Skip to main content
Log in

QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose and investigate numerical methods based on QR factorization for computing all or some Lyapunov or Sacker–Sell spectral intervals for linear differential-algebraic equations. Furthermore, a perturbation and error analysis for these methods is presented. We investigate how errors in the data and in the numerical integration affect the accuracy of the approximate spectral intervals. Although we need to integrate numerically some differential-algebraic systems on usually very long time-intervals, under certain assumptions, it is shown that the error of the computed spectral intervals can be controlled by the local error of numerical integration and the error in solving the algebraic constraint. Some numerical examples are presented to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adrianova, L.Ya.: Introduction to linear systems of differential equations. In: Trans. Math. Monographs, vol. 146. AMS, Providence (1995)

    Google Scholar 

  2. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  3. Balla, K., Linh, V.H.: Adjoint pairs of differential-algebraic equations and Hamiltonian systems. Appl. Numer. Math. 53, 131–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benettin, G., Galgani, G., Giorgilli, L., Strelcyn, J.M.: Lyapunov exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part I: theory and part II: numerical applications. Meccanica 15, 9–20, 21–30 (1980)

    Google Scholar 

  5. Benner, P., Byers, R.: An arithmetic for matrix pencils: theory and new algorithms. Numer. Math. 103, 539–573 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohl, P.: Über Differentialungleichungen. J. f. d. Reine und Angew. Math. 144, 284–313 (1913)

    Google Scholar 

  7. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential Algebraic Equations, 2nd edn. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  8. Bridges, T.J., Reich, S.: Computing Lyapunov exponents on a Stiefel manifold. Physica, D 156, 219–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campbell, S.L.: Linearization of DAE’s along trajectories. Z. Angew. Math. Phys. 46, 70–84 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chern, J.-L., Dieci, L.: Smoothness and periodicity of some matrix decompositions. SIAM J. Matrix Anal. Appl. 22, 772–792 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chyan, C.J., Du, N.H., Linh, V.H.: On data-dependence of exponential stability and the stability radii for linear time-varying differential-algebraic systems. J. Diff. Equ. 245, 2078–2102 (2008)

    Article  MATH  Google Scholar 

  12. Cong, N.D., Nam, H.: Lyapunov’s inequality for linear differential algebraic equation. Acta Math. Vietnam. 28, 73–88 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Cong, N.D., Nam, H.: Lyapunov regularity of linear differential algebraic equations of index 1. Acta Math. Vietnam. 29, 1–21 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Daleckii, J.L., Krein, M.G.: Stability of Solutions of Differential Equations in Banach Spaces. American Mathematical Society, Providence (1974)

    Google Scholar 

  15. Dieci, L., Eirola, T.: On smooth decompositions of matrices. SIAM J. Matrix Anal. Appl. 20, 800–819 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dieci, L., Russell, R.D., Van Vleck, E.S.: Unitary integrators and applications to continuous orthonormalization techniques. SIAM J. Numer. Anal. 31, 261–281 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dieci, L., Russell, R.D., Van Vleck, E.S.: On the computation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34, 402–423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Appl. Numer. Math. 17, 275–291 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dieci, L., Van Vleck, E.S.: Lyapunov and other spectra: a survey. In: Collected Lectures on the Preservation of Stability Under Discretization (Fort Collins, CO, 2001), pp. 197–218. SIAM, Philadelphia (2002)

    Google Scholar 

  20. Dieci, L., Van Vleck, E.S.: Lyapunov spectral intervals: theory and computation. SIAM J. Numer. Anal. 40, 516–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dieci, L., Van Vleck, E.S.: On the error in computing Lyapunov exponents by QR methods. Numer. Math. 101, 619–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dieci, L., Van Vleck, E.S.: Perturbation theory for approximation of Lyapunov exponents by QR methods. J. Dyn. Diff. Equ. 18, 815–842 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dieci, L., Van Vleck, E.S.: Lyapunov and Sacker–Sell spectral intervals. J. Dyn. Diff. Equ. 19, 265–293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dieci, L., Van Vleck, E.S.: On the error in QR integration. SIAM J. Numer. Anal. 46, 1166–1189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diehl, M., Leineweber, D.B., Schäfer, A., Bock, H.G., Schlöder, J.P.: Optimization of multiple-fraction batch distillation with recycled waste cuts. AIChE J. 48(12), 2869–2874 (2002)

    Article  Google Scholar 

  26. Diehl, M., Uslu, I., Findeisen, R., Schwarzkopf, S., Allgöwer, F., Bock, H.G., Bürner, T., Gilles, E.D., Kienle, A., Schlöder, J.P., Stein, E.: Real-time optimization for large scale processes: nonlinear model predictive control of a high purity distillation column. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems: State of the Art, pp. 363–384. Springer, Heidelberg (2001)

    Google Scholar 

  27. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Systems. Teubner, Stuttgart (1998)

    Google Scholar 

  28. Geist, K., Parlitz, U., Lauterborn, W.: Comparison of different methods for computing Lyapunov exponents. Prog. Theoret. Phys. 83, 875–893 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  30. Greene, J.M., Kim, J.-S.: The calculation of Lyapunov spectra. Physica D 24, 213–225 (1983)

    Article  MathSciNet  Google Scholar 

  31. Griepentrog, E., März, R.: Differential-Algebraic Equations and their Numerical Treatment. Teubner, Leipzig (1986)

    MATH  Google Scholar 

  32. Günther, M., Feldmann, U.: CAD-based electric-circuit modeling in industry I. Mathematical structure and index of network equations. Surv. Math. Ind. 8, 97–129 (1999)

    MATH  Google Scholar 

  33. Günther, M., Feldmann, U.: CAD-based electric-circuit modeling in industry II. Impact of circuit configurations and parameters. Surv. Math. Ind. 8, 131–157 (1999)

    MATH  Google Scholar 

  34. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  35. Kunkel, P., Mehrmann, V.: Characterization of classes of singular linear differential-algebraic equations. Electr. J. Lin. Alg. 13, 359–386 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Kunkel, P., Mehrmann, V.: Differential–Algebraic Equations. Analysis and Numerical Solution. EMS, Zürich (2006)

    Book  MATH  Google Scholar 

  37. Kunkel, P., Mehrmann, V.: Stability properties of differential-algebraic equations and spin-stabilized discretizations. Electr. Trans. Numer. Anal. 26, 385–420 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Kunkel, P., Mehrmann, V., Rath, W., Weickert, J.: A new software package for linear differential-algebraic equations. SIAM J. Sci. Comput. 18, 115–138 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kunkel, P., Mehrmann, V., Seidel, S.: A MATLAB package for the numerical solution of general nonlinear differential-algebraic equations. Technical Report 16/2005, Institut für Mathematik, TU Berlin, Berlin, Germany (2005). http://www.math.tu-berlin.de/preprints/

  40. Linh, V.H., Mehrmann, V.: Lyapunov, Bohl and Sacker–Sell spectral intervals for differential-algebraic equations. J. Dyn. Diff. Equ. 21, 153–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lyapunov, A.M.: The general problem of the stability of motion. Translated by A. T. Fuller from Edouard Davaux’s French translation (1907) of the 1892 Russian original. Int. J. Control, 55, 521–790 (1992)

    MathSciNet  Google Scholar 

  42. Otter, M., Elmqvist, H., Mattson, S.E.: Multi-domain modeling with modelica. In: Fishwick, P. (ed.) CRC Handbook of Dynamic System Modeling. CRC, Boca Raton (2006)

    Google Scholar 

  43. Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential-algebraic equations. IN: Handbook of Numerical Analysis, vol. VIII, pp. 183–540. North-Holland, Amsterdam (2002)

    Google Scholar 

  44. Riaza, R.: Differential-algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, Hackensack (2008)

    Book  MATH  Google Scholar 

  45. Riaza, R.: Stability loss in quasilinear DAEs by divergence of a pencil eigenvalue. SIAM J. Math. Anal. 41, 2226–2245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sacker, R.J., Sell, G.R.: A spectral theory for linear differential systems. J. Diff. Equ. 27, 320–358 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stewart, G.W.: Perturbation bounds for the \(\mathit{QR}\) factorization of a matrix. SIAM J. Numer. Anal. 14, 509–518 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  48. Van Vleck, E.S.: On the error in the product \(\mathit{QR}\) decomposition. SIAM J. Matrix Anal. Appl. 31, 1775–1791 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Mehrmann.

Additional information

Communicated by Rafael Bru.

This research was supported by Deutsche Forschungsgemeinschaft, through Matheon, the DFG Research Center “Mathematics for Key Technologies” in Berlin.

V.H. Linh’s work was supported by Alexander von Humboldt Foundation and in part by NAFOSTED grant 101.02.63.09; E.S. Van Vleck’s work was supported in part by NSF grants DMS-0513438 and DMS-0812800.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linh, V.H., Mehrmann, V. & Van Vleck, E.S. QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations. Adv Comput Math 35, 281–322 (2011). https://doi.org/10.1007/s10444-010-9156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9156-1

Keywords

Mathematics Subject Classifications (2010)

Navigation