Skip to main content
Log in

Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we propose a numerical reconstruction method for solving a backward heat conduction problem. Based on the idea of reproducing kernel approximation, we reconstruct the unknown initial heat distribution from a finite set of scattered measurement of transient temperature at a fixed final time. Standard Tikhonov regularization technique using the norm of reproducing kernel is adopt to provide a stable solution when the measurement data contain noises. Numerical results indicate that the proposed method is stable, efficient, and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    MATH  MathSciNet  Google Scholar 

  2. Bukhgeĭm, A.L.: Introduction to the Theory of Inverse Problems. V.S.P. Intl Science (1999)

  3. Carasso, A.: Error bounds in the final value problem for the heat equation. SIAM J. Math. Anal. 7, 195–199 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang, J.-R., Liu, C.-S., Chang, C.-W.: A new shooting method for quasi-boundary regularization of backward heat conduction problems. Int. J. Heat Mass Transfer 50, 2325–2332 (2007)

    Article  MATH  Google Scholar 

  5. Chiwiacowsky, L., de Campos Velho, H.: Different approaches for the solution of a backward heat conduction problem. Inverse Probl. Eng. 11, 471–494 (2003)

    Article  Google Scholar 

  6. Davies, E.B.: Heat kernels and spectral theory. In: Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  7. Fu, C.-L., Xiong, X.-T., Qian, Z.: Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 331, 472–480 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao, X., Xiong, X.T., Nie, Y., Fu, C.L.: Fourier regularization method for solving a backward heat conduction problem. J. Lanzhou Univ. Nat. Sci. 42, 119–120 (2006)

    MathSciNet  Google Scholar 

  9. Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston, MA (1984)

    MATH  Google Scholar 

  10. Han, H., Ingham, D., Yuan, Y.: The boundary element method for the solution of the backward heat conduction equation. J. Comput. Phys. 116, 292–299 (1995)

    Article  MATH  Google Scholar 

  11. Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Iijima, K., Onishi, K.: Lattice-free finite difference method for numerical solution of inverse heat conduction problem. Inverse Probl. Sci. Eng. 15, 93–106 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Itô, S.: Diffusion equations. In: Translations of Mathematical Monographs, vol. 114. American Mathematical Society, Providence, RI (1992)

    Google Scholar 

  14. Kirkup, S., Wadsworth, M.: Solution of inverse diffusion problems by operator-splitting methods. Appl. Math. Model. 26, 1003–1018 (2002)

    Article  MATH  Google Scholar 

  15. Lattès, R., Lions, J.-L.: The Method of Quasi-reversibility. Applications to Partial Differential Equations. American Elsevier Publishing Co., Inc., New York (1969)

    Google Scholar 

  16. Lin, T., Ewing, R.: A direct numerical method for an inverse problem for the heat equation via hyperbolic perturbation, decision and control, 1988. In: Proceedings of the 27th IEEE Conference on, vol. 1, pp. 240–244 (1988)

  17. Liu, C.-S.: Group preserving scheme for backward heat conduction problems. Int. J. Heat Mass Transfer 47, 2567–2576 (2004)

    Article  MATH  Google Scholar 

  18. Liu, J.: Numerical solution of forward and backward problem for 2-D heat conduction equation. J. Comput. Appl. Math. 145, 459–482 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Matsuura, T., Saitoh, S., Trong, D.D.: Approximate and analytical inversion formulas in heat conduction on multidimensional spaces. J. Inverse Ill-Posed Probl. 13, 479–493 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mera, N., Elliott, L., Ingham, D.D.B.: An inversion method with decreasing regularization for the backward heat conduction problem. Numer. Heat Transf. B 42, 215–230 (2002)

    Article  Google Scholar 

  21. Mera, N., Elliott, L., Ingham, D., Lesnic, D.: An iterative boundary element method for solving the one dimensional backward heat conduction problem. Int. J. Heat Mass Transfer 44, 1937–1946 (2001)

    Article  MATH  Google Scholar 

  22. Mera, N.S.: The method of fundamental solutions for the backward heat conduction problem. Inverse Probl. Sci. Eng. 13, 65–78 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Muniz, W., Ramos, F., de Campos Velho, H.: Entropy- and Tikhonov-based regularization techniques applied to the backwards heat equation. Comput. Math. Appl. 40, 1071–1084 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Muniz, W.B., de Campos Velho, H.F., Ramos, F.M.: A comparison of some inverse methods for estimating the initial condition of the heat equation. J. Comput. Appl. Math. 103, 145–163 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Payne, L.E.: Improperly Posed Problems in Partial Differential Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA (1975)

    MATH  Google Scholar 

  26. Qian, Z., Fu, C.-L., Shi, R.: A modified method for a backward heat conduction problem. Appl. Math. Comput. 185, 564–573 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Saitoh, S.: Theory of reproducing kernels and its applications. In: Pitman Research Notes in Mathematics Series, vol. 189. Longman Scientific & Technical, UK (1988)

    Google Scholar 

  28. Schaback, R.: Solving the Laplace equation by meshless collocation using harmonic kernels. Adv. Comput. Math. 28, 283–299 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shen, S.-Y.: A numerical study of inverse heat conduction problems. Comput. Math. Appl. 38, 173–188 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shidfar, A., Zakeri, A.: A numerical technique for backward inverse heat conduction problems in one-dimensional space. Appl. Math. Comput. 171, 1016–1024 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Takeuchi, T., Yamamoto, M.: Tikhonov regularization by a reproducing kernel Hilbert space for the Cauchy problem for an elliptic equation. SIAM J. Sci. Comput. 31, 112–142 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  33. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-posed Problems. Kluwer Academic Publishers Group, Dordrecht (1995)

    MATH  Google Scholar 

  34. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  35. Xiong, X.-T., Fu, C.-L., Qian, Z.: Two numerical methods for solving a backward heat conduction problem. Appl. Math. Comput. 179, 370–377 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yamamoto, M., Zou, J.: Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Probl. 17, 1181–1202 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Hon.

Additional information

Communicated by Charles A. Micchelli.

The work described in this paper was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 101209).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hon, Y.C., Takeuchi, T. Discretized Tikhonov regularization by reproducing kernel Hilbert space for backward heat conduction problem. Adv Comput Math 34, 167–183 (2011). https://doi.org/10.1007/s10444-010-9148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9148-1

Keywords

Mathematics Subject Classifications (2010)

Navigation