Skip to main content
Log in

Minimizing and maximizing the Euclidean norm of the product of two polynomials

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of minimizing or maximizing the quotient

$$f_{m,n}(p,q):=\frac{\|{pq}\|}{\|{p}\|\|{q}\|} \ ,$$

where \(p=p_0+p_1x+\dots+p_mx^m\), \(q=q_0+q_1x+\dots+q_nx^n\in{\mathbb K}[x]\), \({\mathbb K}\in\{{\mathbb R},{\mathbb C}\}\), are non-zero real or complex polynomials of maximum degree \(m,n\in{\mathbb N}\) respectively and \(\|{p}\|:=(|p_0|^2+\dots+|p_m|^2)^{\frac{1}{2}}\) is simply the Euclidean norm of the polynomial coefficients. Clearly f m,n is bounded and assumes its maximum and minimum values min f m,n = f m,n(p min, q min) and max f m,n = f(p max, q max). We prove that minimizers p min, q min for \({\mathbb K}={\mathbb C}\) and maximizers p max, q max for arbitrary \({\mathbb K}\) fulfill \(\deg(p_{\min})=m=\deg(p_{\max})\), \(\deg(q_{\min})=n=\deg(q_{\max})\) and all roots of p min, q min, p max, q max have modulus one and are simple. For \({\mathbb K}={\mathbb R}\) we can only prove the existence of minimizers p min, q min of full degree m and n respectively having roots of modulus one. These results are obtained by transferring the optimization problem to that of determining extremal eigenvalues and corresponding eigenvectors of autocorrelation Toeplitz matrices. By the way we give lower bounds for min f m,n for real polynomials which are slightly better than the known ones and inclusions for max f m,n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beauzamy, B., Bombieri, E., Enflo, P., Montgomery, H.L.: Products of polynomials in many variables. J. Number Theory 36, 219–245 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd, D.W.: Two sharp inequalities for the norm of a factor of a polynomial. Mathematika 39, 341–349 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, D.W.: Sharp inequalities for the product of polynomials. Bull. Lond. Math. Soc. 26, 449–454 (1994)

    Article  MATH  Google Scholar 

  4. Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Springer, New York (1995)

    Book  MATH  Google Scholar 

  5. Borwein, P.: Exact inequalities for the norms of factors of polynomials. Can. J. Math. 46(4), 687–698 (1994)

    Article  MATH  Google Scholar 

  6. Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)

    Article  MATH  Google Scholar 

  7. Data, L., Morgera, S.D.: Comments and corrections on “On the eigenvectors of symmetric Toeplitz matrices”. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-32, no. 2, 440,441 (1984)

  8. Delsarte, P., Genin, Y.: Spectral properties of finite Toeplitz matrices. In: Fuhrmann, P.A. (ed.) Mathematical Theory of Networks and Systems: Proc. MTNS-83 Int. 17 Symp., Beer Sheva, Israel, June 1983. Lecture Notes in Control and Information Sciences, vol. 58, pp. 194–213. Springer, New York (1984)

    Google Scholar 

  9. Genin, Y.: A survey of the eigenstructure properties of finite Hermitian Toeplitz matrices. Integr. Equ. Oper. Theory 10, 621–639 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grenander, U., Szegö, G.: Toeplitz Forms and Their Applications. University of California Press, Berkeley (1958)

    MATH  Google Scholar 

  11. Gueguen, C.: Linear prediction in the singular case and the stability of eigen models. In: Acoustics, Speech and Signal Processing, IEEE International Conference on ICASSP 6, pp. 881–885 (1981)

  12. Kneser, H.: Das Maximum des Produktes zweier Polynome. In: Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl., pp. 426–431 (1934)

  13. Makhul, J.: On the eigenvectors of symmetric Toeplitz matrices. IEEE Transactions on Acoustic, Speech and Signal Processing ASSP-29, no. 4, 868–872 (1981)

  14. Pisarenko, V.F.: The retrieval of Harmonics from a Covariance Function. Geophys. J. R. Astron. Soc. 33, 347–366 (1973)

    MATH  Google Scholar 

  15. Reddi, S.S.: Eigenvector properties of Toeplitz matrices and their application to spectral analysis of time. Signal Process. 7, 45–56 (1984)

    Article  MathSciNet  Google Scholar 

  16. Robinson, E.: Statistical Communication and Detection. Griffin, London (1967)

    Google Scholar 

  17. Rump, S.M., Sekigawa, H.: The ratio between the Toeplitz and the unstructured condition number. Oper. Theory Adv. Appl. 199, 397–419 (2009)

    MathSciNet  Google Scholar 

  18. Sheil-Small, T.: Complex Polynomials. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bünger.

Additional information

Communicated by Juan Manuel Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bünger, F. Minimizing and maximizing the Euclidean norm of the product of two polynomials. Adv Comput Math 35, 193–215 (2011). https://doi.org/10.1007/s10444-010-9158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9158-z

Keywords

Mathematics Subject Classifications (2010)

Navigation