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GREVILLE’S METHOD FOR PRECONDITIONING LEAST

SQUARES PROBLEMS

XIAOKE CUI∗, KEN HAYAMI† , AND J-F YIN‡

Abstract. In this talk, we present a preconditioner for least squares problems min ‖b − Ax‖2,
where A can be matrices with any shape or rank. When A is rank deficient, our preconditioner
will be rank deficient too. The preconditioner itself is a sparse approximation to the Moore-Penrose
inverse of the coefficient matrix A. We will also discuss the similarity between this preconditioner
and the Robust Incomplete Factorization preconditioner [1].
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1. Introduction. Consider the least squares problem,

min
x∈Rn

‖b − Ax‖2,(1)

where A ∈ Rm×n, b ∈ Rm.
When A is large and sparse, iterative methods are preferred for solving (1). In [8],

Hayami et al. proposed using use GMRES [14] to solve least squares problems by using
some preconditioners. If we have a preconditioner B ∈ Rn×m and we precondition
(1) from the left, we can transform problem (1) to

min
x∈Rn

‖Bb − BAx‖2.(2)

On the other hand, we can also precondition problem (1) from the right and transform
the problem (1) to

min
y∈Rm

‖b − ABy‖2.(3)

When A is a nonsingular matrix, one way to precondition (1) is to construct B to be
an approximation to the inverse of A. Thus B is called Approximate Inverse(AINV)
Preconditioners [13], which were originally developed for solving large sparse linear
systems of the form

Ax = b,(4)

where A is square and nonsingular. Since here we assume that A is rectangular and
not necessarily full rank, we consider how to construct a preconditioner M , which is
an approximation to the Moore-Penrose inverse[12] of A, and use M to precondition
the least squares problem (1).
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1.1. Greville’s Method. Greville’s method [7] is an old method for computing
the Moore-Penrose inverse of a matrix A. It is based on the following idea. Given
a rectangular matrix A ∈ Rm×n, rank(A) = r ≤ min{m, n} and A’s Moore-Penrose
inverse A†, how can we compute the Moore-Penrose inverse of

A + cdT , c ∈ Rm, d ∈ Rn,(5)

which is a rank-one update of A?
To compute the Moore-Penrose inverse of A, we write A in the following summa-

tion form,

A =

n
∑

i=1

aie
T
i ,(6)

where ai is the ith column of A, ei is the ith column of an identity matrix of order
m. Further let Ai = [a1, . . . , ai, 0, . . . , 0]. Hence we have

Ai =

i
∑

k=1

aie
T
i , i = 1, . . . , n,(7)

and if we denote A0 = 0m×n, then Ai = Ai−1 + aie
T
i , i = 1, . . . , n. Thus every Ai,

i = 1, . . . , n is a rank-one update of Ai−1. Noticing that A
†
0 = 0n×m, we can use

the following formula to compute the Moore-Penrose inverse of Ai, and in the end we
obtain A†

n, which is A†.

A
†
i =

{A
†
i−1 + (ei − A

†
i−1ai)((I − Ai−1A

†
i−1)ai)

† if ai 6∈ R(Ai−1)

A
†
i−1 + 1

σi
(ei − A

†
i−1ai)(A

†
i−1ai)

T A
†
i−1 if ai ∈ R(Ai−1)

,(8)

where σi = 1 + ‖A†
i−1ai‖

2
2. We can judge if ai ∈ R(Ai−1) or not by observing vector

u := (I − Ai−1A
†
i−1)ai, since

ai 6∈ R(Ai−1) ⇔ u = (I − Ai−1A
†
i−1)ai 6= 0,(9)

ai ∈ R(Ai−1) ⇔ u = (I − Ai−1A
†
i−1)ai = 0.(10)

This method was proposed by Greville in the 1960s[7].

1.2. Matrix Factorization. From Greville’s method, a factorization for the
Moore-Penrose inverse of A can be obtained. If we define vectors ki, fi and vi as

ki = A
†
i−1ai,(11)

ui = ai − Ai−1ki = (I − Ai−1A
†
i−1)ai,(12)

σi = 1 + ‖ki‖
2
2,(13)

fi =
{

‖ui‖
2
2 if ai 6∈ R(Ai−1)

σi if ai ∈ R(Ai−1)
,(14)

vi =
{ ui if ai 6∈ R(Ai−1)

(A†
i−1)

T ki if ai ∈ R(Ai−1)
,(15)

we can express A
†
i in a unified form for general matrices as A

†
i = A

†
i−1 + 1

fi
(ei−ki)v

T
i ,

hence

A† =

n
∑

i=1

1

fi

(ei − ki)v
T
i .(16)
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If we denote

K = [k1, . . . , kn],(17)

V = [v1, . . . , vn],(18)

F = Diag {f1, · · · , fn} ,(19)

we obtain a matrix factorization of A† as follows.
Theorem 1.1. Let A ∈ Rm×n and rank(A) ≤ min{m, n}. Using the above

notations, the Moore-Penrose inverse of A has the following factorization

A† = (I − K)F−1V T .(20)

Here I is the identity matrix of order n, K is a strict upper triangular matrix, F is a
diagonal matrix, whose diagonal elements are all positive.

If A is full column rank, then

V = A(I − K)(21)

A† = (I − K)F−1(I − K)T AT .(22)

2. Main results. In this paper, we perform an incomplete version of Greville’s
method, so that we can construct an approximate Moore-Penrose inverse of A, main-
taining the sparsity of the preconditioner and saving computations. We call the fol-
lowing algorithm the Matrix-wise Greville Preconditioning algorithm, since it forms
or updates the whole matrix at a time rather than column by column.

Algorithm 1. Matrix-wise Greville Preconditioning algorithm
1. set M0 = 0
2. for i = 1 : n

3. ki = Mi−1ai

4. ui = ai − Ai−1ki

5. if ‖ui‖ 6= 0
6. fi = ‖ui‖

2
2

7. vi = ui

8. else
9. fi = 1 + ‖ki‖

2
2

10. vi = MT
i−1ki

11. end if
12. Mi = Mi−1 + 1

fi
(ei − ki)v

T
i

13. perform numerical droppings to M
†
i

14. end for
15. Get Mn ≈ A†.
Remark 1. In Algorithm 1, we do not need to store vectors ki, vi, fi, i = 1, . . . , n,

because we form the M
†
i explicitly.

If we want to construct the matrix K, F and V without forming Mi explicitly,
we can use a vector-wise version of the above algorithm. In Algorithm 1, the column
vectors of K are constructed one column at a step as follows,
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ki = Mi−1ai

=

i−1
∑

p=1

(ep − kp)
1

fp

vT
p ai

=
i−2
∑

p=1

(ep − kp)
1

fp

vT
p ai + (ei−1 − ki−1)

1

fi−1
vT

i−1ai

= Mi−2ai + (ei−1 − ki−1)
1

fi−1
vT

i−1ai.

To form the last column of K, the requirement relationship can be expended as follows,

kn = Mn−1an

ր տ

Mn−2an kn−1 = Mn−2an−1

ր տ ր տ

Mn−3an kn−2 = Mn−3an−2 Mn−3an−1 kn−2 = Mn−3an−2

. . . . . . .

Hence, to update ki, we need to compute every M
†
i ak, i = 1, . . . n−1, k = i+1, . . . , n.

Based on vectors ki, i = 1, . . . , n, vectors vi, i = 1, . . . n and scalars fi, i =
1, . . . , n can be computed easily. In the following, we rewrite Algorithm 1 into a
vector-wise form.

Algorithm 2. Vector-wise Greville Preconditioning Algorithm
1. set K = 0n×n

2. for i = 1 : n

3. u = ai − Ai−1ki

4. if ‖u‖ 6= 0
5. fi = ‖u‖2

2

6. vi = u

7. else
8. fi = ‖ki‖

2
2 + 1

9. vi = (Mi−1)
T ki =

i−1
∑

p=1

1

fp

vp(ep − kp)
T ki

10. end if
11. for j = i + 1, . . . , n

12. kj = kj +
vT

i aj

fi
(ei − ki)

13. perform numerical droppings on kj

14. end for
15. end for
16. K = [k1, . . . , kn], F = Diag {f1, . . . , fn}, V = [v1, . . . , vn].

Remark 2. When numerical droppings are performed, we have the following
relationships,

A† ≈ M = (I − K)F−1V T

V = A(I − K) when A is full column rank.
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2.1. Greville’s Method and RIF preconditioner. In this section, we espe-
cially take a look at the full column rank case. When A is full column rank, Algorithm
2 can be simplified as follows.

Algorithm 3. Vector-wise Greville Preconditioning Algorithm for Full Column
Rank Matrices

1. set K = 0n×n

2. for i = 1 : n

3. ui = ai − Ai−1ki

4. fi = ‖ui‖
2
2

5. for j = i + 1, . . . , n

6. kj = kj +
uT

i aj

fi
(ei − ki)

7. perform numerical droppings on kj

8. end for
9. end for

10. K = [k1, . . . , kn], F = Diag{f1, . . . , fn}.

In Algorithm 3,

u = ai − Ai−1ki

= [a1, . . . , ai, 0, . . . , 0]























−ki,1

...
−ki,i−1

1
0
...
0























= Ai(ei − ki)

= A(ei − ki).

If we denote ei − ki as zi, then ui = Azi.

The Line 6 in the Algorithm 3, can also be rewritten as

kj = kj +
uT

i aj

‖ui‖2
2

(ei − ki)

ej − kj = ej − kj −
uT

i aj

‖ui‖2
2

(ei − ki)

zj = zj −
uT

i aj

‖ui‖2
2

zi.

Denote di = ‖ui‖
2
2 and θ =

uT
i aj

di

. Then combining all the new notations, we can

rewrite the algorithm as follows.
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Algorithm 4.

1. set Z = In×n

2. for i = 1 : n

3. ui = Aizi

4. di = (ui, ui)
5. for j = i + 1, . . . , n

6. θ =
(ui,aj)

di

7. zj = zj − θzi

8. perform numerical droppings on zj

9. end for
10. end for
11. Z = [z1, . . . , zn], D = Diag{d1, . . . , dn}.

Remark 3. Since zi = ei − ki, we have Z = I − K. In exact arithmetic, the
factorization of A† in Theorem 1.1 can be rewritten as

A† = ZD−1ZT AT .(23)

Hence, we obtain that,

(AT A)−1 = ZD−1ZT .(24)

And if we define Z−T = L, the above equation equals

AT A = LDLT ,(25)

which is a LDLT decomposition of AT A.
In Line 6, since ui = Azi, and aj = Aej, where ej is the jth column of an identity

matrix,

θ =
(ui, aj)

di

=
(Azi, Aej)

(Azi, Azi)
=

(zi, ej)AT A

(zi, zi)AT A

.(26)

Since when A is full column rank, AT A is SPD, which implies that (·, ·)AT A is a
well defined inner product. If we do not perform numerical droppings in Algorithm 4,
Algorithm 4 is nothing but a Gram-Schmidt process with respect to inner product
(·, ·)AT A. If θ in Line 6 is changed to

θ =
(zi, zj)AT A

(zi, zi)AT A

,(27)

then Algorithm 4 is in corresponding to Modified Gram-Schmidt process with
respect to inner product (·, ·)AT A.

From the above discussion, for full column rank rectangular matrices A, both
Algorithm 4 and RIF which was proposed by Benzi and T̊uma [1, section 3] perform
a AT A-orthogonalization. Hence when the same numerical droppings strategy is used,
Algorithm 4 and RIF obtain the same Z.

When A is rank deficient, Algorithm 4 and RIF which was proposed by Benzi
and Tůma in [1] may breakdown due to a vector ui which is very close to zero. On
the other hand, the Greville’s method tries to overcome the rank deficiency in A.
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In [3], R. Bru, J. Mart́ın, J. Mas and M. Tůma proposed Balanced Incomplete

Factorization, which was based on inverse Sherman-Morrison formula. Suppose that
the general nonsymmetric matrix A can be written as

A = A0 +

n
∑

k=1

xkyT
k ,(28)

where A0 is a nonsingular matrix and {xk}
n
k=1 and {yk}

n
k=1 are two sets of vectors in

Rn. The inverse of A when using the Sherman-Morrison formula [4] is given by

A−1
0 − A−1 = A−1

0 UA0
D−1

A0
V T

A0
A−1

0 ,(29)

where UA0
and VA0

have the column vectors uk and vk given by,

uk = xk −
k

∑

i=1

vT
i A−1

0 xk

ri

ui and vk = yk −
k

∑

i=1

yT
k A−1

0 ui

ri

vi(30)

respectively, and DA0
= diag(r1, . . . , rn), rk = 1 + yT

k A−1
0 xk for k = 1, . . . n. Hence,

if we define Ak = A0 +
∑n

i=1 xiy
T
i , and assume we know A−1

0 , we can compute
A−1

k by rank-one update from A−1
k−1, and finally we can obtain A−1. This method

looks very similar to Greville’s method, since both of them are based on rank-one
update. However, if we let A0 = sI, where s is a nonzero scalar, and I is an identity
matrix, then let s go to zero, we can see that A−1

0 → inf. Notice that in Greville’s
method, we start from a zero matrix, hence, Greville’s method is not a generalization
to Sherman-Morrison formula, which implies that our preconditioning algorithm is
not a generalization to BIF preconditioner.

2.2. Numerical Examples. In this subsection we present some numerical re-
sults to compare our Greville’s method with the RIF preconditioner. More results will
be shown in the future. All computations were run on a Dell Precision 690, where
the CPU is 3 GHz and the memory is 16 GB, and the programming language and
compiling environment was GNU C/C++ 3.4.3 in Redhat Linux.

We tested the matrices from University of Florida Sparse Matrix Collection. We
use Greville’s preconditioners and RIF preconditioners to precondition GMRES to
solve a least squares problem (1), where b is A times a vector whose elements are all
ones. And the stopping criterion is

‖AT (b − Ax)‖2 < 10−8‖AT b‖2.

The information of the matrix is listed below. The original matrix has some zero
columns and rows, here we consider the matrix without zero columns and rows.

Table 1

Information on the matrix

Name m n rank density(%)
Maragal 2 536 260 171 2.24
lp cycle 3371 1890 1875 0.3

In Algorithm 2, Line 4, we use ‖u‖2 to judge if the column ai is linearly indepen-
dent with previous columns or not. In practice, since we perform numerical droppings,
Line 4 does not work well, hence we used the following inequality

‖u‖2 < τs ∗ ‖Ai−1‖F ∗ ‖ai‖2,(31)
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where τs is a threshold. If the inequality (31) holds, we take ai as a linearly
dependent column. Denote the dropping tolerance as τd, we have the following results.

Table 2

Maragal 2, the number of rank deficient columns is 89

τd \ τs 10−1 10−2 10−3 10−4 10−5 10−6

10−1 254 (0.02) 20 (0.02) 8 (0.02) 4 (0.02) 3 (0.03) 3 (0.02)
× 170 (0.19) 169 (0.15) 170 (0.15) 170 (0.14) 170 (0.13)
× 0.21 0.17 0.17 0.17 0.15

10−2 254 (0.04) 39 (0.08) 4 (0.04) 0 (0.04) 0 (0.04) 0 (0.04)
× 94 (0.10) 131 (0.12) 118 (0.1) 118 (0.1) 118 (0.1)
× 0.18 0.16 0.14 0.14 0.14

10−3 254 (0.12) 71 (0.15) 8 (0.06) 2 (0.05) 0 (0.06) 0 (0.06)
× 56 (0.05) 71 (0.07) 83 (0.1) 106 (0.13) 106 (0.12)
× 0.20 * 0.13 0.15 0.19 0.18

10−4 254 (0.24) 95 (0.22) 22 (0.1) 4 (0.08) 2 (0.07) 1 (0.07)
× × 47 (0.06) 88 (0.15) 65 (0.09) 86 (0.1)
× × 0.16 0.23 0.16 0.17

10−5 254 (0.33) 95 (0.24) 71 (0.19) 24 (0.1) 3 (0.08) 2 (0.09)
× × 15 (0.02) 30 (0.03) 70 (0.11) 101 (0.15)
× × 0.21 * 0.13 0.19 0.24

10−6 254 (0.36) 95 (0.25) 77 (0.21) 59 (0.17) 16 (0.1) 3 (0.09)
× × * 13 (0.02) * 13 (0.02) 33 (0.05) 75 (0.09)
× × 0.22 0.19 0.16 0.18

In Table 2, in each cell, the first row is the number of columns that the method
recognized as linearly dependent columns (preconditioning time), the second row is
number of iterations (iteration time), and the third row is total cpu time. ’×’ means
no convergence is achieved in 2000 steps. The best cpu time and number of iterations
are indicated by ∗.

In Table 2, when no linearly dependent columns are detected, we end up with the
RIF preconditioners. From the table, we can see that when too many columns ( more
than 89 ) are recognized as linearly dependent columns , GMRES does not converge,
however if we can detect some linearly dependent columns, usually convergence is
accelerated.

For this problem, the best cpu time and number of iterations are both achieved
by Greville’s method.

Table 3

lp cycle, the number of rank deficient columns is 15, τs = 10−6

τd 10−1 10−2 10−3 10−4 10−5 10−6

Pre. T 12(1.11) 12(1.27) 12(1.80) 15(2.68) 17(3.59) 17(4.46)
Its. T 1668(90.74) 1264(56.38) 721(23.11) 280(6.57) 63(1.39) 38(0.90)
Tot. T 91.85 57.65 24.91 9.26 * 4.98 5.36

In Table 3, we have results for matrix lp cycle. In ”Pre. T” row, we list ”number
of linearly dependent columns we detected ( preconditioning time)”, in ”Its. T”, we
list ”number of iterations ( iteration time )”, and in ”Tol. T”, we gave out the total.

For this matrix, RIF preconditioning algorithm breaks down at the 182th column
of A, which is the first linearly dependent column of A.
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