

mp‖C‖(ℓp(Zd))(r) ≤ ‖
∑

k∈Zd

CT
k Φk‖Lp ≤Mp‖C‖(ℓp(Zd))(r), ∀C ∈ (ℓp(Zd))(r).

The unconditional basis assumption (2.2) implies [3] that the space
V p(Φ) is a closed subspace of Lp(Rd).
Since we are interested in sampling in V p(Φ) we add an assump-

tion that would make all the functions in these spaces continuous and,
therefore, pointwise evaluations will be meaningful. To this end, we as-
sume that all generators Φ belong to a Wiener-amalgam space (W 1

0 )
(r)

as defined below. For 1 ≤ p < ∞, a measurable function f belongs to
W p if it satisfies

‖f‖W p =

(
∑

k∈Zd

esssup
x∈[0,1]d

|f(x+ k)|p
)1/p

<∞.(2.3)

If p = ∞, a measurable function f belongs to W∞ if it satisfies

‖f‖W∞ = sup
k∈Zd

{esssup
x∈[0,1]d

|f(x+ k)|} <∞.(2.4)

Hence, W∞ coincides with L∞(Rd). It is well known that W p are
Banach spaces [13], and clearly W p ⊆ Lp. By (W p)(r) we denote the
space of vectors Ψ = (ψ1, . . . , ψr)T of W p-functions with the norm

‖Ψ‖(W p)(r) =

r∑

i=1

‖ψi‖W p.

The closed subspace of (vectors of) continuous functions in W p (re-
spectively, (W p)(r)) will be denoted by W p

0 (or (W p
0 )

(r)).
In this paper we are interested in average sampling performed by

a vector of measures. We denote by M(Rd) = M0(R
d) the Banach

space of finite complex Borel measures on Rd. The norm on M(Rd) is
given by ‖µ‖ =

∫
Rd d|µ|(y), i.e., the total variation of a measure µ. By

(M(Rd))(t) we denote the space of vectors −→µ = (µ1, . . . , µt) of measures
from M(Rd) with the norm ‖−→µ ‖(M(Rd))(t) =

∑t
j=1 ‖µj‖. The symbols
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Ms(R
d) ((Ms(R

d))(t)), 0 ≤ s < ∞, will be used for the subspace of
M(Rd) ((M(Rd))(t)) of all (vectors of) measures µ ∈ M(Rd) such that
(1 + |x|)s ∈ L1(Rd, d|µ|), i.e.,

∫
(1 + |x|)sd|µ|(x) < ∞. By M∞(Rd)

((M∞(Rd))(t)) we denote the space of all (vectors of) measures with
compact support. Clearly Ms(R

d) ⊂ Mr(R
d) for 0 ≤ r ≤ s ≤ ∞.

For µ ∈ M(Rd) and a measurable function φ on R
d, the convolution

of the function φ and the measure µ is defined by

(φ ∗ µ)(x) =
∫

Rd

φ(x− y)dµ(y), x ∈ R
d.

When we have a vector of measurable functions Φ = (φ1, . . . , φr)T and
a vector of finite complex Borel measures −→µ = (µ1, . . . , µt), then the
convolution Φ ∗ −→µ is the r × t matrix given by

Φ ∗ −→µ =




φ1 ∗ µ1 . . . φ1 ∗ µt

...
...

φr ∗ µ1 . . . φr ∗ µt


 .

Let J be a countable index set and X = {xj : j ∈ J} be a subset
of Rd. The reconstruction problem in our sampling model consists of
finding the function f ∈ V p(Φ) from the knowledge of its samples

(f ∗ −→µ )(X) = {(f ∗ −→µ )(xj) =
(
(f ∗ µ1)(xj), . . . , (f ∗ µt)(xj)

)
}j∈J .

When t = 1 and µ = δ0, i.e., µ is the Dirac measure on R
d concen-

trated at zero, then (f∗−→µ )(X) = {f(xj)}j∈J and we obtain the classical
(ideal) sampling model. When d−→µ = Ψdx, where Ψ ∈ (L1(Rd))(t) and
dx is the Lebesgue measure on Rd, i.e., −→µ is absolutely continuous with
respect to the Lebesgue measure, then we write (f ∗Ψ)(X) instead of
(f ∗ −→µ )(X), and our model is reduced to the case analyzed in [5].

Definition 2.1. Let 1 ≤ p ≤ ∞ and X = {xj : j ∈ J} be a countable
subset of Rd. We say that X is a set of sampling for V p(Φ) and −→µ (or,
simply, a −→µ -sampling set for V p(Φ)) if there exist constants 0 < Ap ≤
Bp <∞ such that

(2.5) Ap‖f‖Lp ≤ ‖(f ∗−→µ )(X)‖(ℓp(J))(t) ≤ Bp‖f‖Lp, for all f ∈ V p(Φ).

If d−→µ = Ψdx then a −→µ -sampling set X will be called a Ψ-sampling
set and, if t = 1 and µ = δ0, then X will be called an ideal sampling
set. To ensure that an upper bound Bp in (2.5) always exists (see (4.2))
we restrict our attention only to separated sets X .

Definition 2.2. We say that X is separated if there exists δ > 0 such
that inf i,j∈J,i 6=j |xi − xj | ≥ δ. The number δ is called the separation
constant of the set X .
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It is not hard to extend our results to the case of a finite union of
separated sets. We do not, however, pursue this relatively trivial but
space consuming generalization.

Definition 2.3. Let −→µ ∈ (M(Rd))(t), Φ ∈ (W 1
0 )

(r) satisfy (2.2), and
X = {xj , j ∈ J} ⊂ Rd be a separated set. The sampling model is the
triple (X,Φ,−→µ ). The sampling model (X,Φ,−→µ ) is called p-stable if X
is a −→µ -sampling set for V p(Φ), p ∈ [1,∞].

Given a sampling model (X,Φ,−→µ ) we proceed to define its sampling
operator.

Definition 2.4. The sampling operator U = U(X,Φ,−→µ ) : (ℓ
p(Zd))(r) →

(ℓp(J))(t) is defined by UC = (f ∗ −→µ )(X), where f =
∑
k∈Zd

CT
k Φk ∈

V p(Φ).

We can think of U as a t× r matrix of operators

U =




U1,1 . . . U r,1

...
...

U1,t . . . U r,t


 ,

where for each 1 ≤ i ≤ r and 1 ≤ l ≤ t the operator U i,l is defined by
an infinite matrix with entries (U i,l)j,k = (φi∗µl)(xj−k), j ∈ J , k ∈ Zd.

The operator norm of U is given by ‖U‖p,op =
∑t

l=1

∑r
i=1 ‖U i,l‖.

The following proposition shows that all the interesting properties
of a sampling model (X,Φ,−→µ ) are, indeed, encoded in the sampling
operator U . The proof of this result follows immediately from (2.2)
and (2.5).

Proposition 2.1. The sampling model (X,Φ,−→µ ) is p-stable if and only
if there exist 0 < ηp ≤ βp < ∞ such that for all C ∈ (ℓp(Zd))(r) the
sampling operator U satisfies

(2.6) ηp‖C‖(ℓp(Zd))(r) ≤ ‖UC‖(ℓp(J))(t) ≤ βp‖C‖(ℓp(Zd))(r).

The next lemma is, essentially, a nutshell for many of the results in
this paper.

Lemma 2.2. Let (X,Φ,−→µ ) be a p-stable sampling model and U be its

sampling operator satisfying (2.6). Let also (X̃,Θ,−→α ) be a sampling
model such that its sampling operator U∆ satisfies ‖U − U∆‖ < ηp.

Then (X̃,Θ,−→α ) is also p-stable.

Proof. Let C ∈ (ℓp(Zd))(r). Then

‖U∆C‖(ℓp(J))(t) ≤ ‖(U − U∆)C‖(ℓp(J))(t) + ‖UC‖(ℓp(J))(t)
≤ ‖U − U∆‖‖C‖(ℓp(Zd))(r) + βp‖C‖(ℓp(Zd))(r) .



6 ERNESTO ACOSTA-REYES, AKRAM ALDROUBI, AND ILYA KRISHTAL

Therefore, since ‖U − U∆‖ < ηp, then we have

(2.7) ‖U∆C‖(ℓp(J))(t) ≤ (ηp + βp) ‖C‖(ℓp(Zd))(r).

On the other hand, since

ηp‖C‖(ℓp(Zd))(r) ≤ ‖UC‖(ℓp(J))(t) ≤ ‖(U − U∆)C‖(ℓp(J))(t) + ‖U∆C‖(ℓp(J))(t)
≤ ‖U − U∆‖‖C‖(ℓp(Zd))(r) + ‖U∆C‖(ℓp(J))(t) .

Hence,

(2.8) (ηp − ‖U − U∆‖) ‖C‖(ℓp(Zd))(r) ≤ ‖U∆C‖(ℓp(J))(t) .
Since ‖U − U∆‖ < ηp, the conclusion of the lemma follows from (2.7),
(2.8), and Proposition 2.1. �

3. Main Results

In this section we collect the main results of our paper.

3.1. Admissible perturbations of a sampling model.

In practice, shift invariant spaces are used to model classes of signals
that can occur (or that are allowed) in applications. However often,
the functions in a shift invariant space model only give approximations
to the signals of interest. For this reason, we begin with a result where
the perturbation of a sampling model is due to a small change of the
genetators of the underlying shift invariant space.

Theorem 3.1. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞]. Then there exists ǫ0 > 0 such that the sampling model
(X,Θ,−→µ ) is also p-stable, whenever Θ ∈ (W 1

0 )
(r) and ‖Φ−Θ‖(W 1)(r) <

ǫ0.

The above result means that if−→µ ∈ (M(Rd))(t), Φ ∈ (W 1
0 )

(r) satisfies
(2.2), X = {xj , j ∈ J} ⊂ Rd is a separated −→µ -sampling set for V p(Φ),
and Θ satisfies the assumptions of the theorem, then there exist 0 <
A

′

p ≤ B
′

p <∞ such that

(3.1) A
′

p‖g‖Lp ≤ ‖(g ∗ −→µ )(X)‖(ℓp(J))(t) ≤ B
′

p‖g‖Lp, for all g ∈ V p(Θ).

In the proof of this result in section 4 we will provide explicit estimates
for ǫ0 and the bounds A

′

p and B
′

p.
As a consequence of Theorem 3.1 we have the following results that

were first proved in [5]. The proofs now are immediate: we apply The-
orem 3.1 with d−→µ = Ψdx for Corollary 3.2 and −→µ = δ0 for Corollary
3.3.
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Corollary 3.2. Let Ψ ∈ (L1(Rd))(t), Φ ∈ (W 1
0 )

(r) satisfy (2.2), and
X = {xj, j ∈ J} ⊂ Rd be a separated Ψ-sampling set for V p(Φ). Then
there exists ǫ0 > 0 such that X is a Ψ-sampling set for V p(Θ), whenever
Θ ∈ (W 1

0 )
(r) and ‖Φ−Θ‖(W 1)(r) < ǫ0.

Corollary 3.3. Let Φ ∈ (W 1
0 )

(r) satisfying (2.2) and X = {xj , j ∈
J} ⊂ Rd be a separated ideal set of sampling for V p(Φ). Then there ex-
ists ǫ0 > 0 such that X is an ideal set of sampling for V p(Θ), whenever
Θ ∈ (W 1

0 )
(r) and ‖Φ−Θ‖(W 1)(r) ≤ ǫ < ǫ0.

In practice, signal samples are obtained using measuring devices with
characteristics that are not fully known, and the measurements reflect
local averages rather than exact sample values. Thus, a sampling mea-
sure −→µ is a model that approximate the characterisitics of a measuring
device. For this reason, the next theorem describes the case when the
perturbation is due to some uncertainty about the characteristics of
the measuring devices, that is a perturbation of the vector of measures−→µ .

Theorem 3.4. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞]. Then there exists ǫ0 > 0 such that the sampling model
(X,Φ,−→α ) is also p-stable, whenever −→α ∈ (M(Rd))(t) and

‖−→µ −−→α ‖(M(Rd))(t) < ǫ0.

Again, if X , −→µ , −→α , and Φ satisfy the assumptions of the theorem
then there exist 0 < A

′

p ≤ B
′

p <∞ such that

(3.2) A
′

p‖f‖Lp ≤ ‖(f ∗−→α )(X)‖(ℓp(J))(t) ≤ B
′

p‖f‖Lp, for all f ∈ V p(Φ),

and the explicit estimates for ǫ0, A
′

p and B
′

p will be given in section 4.

Considering −→µ and −→α in Theorem 3.4 such that d−→µ = Ψdx and
d−→α = Γdx we obtain the following direct corollary (see also [5, Theorem
3.3]).

Corollary 3.5. Let Ψ ∈ (L1(Rd))(t), Φ ∈ (W 1
0 )

(r) satisfy (2.2), and
X be a separated Ψ-sampling set for V p(Φ). Then there exists ǫ0 > 0
such that X is a Γ-sampling set for V p(Φ), whenever Γ ∈ (L1(Rd))(t)

and ‖Ψ− Γ‖(L1(Rd))(t) < ǫ0.

As a consequence of Theorems 3.1 and 3.4 we obtain the follow-
ing combined perturbation result and its corollary, which is essentially
Theorem 3.4 in [5].

Theorem 3.6. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞]. Then there exists ǫ0 > 0 such that the sampling model
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(X,Θ,−→α ) is also p-stable, whenever −→α ∈ (M(Rd))(t), Θ ∈ (W 1
0 )

(r),
and ‖Φ−Θ‖(W 1)(r) + ‖−→µ −−→α ‖(M(Rd))(t) < ǫ0.

Corollary 3.7. Let Ψ ∈ (L1(Rd))(t), Φ ∈ (W 1
0 )

(r) satisfy (2.2), and
X be a separated Ψ-sampling set for V p(Φ). Then there exists ǫ0 > 0
such that X is a Γ-sampling set for V p(Θ), whenever Γ ∈ (L1(Rd))(t),
Θ ∈ (W 1

0 )
(r) and ‖Φ−Θ‖(W 1)(r) + ‖Ψ− Γ‖(L1(Rd))(t) < ǫ0.

An error in the location of the sampling points {xj} is what is often
called jitter error (see e.g., [6, 7] and the references therein). This error
can be modeled as a perturbation of the sampling set X . For this
reason, our next perturbation results deal with an altered sampling set

X̃ = X + ∆ = {xj + δj}j∈J , where ∆ = {δj}j∈J ⊂ R
d. We use the

standard notation for ‖∆‖∞ = sup{‖δj‖ : j ∈ J}.
Theorem 3.8. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞]. Then there exists ǫ0 > 0 such that the sampling model
(X +∆,Φ,−→µ ) is also p-stable, whenever ‖∆‖∞ < ǫ0.

Remark 3.1. The above theorem is an analog of Theorem 3.6 in [6],
where r = t = 1, p = 2, and µ = µ1 = δ0.

As a direct corollary of Theorems 3.6 and 3.8 we get the following
combined result.

Theorem 3.9. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞]. Then there exists ǫ0 > 0 such that the sampling model
(X+∆,Θ,−→α ) is also p-stable, whenever −→α ∈ (M(Rd))(t), Θ ∈ (W 1

0 )
(r),

and ‖∆‖∞ + ‖Φ−Θ‖(W 1)(r) + ‖−→µ −−→α ‖(M(Rd))(t) < ǫ0.

We leave it to the reader to formulate other perturbation theorems
resulting from different combinations of Theorems 3.1, 3.4, and 3.8. We
conclude this section with a slightly stronger version (due to Lemma
2.2) of Theorem 3.9.

Theorem 3.10. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞] and U be its sampling operator. Let also (X + ∆,Θ,−→α )
be a perturbed sampling model with the sampling operator U∆. Then
for every ǫ > 0 there exists ǫ0 > 0 such that ‖U − U∆‖ < ǫ, whenever−→α ∈ (M(Rd))(t), Θ ∈ (W 1

0 )
(r), and

‖∆‖∞ + ‖Φ−Θ‖(W 1)(r) + ‖−→µ −−→α ‖(M(Rd))(t) < ǫ0.

3.2. Perfect reconstruction and localized frames.

In this section we show that a frame algorithm can be used to recon-
struct f ∈ V 2(Φ) from its samples. We also obtain a useful modification
of the above results using the theory of localized frames developed in
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[15] (see Definition 3.3). In the previous section, the number p ∈ [1,∞]
was fixed, that is, we stated, for example, that if X is a −→µ -sampling
set for V p(Φ), then X is a −→µ -sampling set for V p(Θ) for the same
p ∈ [1,∞], as soon as Θ is sufficiently close to Φ in the appropriate
norm. Here, we claim that if X is a −→µ -sampling set for V 2(Φ), then X
is a −→µ -sampling set for V p(Θ) for all p ∈ [1,∞], as soon as Θ is suffi-
ciently close to Φ, Φ satisfies a mild decay condition, and −→µ belongs to
Ms(R

d) for some s > d. It is natural to ask whether one can replace
V 2(Φ) in the above statement with V q(Φ), for some q ∈ [1,∞]. Under
certain assumptions the answer is “yes”, but it turns out to be a much
harder problem as shown in [2].

Definition 3.1. Let H be a Hilbert space of functions and V a closed
subspace of H. Let {Ψxj

= (ψ1
xj
, . . . , ψt

xj
)T}j∈J be a countable collec-

tion of vectors of functions in V . We say that {Ψxj
}j∈J is a frame for

V if there exist constants 0 < A ≤ B <∞ such that

A‖f‖H ≤ ‖〈f,Ψxj
〉‖(ℓ2(J))(t) ≤ B‖f‖H, for all f ∈ V,

where 〈f,Ψxj
〉 = (〈f, ψ1

xj
〉, . . . , 〈f, ψt

xj
〉) ∈ Ct.

Remark 3.2. Notice that the above is not quite the standard definition
of a frame in a Hilbert space. This is due to the way we defined
the norm in (2). Nevertheless, it is easily seen that {Ψxj

}j∈J is a
frame for V according to the above definition if and only if {ψi

xj
, i =

1, 2, . . . , t, j ∈ J} is a frame for V according to the standard definition.
The frame bounds, however, may be different.

Definition 3.2. Let V be a closed subspace of the Hilbert space H.
Let {Ψxj

= (ψ1
xj
, . . . , ψt

xj
)T}j∈J be a frame for V . The frame operator

associated with the frame {Ψxj
}j∈J is the operator S : V → V defined

by S(f) =
∑

j∈J〈f,Ψxj
〉Ψxj

, for all f ∈ V . The (canonical) dual

frame {Ψ̃xj
}j∈J of the frame {Ψxj

}j∈J is a sequence of vectors given by

{Ψ̃xj
= (ψ̃1

xj
, . . . , ψ̃t

xj
)T}j∈J , where ψ̃s

xj
= S−1ψs

xj
, 1 ≤ s ≤ t.

Remark 3.3. It is well know that a frame operator S is bounded, invert-
ible, self-adjoint, and positive [12]. Hence, the canonical dual frame is
well defined. There may exist other dual frames but we will refrain
from defining the notion.

The next proposition shows that a frame algorithm can be used to
reconstruct a function from its samples.

Proposition 3.11. Let Φ ∈ (W 1
0 )

(r), −→µ ∈ (M(Rd))(t), and X be a −→µ -
sampling set for V 2(Φ). Then there exists a sequence of vectors of func-
tions {Ψxj

}j∈J , which is a frame for V 2(Φ) and 〈f,Ψxj
〉 = (f ∗−→µ )(xj)



10 ERNESTO ACOSTA-REYES, AKRAM ALDROUBI, AND ILYA KRISHTAL

for all f ∈ V 2(Φ) and j ∈ J . Moreover, every function f ∈ V 2(Φ) can
be recovered from the sequence of its samples {(f ∗ −→µ )(xj)}j∈J via

(3.3) f(x) =
∑

j∈J
(f ∗ −→µ )(xj)Ψ̃xj

(x),

where {Ψ̃xj
}j∈J is the dual frame of {Ψxj

}j∈J and the series (3.3) con-
verges unconditionally in V 2(Φ).

The frame {Ψxj
}j∈J constructed in the previous proposition will be

called a (−→µ ,X)-sampling frame for V 2(Φ). The main idea of this sec-
tion is to use the fact that if such a frame is localized then it is also a
Banach frame [15] for V p(Φ), p ∈ [1,∞).

Remark 3.4. Observe that, in general, the frame operator S is the
product of the analysis operator T : V → (ℓ2(J))(t), defined by Tf =
{〈f,Ψxj

〉}j∈J = {(〈f, ψ1
xj
〉, . . . , 〈f, ψt

xj
〉)}j∈J and its adjoint, that is S =

T ∗T . Since Φ generates a Riesz basis, it is immediate that in case of
a (−→µ ,X)-sampling frame its analysis operator is isomorphic to the
sampling operator U = U(X,Φ,−→µ ).

Definition 3.3. Let V be a closed subspace of the Hilbert space
H. Let {Ψxj

= (ψ1
xj
, . . . , ψt

xj
)T}j∈J be a frame for V , and {Gk =

(g1k, . . . , g
r
k)

T}k∈Zd be a Riesz basis for V , i.e., a condition similar to
(2.2) is satisfied. We say that the frame {Ψxj

}j∈J is (polynomially)
s-localized with respect to the Riesz basis {Gk}k∈Zd, if

(3.4) |〈Gk,Ψ
T
xj
〉| ≤ C1(1 + |xj − k|)−s,

and

(3.5) |〈G̃k,Ψ
T
xj
〉| ≤ C2(1 + |xj − k|)−s,

for all j ∈ J and k ∈ Zd. Here, the constants C1, C2 > 0 are inde-

pendent of j and k, |〈Gk,Ψ
T
xj
〉| = ∑r

i=1

∑t
l=1 |〈gik, ψl

xj
〉|, {G̃k}k∈Zd is

the dual Riesz basis of {Gk}k∈Zd, and |〈G̃k,Ψ
T
xj
〉| is defined similarly to

|〈Gk,Ψ
T
xj
〉|.

Remark 3.5. Let V be a closed subspace of a Hilbert space H. As-
sume that {Gk = (g1k, . . . , g

r
k)

T}k∈Zd is a Riesz basis for V . The dual
Riesz basis of the Riesz basis {Gk}k∈Zd is the sequence of vectors

{G̃k = (g̃1k, . . . , g̃
r
k)

T}k∈Zd satisfying 〈G̃k, G
T
l 〉 = δklI, where I is the

r × r identity matrix, and δkl is the Kronecker delta. Since a Riesz
basis {Gk} is also a frame, {G̃k} is, in fact, the canonical dual frame
for {Gk}. In this case it is the unique dual frame.
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Definition 3.4. Let Φ = (φ1, . . . , φr)T ∈ (W 1
0 )

(r) ⊂ (L2(Rd))(r) and
s > d. We say that Φ is an s-localized Riesz generator for V 2(Φ),
denoted Φ ∈ Ws, if

• {Φk = Φ(· − k)}k∈Zd generates a Riesz basis for V 2(Φ), i.e.,
condition (2.2) holds for p = 2;

• The components of Φ satisfy the decay condition

(3.6) |φi(x)| ≤ C i
0(1 + |x|)−s,

for all 1 ≤ i ≤ r and some C i
0 > 0 independent of x ∈ Rd.

Remark 3.6. If Φ ∈ Ws, then (2.2) holds for every p ∈ [1,∞] as shown
in [3].

The following is the main result of subsection 3.2.

Theorem 3.12. Let s > d, Φ ∈ Ws, and
−→µ ∈ (Ms(R

d))(t). Assume
that X is a −→µ -sampling set for V 2(Φ), and {Ψxj

}j∈J is the (−→µ ,X)-
sampling frame for V 2(Φ). Then

• X is a −→µ -sampling set for V p(Φ) for all p ∈ [1,∞].

• If {Ψ̃xj
} is the dual frame for {Ψxj

}j∈J , then
(3.7) f =

∑

j∈J
(f ∗ −→µ )(xj)Ψ̃xj

, for all f ∈ V p(Φ),

where the series converges unconditionally in V p(Φ), p ∈ [1,∞).

Next, we combine Theorem 3.12 with the perturbation results of the
previous section. The proofs are immediate.

Theorem 3.13. Let s > d, Φ ∈ Ws, and
−→µ ∈ (Ms(R

d))(t). Assume
that X is a separated −→µ -sampling set for V 2(Φ). Then there exists
ǫ0 > 0 such that for every Θ ∈ Ws satisfying ‖Φ−Θ‖(W 1)(r) < ǫ0, there

exists a (−→µ ,X)-sampling frame {Ψxj
}j∈J for V 2(Θ). Moreover,

• X is a −→µ -sampling set for V p(Θ) for all p ∈ [1,∞].

• If {Ψ̃xj
} is the dual frame for {Ψxj

}j∈J , then
f =

∑

j∈J
(f ∗ −→µ )(xj)Ψ̃xj

, for all f ∈ V p(Θ),

where the series converges unconditionally in V p(Θ), p ∈ [1,∞).

Theorem 3.14. Let s > d, Φ ∈ Ws, and −→µ ∈ (Ms(R
d))(t). As-

sume that X is a separated −→µ -sampling set for V 2(Φ). Then there
exists ǫ0 > 0 such that for every −→α ∈ (Ms(R

d))(t) satisfying ‖−→µ −−→α ‖(M(Rd))(t) < ǫ0, there exists an (−→α ,X)-sampling frame {Ψxj
}j∈J for

V 2(Φ). Moreover,
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• X is an −→α -sampling set for V p(Φ) for all p ∈ [1,∞].

• If {Ψ̃xj
} is the dual frame for {Ψxj

}j∈J , then

f =
∑

j∈J
(f ∗ −→µ )(xj)Ψ̃xj

, for all f ∈ V p(Φ),

where the series converges unconditionally in V p(Φ), p ∈ [1,∞).

Theorem 3.15. Let s > d, Φ ∈ Ws, and
−→µ ∈ (Ms(R

d))(t). Assume
that X is a separated −→µ -sampling set for V 2(Φ). Then there exists
ǫ0 > 0 such that for every ∆ = {δj, j ∈ J} satisfying ‖∆‖∞ < ǫ0 there
exists a (−→µ ,X +∆)-sampling frame {Ψxj

}j∈J for V 2(Φ). Moreover,

• X +∆ is a −→µ -sampling set for V p(Φ) for all p ∈ [1,∞].

• If {Ψ̃xj
} is the dual frame for {Ψxj

}j∈J , then

f =
∑

j∈J
(f ∗ −→µ )(xj + δj)Ψ̃xj

, for all f ∈ V p(Φ),

where the series converges unconditionally in V p(Φ), p ∈ [1,∞).

Theorem 3.16. Let s > d, Φ ∈ Ws, and
−→µ ∈ (Ms(R

d))(t). Assume
that X is a separated −→µ -sampling set for V 2(Φ). Then there exists
ǫ0 > 0 such that for every Θ ∈ Ws and

−→α ∈ (Ms(R
d))(t) satisfying ‖Φ−

Θ‖(W 1)(r) + ‖−→µ − −→α ‖(M(Rd))(t) < ǫ0, there exists an (−→α ,X)-sampling

frame {Ψxj
}j∈J for V 2(Θ). Moreover,

• X is an −→α -sampling set for V p(Θ) for all p ∈ [1,∞].

• If {Ψ̃xj
} is the dual frame for {Ψxj

}j∈J , then

f =
∑

j∈J
(f ∗ −→α )(xj)Ψ̃xj

, for all f ∈ V p(Θ),

where the series converges unconditionally in V p(Θ), p ∈ [1,∞).

Theorem 3.17. Let s > d, Φ ∈ Ws, and
−→µ ∈ (Ms(R

d))(t). Assume
that X is a separated −→µ -sampling set for V 2(Φ). Then there exists ǫ0 >
0 such that for every ∆ = {δj , j ∈ J}, Θ ∈ Ws, and

−→α ∈ (Ms(R
d))(t)

satisfying ‖∆‖∞+‖Φ−Θ‖(W 1)(r) +‖−→µ −−→α ‖(M(Rd))(t) < ǫ0, there exists

an (−→α ,X +∆)-sampling frame {Ψxj
}j∈J for V 2(Θ). Moreover,

• X +∆ is an −→α -sampling set for V p(Θ) for all p ∈ [1,∞].

• If {Ψ̃xj
} is the dual frame for {Ψxj

}j∈J , then

f =
∑

j∈J
(f ∗ −→α )(xj + δj)Ψ̃xj

, for all f ∈ V p(Θ),

where the series converges unconditionally in V p(Θ), p ∈ [1,∞).



ON STABILITY OF SAMPLING-RECONSTRUCTION MODELS 13

Remark 3.7. The crucial result for the proof of the theorems in this
section is Jaffard’s non-commutative extension of the classical Wiener’s
Tauberian Lemma (see Theorem 5 in [15]). It states that if an invert-
ible matrix has an off-diagonal decay defined by inequalities similar to
(3.4) and (3.5), then the inverse matrix has the same off-diagonal de-
cay. There exist other extensions of Wiener’s Lemma which deal with
different types of off-diagonal decay (see, for example, [10, 16]). Many
of those could be used to obtain results similar to, say, Theorem 3.17.

3.3. Imperfect reconstruction.

In practice, we know that a perturbation exists because of imperfec-
tions of measuring devices, errors, etc. However, we can only estimate
this perturbation and may not even know its nature. Here we show
that even if we use a model (X,Φ,−→µ ) for reconstructing a signal from

a perturbed model (X̃,Θ,−→α ) (or vice versa), the reconstruction error
depends continuously on the perturbation in the cases studied above.
As before, let U be the sampling operator for a p-stable sampling

model (X,Φ,−→µ ) and U∆ be the sampling operator for a perturbed

model (X̃,Θ,−→α ), where X̃ = X + ∆ = {xj + δj}j∈J . The sampling
operator U∆ can be thought of as a t× r matrix of operators given by

U∆ =




U1,1
∆ . . . U r,1

∆
...

...

U1,t
∆ . . . U r,t

∆


 ,

where for each 1 ≤ i ≤ r and 1 ≤ l ≤ t the operator U i,l
∆ is defined by

a bi-infinite matrix with entries (U i,l
∆ )j,k = (θi ∗ αl)(xj + δj − k), j ∈ J ,

k ∈ Zd.
We let U∗ be an operator defined by the following r × t matrix of

operators from (ℓp(J))(t) into (ℓp(Zd))(r):

U∗ =




U1,1 . . . U1,t

...
...

U r,1 . . . U r,t


 ,

where for each 1 ≤ i ≤ r and 1 ≤ l ≤ t, the operator U i,l is defined by
a bi-infinite matrix with entries (U i,l)j,k = (φi ∗ µl)(xj − k), where z
denotes the conjugate of the complex number z. The operator (U∆)

∗ is
defined similarly. Notice that this definition implies ‖U∗‖p,op = ‖U‖p,op,
and (U∗)∗ = U . Moreover, if U satisfies (2.6), then U∗ satisfies

(3.8) ηp‖D‖(ℓp(J))(t) ≤ ‖U∗D‖(ℓp(Zd))(r) ≤ βp‖D‖(ℓp(J))(t) ,
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for all D ∈ (ℓp(J))(t). Observe also that if p = 2 then U∗ is, indeed,
the Hilbert adjoint of U . Hence, if the sampling model (X,Φ,−→µ ) is
2-stable, U∗U is isomorphic to the frame operator S for the sampling
frame {Ψxj

}, see Remark 3.4. Therefore, U∗U is invertible and positive.
Moreover, the operator (U∗U)−1U is a left inverse for the sampling
operator U and it is isomorphic to the synthesis operator used for the
reconstruction. Hence, the importance of the following result.

Theorem 3.18. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞]. Assume that its sampling operator U satisfies (2.6) and the

operator U∗U is invertible. Let ǫ ∈ (0,−βp+
√
β2
p + η2p) and (X̃,Θ,−→α )

be a perturbed sampling model such that its sampling operator U∆ sat-
isfies ‖U−U∆‖ < ǫ. Define ν = ν(ǫ) = η−2

p ǫ(ǫ+2βp). Then 0 < ν < 1,
the operator U∗

∆U∆ is invertible, and

‖(U∗U)−1U∗ − (U∗
∆U∆)

−1U∗
∆‖ <

1

η2p

(
ǫ+

ν(βp + ǫ)

1− ν

)
.

Remark 3.8. Observe that if p = 2 we do not need to require invert-
ibility of U∗U . As we mentioned above, it follows automatically.

Remark 3.9. If in Theorem 3.18 we let r = t = 1, p = 2, and µ = µ1 =
δ0, then we obtain an analog of Theorem 3.3 in [6].

Let (X,Φ,−→µ ) be a p-stable sampling model for some p ∈ [1,∞].
Assume that its sampling operator U satisfies (2.6) and the operator
U∗U is invertible. We define the reconstruction operator R = R(X,Φ,−→µ ) :

(ℓp(J))(t) → V p(Φ) by

RD =
∑

k∈Zd

[(U∗U)−1U∗D]TkΦ(· − k),

D = (d1, . . . , dt)T in (ℓp(J))(t).
Then as an immediate consequence of Theorems 3.10 and 3.18, we

have the following result.

Theorem 3.19. Let (X,Φ,−→µ ) be a p-stable sampling model for some
p ∈ [1,∞]. Assume that its sampling operator U is such that U∗U is
invertible. Let R be the reconstruction operator. Then for every ǫ > 0
there exists ǫ0 > 0 such that for every ∆ = {δj, j ∈ J}, Θ ∈ (W 1

0 )
(r),

and −→α ∈ (M(Rd))(t) satisfying

‖∆‖∞ + ‖Φ−Θ‖(W 1)(r) + ‖−→µ −−→α ‖(M(Rd))(t) < ǫ0,

we have

‖R((g ∗ −→α )(X +∆))− f‖Lp < ǫ, f =
∑

k∈Zd

CT
k Φk, g =

∑

k∈Zd

CT
k Θk,
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for all C ∈ (ℓp(Zd))(r).

Theorem 3.19 tells us that the reconstruction error is, indeed, con-
trolled in a continuous fashion by each and all of the perturbation errors
studied in this paper.
Our final result is a combination of the above theorem with the

results of section 3.2.

Theorem 3.20. Let (X,Φ,−→µ ) be a 2-stable sampling model such that
Φ ∈ Ws and −→µ ∈ (Ms(R

d))(t). Let R be the reconstruction operator
for (X,Φ,−→µ ). Then for every ǫ > 0 there exists ǫ0 > 0 such that for
every ∆ = {δj, j ∈ J}, Θ ∈ Ws, and

−→α ∈ (Ms(R
d))(t) satisfying

‖∆‖∞ + ‖Φ−Θ‖(W 1)(r) + ‖−→µ −−→α ‖(M(Rd))(t) < ǫ0,

we have

‖R((g ∗ −→α )(X +∆))− f‖Lp < ǫ, f =
∑

k∈Zd

CT
k Φk, g =

∑

k∈Zd

CT
k Θk,

for all p ∈ [1,∞] and all C ∈ (ℓp(Zd))(r).

The proofs in the following section show implicitly how numerical
estimates for ǫ0 in Theorems 3.19 and 3.20 may be obtained.

4. Proofs

4.1. Auxiliary results.

We begin with technical results that are needed for the main proofs.

Lemma 4.1. Let φ ∈ W 1
0 , and µ ∈ M(Rd). Then:

(4.1) φ ∗ µ ∈ W 1
0 , and

(4.2) ‖φ ∗ µ‖W 1 ≤ 2d‖φ‖W 1‖µ‖.

Proof. Note that if µ = 0, the proof is immediate. Assume now µ 6= 0,
i.e. ‖µ‖ > 0. Let ǫ > 0 be given. Since φ ∈ W 1

0 , then φ is uniformly
continuous in Rd. Therefore, there exists δ = δ(ǫ) > 0 such that

(4.3) |φ(w)− φ(w1)| <
ǫ

‖µ‖ , whenever ‖w − w1‖ < δ.
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Let z0 ∈ Rd be given, and let z ∈ Rd be such that ‖z − z0‖ < δ. Then
we have

|(φ ∗ µ)(z)− (φ ∗ µ)(z0)| =

∣∣∣∣
∫

Rd

φ(z − y)dµ(y)−
∫

Rd

φ(z0 − y)dµ(y)

∣∣∣∣

=

∣∣∣∣
∫

Rd

(φ(z − y)− φ(z0 − y))dµ(y)

∣∣∣∣

≤
∫

Rd

|φ(z − y)− φ(z0 − y)|d|µ|(y).

Since ‖(z− y)− (z0− y)‖ = ‖z− z0‖ < δ, for all y ∈ Rd, then it follows
from (4.3) that

∫
Rd |(φ(z− y)−φ(z0− y))| d|µ|(y) <

∫
Rd

ǫ
‖µ‖d|µ|(y) = ǫ.

Since z0 and ǫ > 0 are arbitrary, we obtain the continuity of φ ∗ µ in
Rd.
Let us show (4.2). Let φ ∈ W 1 and µ ∈ M(Rd) be given. Then

‖φ ∗ µ‖W 1 =
∑
k∈Zd

esssup
x∈[0,1]d

∣∣∣∣∣
∫

Rd

φ(x+ k − y) dµ(y)

∣∣∣∣∣ ≤
∑
k∈Zd

∫

Rd

esssup
x∈[0,1]d

|φ(x+ k − y)| d|µ|(y) ≤

∫

Rd

(
∑
k∈Zd

esssup
x∈[0,1]d

|φ(x+ k − y)|
)
d|µ|(y) =

∫

Rd

‖φ(· − y)‖W 1 d|µ|(y).

Since ‖φ(· − y)‖W 1 ≤ 2d‖φ‖W 1 , for all y ∈ R
d, we get

∫

Rd

‖φ(· − y)‖W 1d|µ|(y) ≤
∫

Rd

2d‖φ‖W 1d|µ|(y) = 2d‖φ‖W 1‖µ‖.

Therefore, we get (4.2). �

The next proposition collects basic facts about Wiener amalgam
spaces, shift invariant spaces V p(Φ), and separated sets in Rd.

Proposition 4.2. Let Φ ∈ (W 1
0 )

(r), −→µ ∈ (M(Rd))(t), f =
∑
k∈Zd

CT
k Φk,

where C ∈ (ℓp(Zd))(r), and Φk = Φ(· − k), for all k ∈ Z
d. Let also

X = {xj , j ∈ J} be a separated set in Rd with a separation constant
δ > 0. Then

(4.4) Φ ∗ −→µ ∈ (W 1
0 )

(r×t);

(4.5) ‖Φ ∗ −→µ ‖(W 1)(r×t) ≤ 2d‖Φ‖(W 1)(r)‖−→µ ‖(M(Rd))(t);

(4.6) V p(Φ) ⊂ W p
0 , for all 1 ≤ p ≤ ∞;

(4.7) ‖f‖W p ≤ ‖C‖(ℓp(Zd))(r)‖Φ‖(W 1)(r);
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(4.8) ‖f(X)‖ℓp(J) ≤ N‖f‖W p , where N = N (δ, p, d) = (

√
d

δ
+ 1)d/p.

Proof. First, Lemma 4.1 immediately implies (4.4).
Next, to prove (4.5) consider Φ = (φ1, . . . , φr)T ∈ (W 1

0 )
r and −→µ =

(µ1, . . . , µt) ∈ (M(Rd))(t). Then using (4.2), we obtain

‖Φ ∗ −→µ ‖(W 1)(r×t) =

t∑

j=1

r∑

i=1

‖φi ∗ µj‖W 1 ≤

t∑

j=1

r∑

i=1

2d‖φi‖W 1‖µj‖ = 2d‖Φ‖(W 1)(r)‖−→µ ‖(M(Rd))(t) .

Next, we prove (4.7). Consider 1 ≤ p < ∞ and f =
∑
k∈Zd

CT
k Φk. For

each 1 ≤ s ≤ r let as(l) = esssup
x∈[0,1]d

|φs(x + l)|, for all l ∈ Zd. Then

‖as‖ℓ1(Zd) = ‖φs‖W 1 . Consequently, ‖a‖(ℓ1(Zd))(r) = ‖Φ‖(W 1)(r), where

a = (a1, . . . , ar)T , and Φ = (φ1, . . . , φr)T . Hence,

esssup
x∈[0,1]d

|f(x+l)| ≤
r∑

s=1

∑

k∈Zd

|cs(k)|esssup
x∈[0,1]d

|φs(x+l−k)| =
r∑

s=1

(as∗|cs|)(l).

By using Young and triangular inequalities, we have

‖f‖W p ≤
r∑

s=1

‖as ∗ |cs|‖ℓp ≤
r∑

s=1

‖as‖ℓ1‖cs‖ℓp.

Consequently, ‖f‖W p ≤ ‖C‖(ℓp(Zd))r‖Φ‖(W 1)(r) .
Next, let us show (4.6). Let f ∈ V p(Φ) be given. Then f =∑
k∈Zd CT

k Φk, for some C ∈ (ℓp(Zd))(r). Since (4.7) implies f ∈ W p,
it remains to show the continuity of f . Let us first consider the case
1 ≤ p < ∞. We observe that W p ⊂ W∞ = L∞(Rd) (see Theorem 2.1
in [4]), and, hence,

(4.9) ‖f‖L∞(Rd) ≤ d1‖f‖W p,

for some d1 > 0 independent of f . Let fn =
∑

|k|≤nC
T
k Φk be a partial

sum of f . Since Φ ∈ (W 1
0 )

(r), then {fn}n∈N is a sequence of continuous
functions, and from (4.7) and (4.9) we obtain

‖f − fn‖L∞(Rd) ≤ d1‖Φ‖(W 1)(r)




r∑

i=1




∑

|k|>n

|cik|p



1/p

 .
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Therefore, the sequence of continuous functions {fn}n∈N converges uni-
formly to the function f . Thus, f is a continuous function as well. To
treat the case p = ∞, we choose a sequence {Φn}n≥1 of continuous func-
tions with compact support (see Theorem 3.1 in [4] for details) such
that ‖Φn −Φ‖(W 1)(r) → 0 as n→ ∞. Set fn(x) =

∑
k∈Zd CT

k Φn(x− k).
Since the sum is locally finite, then each fn is continuous. By using
(4.7) once again, we estimate

‖fn − f‖L∞(Rd) ≤ d1‖C‖(ℓ∞(Zd))(r)‖Φn − Φ‖(W 1)(r).

It follows that the sequence of continuous functions {fn}n≥1 converges
uniformly to f . Hence, f is a continuous function as well.
Finally, let us prove (4.8). Since X = {xj, j ∈ J} ⊂ R is sep-

arated with a separation constant δ > 0, then infj 6=k |xj − xk| ≥ δ.

Consequently, there exist at most ([
√
d
δ
] + 1)d sampling points in every

d-dimensional hypercube [0, 1]d + l, l ∈ Zd. Therefore,
∑

j:xj∈[0,1]d+l

|f(xj)|p ≤ (δ−1
√
d+ 1)desssup

x∈[0,1]d
|f(x)|p,

and, hence, ‖f(X)‖ℓp(J) ≤ N‖f‖W p, for all f ∈ W p, where N =

(δ−1
√
d+ 1)d/p. �

Using (4.4) and (4.5), we obtain the following result.

Corollary 4.3. Let Λ : (W 1
0 )

(r)× (M(Rd))(t) −→ (W 1
0 )

(r×t) be defined
by Λ(Φ,−→µ ) = Φ∗−→µ . Then Λ is a bounded bilinear form, and ‖Λ‖ ≤ 2d,
where

‖Λ‖ = sup{‖Λ(Φ,−→µ )‖(W 1
0 )

(r×t) : ‖Φ‖(W 1
0 )

(r) ≤ 1, ‖−→µ ‖(M(Rd))(t) ≤ 1}.
The following lemma, proved, for example, in [5], states that a small

perturbation of a Riesz basic sequence remains a Riesz basic sequence.

Lemma 4.4. Let Φ ∈ (W 1)(r) satisfy (2.2). Then there exists ǫ0 > 0
such that every Θ ∈ (W 1)(r) satisfying ‖Φ − Θ‖(W 1)(r) ≤ ǫ < ǫ0, also

satisfies (2.2), for some 0 < m
′

p ≤M
′

p <∞ and

(4.10) m
′

p ≥ mp − ǫ and M
′

p ≤ ‖Φ‖(W 1)(r) + ǫ.

4.2. Proofs for Section 3.1.

Now we are ready to prove the first of our main results.

Proof of Theorem 3.1.

Proof. Assume that −→µ ∈ (M(Rd))(t), Φ ∈ (W 1
0 )

(r) satisfies (2.2), and
X = {xj, j ∈ J} ⊂ Rd satisfies (2.5). We want to find ǫ0 > 0 such
that whenever ‖Φ−Θ‖(W 1)(r) ≤ ǫ < ǫ0, then (3.1) takes place for some
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0 < A
′

p ≤ B
′

p < ∞. Assume 0 < ǫ < mp. Then, by Lemma 4.4, Θ ∈
(W 1)(r) satisfies (2.2) and we can use representations g =

∑
k∈Zd CT

k Θk

and f =
∑

k∈Zd CT
k Φk, C ∈ (ℓp(Zd))(r). Consequently, we have

1

M ′

p

‖g‖Lp ≤ ‖C‖(ℓp(Zd))(r) ≤
1

mp
‖
∑

k∈Zd

CT
k Φk‖Lp =

1

mp
‖f‖Lp

≤ A−1
p

mp
‖(f ∗ −→µ )(X)‖(ℓp(J))(t)

=
A−1

p

mp

∥∥∥∥∥

((
∑

k∈Zd

CT
k Φk

)
∗ −→µ

)
(X)

∥∥∥∥∥
(ℓp(J))(t)

=
A−1

p

mp

t∑

l=1

∥∥∥∥∥

((
∑

k∈Zd

CT
k Φk

)
∗ µl

)
(X)

∥∥∥∥∥
ℓp(J)

≤ A−1
p

mp

t∑

l=1

∥∥∥∥∥

(
∑

k∈Zd

CT
k Ξ

l
k

)
(X)

∥∥∥∥∥
ℓp(J)

+
A−1

p

mp
‖(g ∗ −→µ ) (X)‖(ℓp(J))(t) ,

where

(4.11) Ξl
k := ((φ1

k − θ1k) ∗ µl, . . . , (φr
k − θrk) ∗ µl), l = 1, . . . , t.

Since Φ and Θ are elements of (W 1
0 )

(r) and −→µ ∈ (M(Rd))(t), then by
(4.4), we have Ξl = (Φ − Θ) ∗ µl ∈ (W 1

0 )
(r), for l = 1, . . . , t. Hence,

using (4.5), (4.6) and condition (2.2) for g =
∑

k∈Zd CT
k Θk, we have

∑t
l=1

∥∥(
∑

k∈Zd CT
k Ξ

l
k)(X)

∥∥
ℓp(J)

≤
2dN‖C‖(ℓp(Zd))(r)‖Φ−Θ‖(W 1)(r)‖−→µ ‖(M(Rd))(t) ≤

2dN‖Φ−Θ‖
(W 1)(r)

‖−→µ ‖
(M(Rd))(t)

m′

p

‖g‖Lp.

Therefore,

1

M ′

p

‖g‖Lp ≤
A−1

p 2dN‖Φ−Θ‖(W1)(r)‖−→µ ‖(M(Rd))(t)

mpm
′

p

‖g‖Lp +

+
A−1

p

mp
‖(g ∗ −→µ )(X)‖(ℓp(J))(t) .
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Hence,

(
Apmp

M ′

p

−
2dN‖Φ−Θ‖(W 1)(r)‖−→µ ‖(M(Rd))(t)

m′

p

)
‖g‖Lp

≤ ‖(g ∗ −→µ )(X)‖(ℓp(J))(t) .
(4.12)

On the other hand, since Θ ∈ (W 1
0 )

(r) and −→µ ∈ (M(Rd))(t), it follows
from (4.4) that (θ1 ∗ µl, . . . , θr ∗ µl) ∈ (W 1

0 )
(r), l = 1, . . . , t. Therefore,

(4.7), (4.8) and the first of the estimates in (4.10) imply that

‖(g ∗ −→µ )(X)‖(ℓp(J))(t) = ‖((
∑

k∈Zd

CT
k Θk) ∗ −→µ )(X)‖(ℓp(J))(t)

≤ N‖((
∑

k∈Zd

CT
k Θk) ∗ −→µ )‖(W p)(r)

≤ 2dN‖−→µ ‖(M(Rd))(t)‖
∑

k∈Zd

CT
k Θk‖(W p)(r)

≤ 2dN‖−→µ ‖(M(Rd))(t)‖C‖(ℓp(Zd))(r)‖Θ‖(W 1)(r)

≤
2dN‖−→µ ‖(M(Rd))(t)

m′

p

(‖Φ‖(W 1)(r) + ǫ)‖g‖Lp

≤
2dN‖−→µ ‖(M(Rd))(t)(‖Φ‖(W 1)(r) + ǫ)

mp − ǫ
‖g‖Lp.

Hence,
(4.13)

‖(g ∗ −→µ )(X)‖(ℓp(J))(t) ≤
(
2dN‖−→µ ‖(M(Rd))(t)(‖Φ‖(W 1)(r) + ǫ)

mp − ǫ

)
‖g‖Lp.

Using the estimates (4.10) and the left hand side of the inequality
(4.12), we can obtain an explicit upper bound ǫ0 for ǫ from

Apmp

‖Φ‖(W 1)(r) + ǫ
−

2dN‖−→µ ‖(M(Rd))(t)

mp − ǫ
ǫ = 0.

This is equivalent to the quadratic equation

ǫ2 + Cpǫ−
Apm

2
p

2dN‖−→µ ‖(M(Rd))(t)
= 0,

where

Cp = ‖Φ‖(W 1)(r) +
Apmp

2dN‖−→µ ‖(M(Rd))(t)
.
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Let ǫ0 be the positive solution of the previous equation, i.e.,

ǫ0 =
1

2

(√
C2

p +
4Apm2

p

2dN‖−→µ ‖(M(Rd))(t)
− Cp

)
.

Then, for 0 < ǫ < ǫ0 < mp, we use (4.12), (4.13), and (4.10) to obtain

A
′

p =
Apmp

‖Φ‖(W 1)(r) + ǫ
−

2dN‖−→µ ‖(M(Rd))(t)

mp − ǫ
ǫ,

B
′

p =
2dN‖−→µ ‖(M(Rd))(t)(‖Φ‖(W 1)(r) + ǫ)

mp − ǫ
,

and the proof is complete. �

Proof of Theorem 3.4.

Proof. Let f =
∑

k∈Zd CT
k Φk ∈ V p(Φ), C ∈ (ℓp(Zd))(r). We have

Ap‖f‖Lp ≤ ‖(f ∗ −→µ )(X)‖(ℓp(J))(t)
≤ ‖(f ∗ (−→µ −−→α ))(X)‖(ℓp(J))(t) + ‖(f ∗ −→α )(X)‖(ℓp(J))(t)

=
t∑

l=1

‖(f ∗ (µl − αl))(X)‖ℓp(J) + ‖(f ∗ −→α )(X)‖(ℓp(J)(t)

=

t∑

l=1

‖((
∑

k∈Zd

CT
k Φk) ∗ (µl − αl))(X)‖ℓp(J) + ‖(f ∗ −→α )(X)‖(ℓp(J))(t) .

Since −→µ and −→α are in (M(Rd))(t), and Φ ∈ (W 1
0 )

(r), then Proposition
4.2 implies Ωl = (φ1 ∗ (µl − αl), . . . , φr ∗ (µl − αl)) ∈ (W 1

0 )
(r), for

l = 1, . . . , t. Using Proposition 4.2 once again we have:

Ap‖f‖Lp ≤
t∑

l=1

N‖C‖(ℓp(Zd))(r)‖Ωl‖(W 1)(r) + ‖(f ∗ −→α )(X)‖(ℓp(J))(t)

≤ 2dN‖C‖(ℓp(Zd))(r)‖Φ‖(W 1)(r)‖−→µ −−→α ‖(M(Rd))(t) + ‖(f ∗ −→α )(X)‖(ℓp(J))(t) .
Taking into account Φ ∈ (W 1)(r) also satisfies (2.2), and f satisfies
(2.5), then it follows

2dN‖C‖(ℓp(Zd))(r)‖Φ‖(W 1)(r)‖−→µ−−→α ‖(M(Rd))(t) ≤
2dN‖f‖Lp‖Φ‖(W 1)(r)‖−→µ −−→α ‖(M(Rd))(t)

mp
.

Hence,
(4.14)(
Ap −

2dN‖Φ‖(W 1)(r)‖−→µ −−→α ‖(M(Rd))(t)

mp

)
‖f‖Lp ≤ ‖(f∗−→α )(X)‖(ℓp(J))(t) .
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On the other hand, since f ∈ V p(Φ) satisfies (2.5), we have

‖(f ∗ −→α )(X)‖(ℓp(J))(t) ≤ ‖(f ∗ (−→α −−→µ ))(X)‖(ℓp(J))(t) + ‖(f ∗ −→µ )(X)‖(ℓp(J))(t)

=

t∑

l=1

‖(f ∗ (αl − µl))(X)‖ℓp(J) + ‖(f ∗ −→µ )(X)‖(ℓp(J))(t)

≤
t∑

l=1

‖((
∑

k∈Zd

CT
k Φk) ∗ (αl − µl))(X)‖ℓp(J) +Bp‖f‖Lp

≤ 2dN‖C‖(ℓp(Zd))(r)‖Φ‖(W 1)(r)‖−→µ −−→α ‖(M(Rd))(t) +Bp‖f‖Lp.

Using condition (2.2), we obtain:
(4.15)

‖(f∗−→α )(X)‖(ℓp(J))(t) ≤
(
2dN‖Φ‖(W 1)(r)‖−→µ −−→α ‖(M(Rd))(t)

mp
+Bp

)
‖f‖Lp.

From (4.14) and (4.15), by choosing

ǫ0 =
Apmp

2dN‖Φ‖(W 1)(r)
,

we obtain for 0 < ǫ < ǫ0,

A
′

p = Ap −
2dN‖Φ‖(W 1)(r)

mp
ǫ, and

B
′

p = Bp +
2dN‖Φ‖(W 1)(r)

mp
ǫ.

�

Proof of theorem 3.6.

The conclusion of the theorem is essentially obvious at this point.
We proceed with a formal proof in order to obtain estimates for ǫ0 and
the bounds A

′

p and B
′

p of X as an −→α -sampling set for V p(Θ).

Proof. Let 0 < ǫ1 <
1
2

(√
C2

p +
4Apm2

p

2dN‖−→µ ‖
(M(Rd))(t)

− Cp

)
, where

Cp = ‖Φ‖(W 1)(r) +
Apmp

2dN‖−→µ ‖(M(Rd))(t)
.

Then, by Theorem 3.1, X is a −→µ -sampling set for V p(Θ) as soon as

‖Φ−Θ‖(W 1)(r) ≤ ǫ1.

Moreover,

A
′′

p‖g‖Lp ≤ ‖(g ∗ −→µ )(X)‖(ℓp(J))(t) ≤ B
′′

p‖g‖Lp, for all g ∈ V p(Θ),
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where

A
′′

p =
Apmp

‖Φ‖(W 1)(r) + ǫ1
−

2dN‖−→µ ‖(M(Rd))(t)

mp − ǫ1
ǫ1

and

B
′′

p =
2dN‖−→µ ‖(M(Rd))(t)(‖Φ‖(W 1)(r) + ǫ1)

mp − ǫ1
.

Assume now that

0 < ǫ2 ≤
A

′′

p(mp − ǫ1)

2dN (‖Φ‖(W 1)(r) + ǫ1)
.

Then, by Theorem 3.4, X is an −→α -sampling set for V p(Θ) as soon as

‖Φ−Θ‖(W 1)(r) ≤ ǫ1 and ‖−→µ −−→α ‖(M(Rd))(t) ≤ ǫ2.

Hence, if 0 < ǫ < ǫ0 = min{ǫ1, ǫ2}, we obtain the sampling bounds

A
′

p = A
′′

p −
2dN (‖Φ‖(W 1)(r) + ǫ1)

mp − ǫ1
ǫ2,

and

B
′

p = B
′′

p +
2dN (‖Φ‖(W 1)(r) + ǫ1)

mp − ǫ1
ǫ2,

as soon as

‖Φ−Θ‖(W 1)(r) + ‖−→µ −−→α ‖(M(Rd))(t) ≤ ǫ < ǫ0.

�

Proof of Theorem 3.8.

The theorem is immediately implied by Lemma 2.2 and the following
result.

Lemma 4.5. Let (X,Φ,−→µ ) be a p-stable sampling model for some p ∈
[1,∞] and X̃ = X +∆. Let U be the sampling operator for (X,Φ,−→µ )

and U∆ be the sampling operator for (X̃,Φ,−→µ ). Then ‖U − U∆‖ → 0
as ‖∆‖∞ → 0.

Proof. We recall that for any γ > 0, the function oscγ g on Rd is defined
by

oscγ g(x) = sup
|∆x|<γ

|g(x+∆x)− g(x)|.

From Lemma 8.1 in [4] it follows that if g ∈ W 1
0 , then oscγ g ∈ W 1,

and ‖ oscγ g‖W 1 → 0 as γ → 0. Therefore, by applying Proposition 4.2
we get

oscγ Φ ∗ −→µ ∈ (W 1)(r×t), and ‖ oscγ Φ ∗ −→µ ‖(W 1)(r×t) → 0 as γ → 0,
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where

oscγ Φ ∗ −→µ =




oscγ φ
1 ∗ µ1 . . . oscγ φ

1 ∗ µt

...
...

oscγ φ
r ∗ µ1 . . . oscγ φ

r ∗ µt


 .

For any m ∈ Zd there exist at most ([δ−1
√
d] + 1)d sampling points in

every hypercube [0, 1]d +m. We set Xm = X
⋂
([0, 1]d +m), m ∈ Zd,

and, for each 1 ≤ i ≤ r and 1 ≤ l ≤ t, define the sequence

bi,l(m) := esssupx∈[0,1]d {osc‖∆‖∞ (φi ∗ µl)(x+m)}, m ∈ Z
d.

Then ‖bi,l‖ℓ1(Zd) = ‖ osc‖∆‖∞ (φi ∗ µl)‖W 1 and, hence,

‖b‖(ℓ1(Zd))(r×t) = ‖ osc‖∆‖∞ Φ ∗ −→µ ‖(W 1)(r×t).

For 1 ≤ i ≤ r and 1 ≤ l ≤ t we have

‖(U i,l − U i,l
∆ )ci‖pℓp(J) =

∑

xj∈X

∣∣∣∣∣
∑

k∈Zd

cik
(
(φi ∗ µl)(xj − k))− (φi ∗ µl)(xj + δj − k)

)
∣∣∣∣∣

p

≤
∑

xj∈X

(
∑

k∈Zd

|cik| osc‖∆‖∞ (φi ∗ µl)(xj − k)

)p

≤
∑

m∈Zd

N p

(
∑

k∈Zd

|cik|bi,l(m− k)

)p

= N p‖|ci| ∗ bi,l‖p
ℓp(Zd)

,

where N = (δ−1
√
d+ 1)d/p. By using Young’s inequality we obtain

N p‖|ci| ∗ bi,l‖p
ℓp(Zd)

≤ N p‖ci‖p
ℓp(Zd)

‖bi,l‖pl1
= N p‖ci‖p

ℓp(Zd)
‖ osc‖∆‖∞ φi ∗ µl‖p

W 1 .

Consequently,

‖U i,l − U i,l
∆ ‖ ≤ N‖ osc‖∆‖∞ φi ∗ µl‖W 1 .

Hence,

‖U − U∆‖ ≤ N‖ osc‖∆‖∞ Φ ∗ −→µ ‖(W 1)(r×t) → 0 as ‖∆‖∞ → 0,

and the lemma is proved. �

Proof of Theorem 3.10.

Proof. The proof of Theorem 3.10 is hidden in the proofs of Theorems
3.1, 3.4, and 3.8. In particular, keeping the notation of the proof of
Theorem 3.1, we have

‖((f − g) ∗ −→µ )(X)‖(ℓp(J))(t) ≤ 2dN‖C‖(ℓp(Zd))(r)‖Φ−Θ‖(W 1)(r)‖−→µ ‖(M(Rd))(t) .
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Hence, Theorem 3.10 is true, when −→µ = −→α and X = X +∆. Keeping
the notation of the proof of Theorem 3.4, we have

‖(f∗(−→α−−→µ ))(X)‖(ℓp(J))(t) ≤ 2dN‖C‖(ℓp(Zd))(r)‖Φ‖(W 1)(r)‖−→µ−−→α ‖(M(Rd))(t).

This inequality implies Theorem 3.10 when Φ = Θ and X = X +
∆. Combining these results with Theorem 3.8 via the standard ǫ/3
argument we prove the general case. �

4.3. Proofs for Section 3.2.

We begin with an auxiliary technical result for the convolution of
functions with measures.

Lemma 4.6. Let Φ = (φ1, . . . , φr)T be a vector of continuous functions,
s > d, and −→µ ∈ (Ms(R

d))(t). If |φi(x)| ≤ C i
0(1 + |x|)−s for all 1 ≤ i ≤

r, then
|(Φ ∗ −→µ )(x)| ≤ C1(1 + |x|)−s;

the constants C i
0 > 0, 1 ≤ i ≤ r, and C1 > 0 are independent of x ∈ R

d.

Proof. For 1 ≤ i ≤ r and 1 ≤ j ≤ t we have

|(φi ∗ µj)(x)| ≤
∫

Rd

|φi(x− y)|d|µj|(y)

≤ C i
0

∫

Rd

(1 + |x− y|)−sd|µj|(y).

Since (1+ |u+w|)−l ≤ (1+ |u|)l(1+ |w|)−l, for all u, w ∈ Rd, and l ≥ 0,
we have

|(φi ∗ µj)(x)| ≤ C i
0

∫

Rd

(1 + |y|)s(1 + |x|)−sd|µj|(y)

= C i
0(1 + |x|)−s

∫

Rd

(1 + |y|)sd|µj|(y)

≤ C i,j
1 (1 + |x|)−s,

where the last inequality follows from µj ∈ Ms(R
d). Therefore,

|(Φ ∗ −→µ )(x)| ≤ C1(1 + |x|)−s,

where C1 =
∑r

i=1

∑t
j=1C

i,j
1 . �

Remark 4.1. If {Φk}k∈Zd is an s-localized Riesz generator for V 2(Φ), as

in Definition 3.4, then, by Lemma 14(a) in [15], we have that {Φ̃k}k∈Zd

is also an s-localized Riesz generator for V 2(Φ). Consequently, by
Lemma 4.6 we have

(4.16) |(Φ̃ ∗ −→µ )(x)| ≤ D1(1 + |x|)−s,

for some D1 > 0 independent of x ∈ R
d.
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Proof of Proposition 3.11.

Proof. Let X be a −→µ -sampling set for V 2(Φ), −→µ ∈ (M(Rd))(t). Then,
by definition, there exist constants 0 < A2 ≤ B2 <∞ such that

(4.17) A2‖f‖L2 ≤ ‖(f ∗−→µ )(X)‖(ℓ2(J))(t) ≤ B2‖f‖L2, for all f ∈ V 2(Φ).

Fix xj ∈ X . Then, for each 1 ≤ i ≤ t, the function gixj
: V 2(Φ) → C

given by gixj
(f) = (f ∗ µi)(xj) is a bounded linear functional on the

closed subspace V 2(Φ) of L2(Rd) because |gixj
(f)| ≤ B2‖f‖L2 for all f ∈

V 2(Φ). Consequently, by Riesz representation theorem, there exists
ψi
xj

∈ V 2(Φ) such that gixj
(f) = 〈f, ψi

xj
〉 for all f ∈ V 2(Φ). It follows

immediately from (4.17) and Definition 3.1 that Ψxj
= (ψ1

xj
, . . . , ψt

xj
)T

is a frame for V 2(Φ). Hence, every f ∈ V 2(Φ) can be recovered via f =∑
j∈J〈f,Ψxj

〉Ψ̃xj
, where {Ψ̃xj

= (ψ̃1
xj
, . . . , ψ̃t

xj
)T}j∈J is a dual frame of

{Ψxj
}j∈J and the series converges unconditionally in V 2(Φ). Since

〈f,Ψxj
〉 = (f ∗ −→µ )(xj) for all j ∈ J , we get (3.3). �

Next, we show that if the generator Φ and the measures −→µ satisfy
an appropriate decay condition then the (−→µ ,X)-sampling frame {Ψxj

}
obtained above is s-localized.

Proposition 4.7. Let s > d, Φ ∈ Ws, and
−→µ ∈ (Ms(R

d))(t). If X is
a −→µ -sampling set for V 2(Φ), then the (−→µ ,X)-sampling frame {Ψxj

} is
s-localized with respect to the Riesz basis {Φk}k∈Zd.

Proof. Since {Φk}k∈Zd is an s-localized Riesz generator for V 2(Φ), the
components of Φ satisfy (3.6), and Lemma 4.6 implies

|〈Φk,Ψ
T
xj
〉| = |(Φ ∗ −→µ )(xj − k)| ≤ C1(1 + |xj − k|)−s,

for some C1 > 0 independent of j ∈ J and k ∈ Zd. On the other hand,

it follows from Remark 4.1 that the dual Riesz basis {Φ̃k}k∈Zd is also an
s-localized Riesz generator for V 2(Φ), and its components also satisfy
(3.6). Therefore, using Lemma 4.6 once again, we get

|〈Φ̃k,Ψ
T
xj
〉| = |(Φ̃ ∗ −→µ )(xj − k)| ≤ D1(1 + |xj − k|)−s,

for some D1 > 0 independent of j ∈ J and k ∈ Zd. Hence, {Ψxj
}

satisfies all conditions of Definition 3.3. �

We conclude this subsection with the proof of the main result of
section 3.2.

Proof of Theorem 3.12



ON STABILITY OF SAMPLING-RECONSTRUCTION MODELS 27

Proof. Assume the hypotheses of Theorem 3.12. By Propositions 3.11
and 4.7, there exists a (−→µ ,X)-sampling frame {Ψxj

}j∈J for V 2(Φ),
which is s-localized with respect to the Riesz basis {Φk}k∈Zd and sat-
isfies

〈f,Ψxj
〉 = (f ∗ −→µ )(xj), for all f ∈ V 2(Φ).

Moreover,

f =
∑

j∈J
(f ∗ −→µ )(xj)Ψ̃xj

, for all f ∈ V 2(Φ).

Consequently, applying Theorem 10(c) in [15], we get

f =
∑

j∈J
(f ∗ −→µ )(xj)Ψ̃xj

, for all f ∈ V p(Φ),

where the series converges unconditionally in V p(Φ), 1 ≤ p < ∞.
Moreover, since {Ψxj

}j∈J is an s-localized frame with respect to the
Riesz basis {Φk}k∈Zd, then Theorem 10(d) in [15] implies that for each
1 ≤ p ≤ ∞ there exist 0 < Ap ≤ Bp <∞ such that

Ap‖f‖Lp ≤ ‖(f ∗ −→µ )(X)‖(ℓp(J))(t) ≤ Bp‖f‖Lp, for all f ∈ V p(Φ),

i.e., X is a −→µ -sampling set for V p(Φ) and the theorem is proved. �

4.4. Proofs for section 3.3.

For the proof of Theorem 3.18 we need the following two lemmas.

Lemma 4.8. Let the assumptions of Theorem 3.18 hold. Then

‖U∗U − U∗
∆U∆‖ < ǫ (2βp + ǫ) .

Proof. Since ‖U‖ = ‖U∗‖ and ‖U − U∆‖ = ‖U∗ − U∗
∆‖,

‖U∗U − U∗
∆U∆‖ = ‖U∗U − U∗U∆ + U∗U∆ − U∗

∆U∆‖
= ‖U∗(U − U∆) + (U∗ − U∗

∆)U∆‖
≤ ‖U∗‖‖U − U∆‖+ ‖U∗ − U∗

∆‖‖U∆‖
≤ ‖U − U∆‖ (‖U‖+ ‖U∆‖)
≤ ‖U − U∆‖ (2‖U‖+ ‖U − U∆‖)
≤ ǫ (2βp + ǫ) ,

and the lemma is proved. �

Lemma 4.9. Let the assumptions of Theorem 3.18 hold. Then 0 <
ν < 1, (U∗

∆U∆)
−1 exists, and ‖(U∗U)−1 − (U∗

∆U∆)
−1‖ < ν

η2p(1−ν)
.
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Proof. Since (U∗U)−1 exists,

(4.18) U∗
∆U∆ = U∗U

(
I + (U∗U)−1 (U∗

∆U∆ − U∗U)
)
.

From (2.6) and (3.8) we get that for all C ∈ (ℓp(Zd))(r)

1

β2
p

‖C‖(ℓp(Zd))(r) ≤ ‖(U∗U)−1C‖(ℓp(Zd))(r) ≤
1

η2p
‖C‖(ℓp(Zd))(r) .

From the above inequalities and Lemma 4.8 we have

‖(U∗U)−1 (U∗
∆U∆ − U∗U) ‖ ≤ ‖(U∗U)−1‖‖U∗

∆U∆ − U∗U‖
≤ 1

η2p
ǫ (2βp + ǫ) < 1

η2p
(−βp +

√
β2
p + η2p)

(
2βp − βp +

√
β2
p + η2p

)
= 1.

Hence, ν = 1
η2p
ǫ (2βp + ǫ) ∈ (0, 1). To simplify the notation, we define

M := U∗U, M∆ := U∗
∆U∆, and N := (U∗U)−1 (U∗

∆U∆ − U∗U) .

Since ‖N‖ ≤ ν < 1, then (I+N)−1 exists and is given by the Neumann
series

(I +N)−1 =

∞∑

q=0

(−1)qN q.

From (4.18) we obtain

(4.19) M−1
∆ = [M(I +N)]−1 = (I +N)−1M−1.

Therefore, M−1
∆ = (U∗

∆U∆)
−1 exists.

Now we need to give an upper bound for ‖M−1−M−1
∆ ‖. Using (4.19)

we obtain

M−1 −M−1
∆ = N(I +N)−1M−1.

Consequently,

‖M−1 −M−1
∆ ‖ ≤ ‖N‖‖(I +N)−1‖‖M−1‖

≤ ‖N‖
1− ‖N‖‖M

−1‖ ≤ ν

1− ν
η−2
p ,

(4.20)

and the lemma is proved. �

Proof of theorem 3.18.
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Proof. Using the notations from Lemmas 4.8, 4.9, and the previous
proofs, we get

‖(U∗U)−1U∗ − (U∗
∆U∆)

−1U∗
∆‖ = ‖M−1U∗ −M−1

∆ U∗
∆‖

= ‖M−1U∗ −M−1U∗
∆ +M−1U∗

∆ −M−1
∆ U∗

∆‖
= ‖M−1(U∗ − U∗

∆) + (M−1 −M−1
∆ )U∗

∆‖
≤ ‖M−1‖‖U∗ − U∗

∆‖+ ‖M−1 −M−1
∆ ‖‖U∗

∆‖

≤ 1

η2p

(
ǫ+

ν (ǫ+ βp)

1− ν

)
.

�

Proof of Theorem 3.19.

Proof. Let U∆ be the sampling operator for a perturbed sampling model
(X + ∆,Θ,−→α ). Let also C ∈ (ℓp(Zd))(r), f =

∑
k∈Zd CT

k Φk, and g =∑
k∈Zd CT

k Θk. Then

‖R(g ∗ −→α )(X +∆)− f‖Lp ≤Mp

∥∥((U∗U)−1U∗U∆C − C)
∥∥
ℓp
.

It remains to apply Theorem 3.18 to finish the proof. �

Proof of Theorem 3.20.

Proof. Assume the hypotheses of Theorem 3.20. From Theorem 3.12
we know that, in this case, the sampling model (X,Φ,−→µ ) is p-stable
for every p ∈ [1,∞]. Hence, in view of Theorem 3.19, the only thing
that we need to prove is that the operator U∗U is invertible for all
p ∈ [1,∞] and not just for p = 2.
Taking into account that for each 1 ≤ i ≤ r and 1 ≤ l ≤ t the entries

of the matrix of the operator U i,l satisfy

|(U i,l)j,k| = |(φi ∗ µl)(xj − k)| ≤ C1(1 + |xj − k|)−s,

for some C1 > 0 independent of j ∈ J and k ∈ Zd, it follows from
Lemma 3 in [15] that the matrix of U defines a bounded linear operator
from (ℓp(Zd))(r) → (ℓp(J))(t) for all 1 ≤ p ≤ ∞. Hence, U∗ is also well
defined as a bounded linear operator from (ℓp(J))(t) → (ℓp(Zd))(r), and,
therefore, U∗U : (ℓp(Zd))(r) → (ℓp(Zd))(r) is a well defined and bounded
operator for all 1 ≤ p ≤ ∞. On the other hand, since the operator
U∗U is invertible on (ℓ2(Zd))(r) and its components (M i,l)j,k, 1 ≤ i ≤ r,
1 ≤ l ≤ r, satisfy a decay condition

|(M i,l)j,k| ≤ C2(1 + |xj − k|)−s,

for some C2 > 0 independent of j ∈ J and k ∈ Zd, then Jaffard’s
Lemma (see Theorem 5 in [15]) implies that (U∗U)−1 : (ℓ2(Zd))(r) →
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(ℓ2(Zd))(r) is also a bounded linear operator defined by a matrix sat-
isfying the same off-diagonal decay condition as U∗U . Consequently,
using Lemma 3 in [15] once again, we get that the matrix of (U∗U)−1

defines a bounded linear operator on (ℓp(Zd))(r) for all 1 ≤ p ≤ ∞.
The theorem is proved. �
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[15] K. Gröchenig, Localization of Frames, Banach Frames, and the Invertibility of
the Frame Operator, J. Fourier Anal. Appl., 10(2004)105-132.
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