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Università di Milano-Bicocca, Dipartimento di Matematica e Applicazioni
Via R. Cozzi 53, 20125 Milano, Italia

lucia.romani@unimib.it

Abstract

In this paper we describe a general, computationally feasible strategy to
deduce a family of interpolatory non-stationary subdivision schemes from
a symmetric non-stationary, non-interpolatory one satisfying quite mild as-
sumptions. To achieve this result we extend our previous work [C. Conti,
L. Gemignani, L. Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971–
1987] to full generality by removing additional assumptions on the input sym-
bols. For the so obtained interpolatory schemes we prove that they are capable
of reproducing the same exponential polynomial space as the one generated
by the original approximating scheme. Moreover, we specialize the compu-
tational methods for the case of symbols obtained by shifted non-stationary
affine combinations of exponential B-splines, that are at the basis of most non-
stationary subdivision schemes. In this case we find that the associated family
of interpolatory symbols can be determined to satisfy a suitable set of general-
ized interpolating conditions at the set of the zeros (with reversed signs) of the
input symbol. Finally, we discuss some computational examples by showing
that the proposed approach can yield novel smooth non-stationary interpola-
tory subdivision schemes possessing very interesting reproduction properties.
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1 Introduction

Binary interpolatory subdivision schemes are efficient iterative procedures for the
generation of interpolatory curves: starting with the set of points to be interpolated,
at each recursion step a new point is inserted in between any two given points so
that the limit curve, whenever exists, not only interpolates the initial set of points
but also all the points generated through the whole process. Taking into account
that a curve is displayed on the screen by visualizing a discrete set of its points,
from a computational viewpoint interpolatory subdivision schemes turn out to be
more efficient than classical interpolating methods in several situations. In fact the
limit points obtained within five or six subdivision iterations are in general enough
for a good discrete representation of the limit shape. This is one of the reasons
why interpolatory subdivision schemes are widely used in applications and often
preferred to standard methods.

Two important areas where interpolatory subdivision schemes play a crucial role
are Computer Aided Geometric Design (CAGD) and wavelets construction (see [10]
and [18], respectively). In these fields a fundamental issue that recently emerged
is concerned with the study of numerical algorithms for converting known approxi-
mating schemes into new interpolatory ones. Starting from the works [17] and [22],
where the conversion is obtained for a specific approximating scheme by means of a
push-back or a tweak operator, geometric approaches based on the idea that an in-
terpolatory refinement can be interpreted as an averaging step on the control points
followed by a further adjustment of some of them to fit the interpolation constraints
were presented [15, 16]. Very recently a completely different technique relying upon
the interplay between polynomial and structured matrix computations has been pro-
posed in [5]. In that work for a given symmetric Hurwitz approximating symbol an
associated family of interpolatory symbols is determined in such a way to satisfy an
auxiliary polynomial equation. As it clearly appears, although the latter strategy
turns out to be more general than the previous ones, it is limited to the context
of stationary subdivision schemes. Being non-stationary subdivision schemes more
powerful than stationary ones and very attractive in several applications such as in
CAGD (because of their ability to reproduce conic sections, spirals or widely used
trigonometric curves) it is of fundamental importance to provide a general and ef-
ficient method to convert a given non-stationary, non-interpolatory scheme into a
family of interpolatory ones. To our knowledge, there exists only a new paper [1]
addressing this problem, which presents a strategy that is restricted to the case of
symmetric subdivision masks of odd width, namely symmetric subdivision symbols
of even degree.

The goal of this paper is to elaborate on our recent work [5] to progress along
different directions. In particular, (i) we extend the applicability of the proposed
construction, (ii) we investigate the reproduction properties of the so-obtained in-
terpolatory schemes and (iii) we design algorithms specifically suited for the case of
approximating symbols generated from exponential B-splines, that are at the basis of
most non-stationary subdivision schemes. More specifically, in this paper we prove
that the strategy described in [5] can still be pursued under very relaxed conditions
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on the approximating symbols we deal with, say {a(k)(z), k ≥ 0}. If, for a given
fixed k ≥ 0, a(k)(z), a(k)(−z) are relatively prime polynomials, then a double family
of interpolatory symbols associated with a(k)(z) can be generated by solving two
different Bezout-like polynomial equations. In the symmetric case where a(k)(z) is a
symmetric polynomial, the double family reduces to one single family since the solu-
tions of these two equations are suitably related. In the Hurwitz case where a(k)(z)
is a Hurwitz polynomial, the distribution of the roots implies the primality condi-
tion. Whenever such a condition is satisfied for any k ≥ 0 then the correspondence
of a(k)(z) with any member of the associated double family allows one to define a
family of interpolatory subdivision schemes derived from the given non-stationary
approximating one. The computation of the interpolatory symbol amounts to solve
the corresponding polynomial equation. If the approximating symbol is specified by
spectral information, as it is generally the case of exponential B-splines, then it is
shown that the equation can be efficiently solved by using the tool of (incomplete)
partial fraction decomposition. This gives a representation of the associated interpo-
latory symbol in terms of a set of generalized interpolating conditions attained at the
zeros (with reversed signs) of the approximating symbol. For the newly generated
interpolating schemes we prove an important reproduction result: the exponential
polynomial space reproduced by the interpolatory scheme is the same function space
generated by the approximating one it is originated from. On the contrary, a general
result concerning convergence and/or smoothness of a non-stationary interpolatory
subdivision scheme induced by a non-stationary approximating one is not yet avail-
able. However, in many specific examples we have considered, the analysis can be
performed by using ad-hoc techniques. In this way, by starting with approximating
schemes suitably generated by five term affine combinations of exponential B-splines,
we are able to find novel smooth non-stationary interpolatory subdivision schemes
possessing very interesting reproduction properties.

The paper is organized as follows. In Section 2 the needed background on non-
stationary subdivision schemes is given. In Subsection 3.1 we review and generalize
the basic strategy proposed in [5] for the construction of an interpolatory subdi-
vision mask from a given approximating one. Effective computational procedures
for implementing this strategy are discussed in Subsection 3.2. These procedures
are the key ingredients of our algorithm, named Appint and stated in Subsection
3.3, to move from a non-stationary approximating subdivision scheme to a family
of non-stationary interpolatory ones. The reproduction properties of these schemes
are studied in Section 4 whereas in Section 5 the application of the algorithm to
several instances of non-stationary approximating subdivision schemes generating
exponential polynomials is considered. Finally, conclusions and further work are
drawn in Section 6.
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2 Background

In this section we briefly recall some needed background on stationary and non-
stationary subdivision schemes. For more material on subdivision schemes we refer
the reader to the seminal work by Cavaretta, Dahmen and Micchelli [4], to the more
recent survey by Dyn and Levin [10] and to the well-known book by Warren and
Weimer [24].

Subdivision schemes are simple iterative algorithms to efficiently generate curves
and surfaces. Any subdivision scheme is defined by an infinite sequence of coefficients
collected in the so called refinement masks {a(k), k ≥ 0}. We assume that any mask

a(k) :=
(
a
(k)
i ∈ R, i ∈ Z

)
is of real numbers and has finite support for all k ≥ 0 i.e.

a
(k)
i = 0 for i 6∈ [−n(k), n(k)] for suitable n(k) ≥ 0. The k-level subdivision operator

associated with the k-level mask a(k) is

S
a(k) : ℓ(Z) → ℓ(Z) , (S

a(k) q)i :=
∑

j∈Z

a
(k)
i−2j qj , i ∈ Z , (2.1)

where ℓ(Z) denotes the linear space of real sequences indexed by Z whose elements
will be denoted by boldface letter, q := (qi ∈ R, i ∈ Z). The subdivision scheme con-
sists of the subsequent application of S

a(0) , · · · , Sa(k) from a given starting sequence,
say q, generating the scalar sequences

q(0) := q , q(k+1) := S
a(k) q(k) for k ≥ 0. (2.2)

In case the masks {a(k), k ≥ 0} are kept fixed over the iterations, that is a(k) = a for
all k ≥ 0, the subdivision scheme is said to be stationary, otherwise non-stationary.
Attaching the data q

(k)
i generated at the k-th step to the parameter values t

(k)
i with

t
(k)
i < t

(k)
i+1, and t

(k)
i+1 − t

(k)
i = 2−k, k ≥ 0

(these are usually set as t
(k)
i := i

2k
) we see that the subdivision process generates

denser and denser sequences of data so that a notion of convergence can be estab-
lished by taking into account the piecewise linear function Q(k) that interpolates the
data, namely

Q(k)(t
(k)
i ) = q

(k)
i , Q(k)|

[t
(k)
i ,t

(k)
i+1]

∈ Π1, i ∈ Z, k ≥ 0,

where Π1 is the space of linear polynomials. If the sequence {Q(k), k ≥ 0} converges,
then we denote its limit by

fq := lim
k→∞

Q(k)

and say that fq is the limit function of the subdivision scheme based on the rule
(2.2) for the data q. Several subdivision properties can be read off from the symbols

a(k)(z) =
∑

i∈Z

a
(k)
i zi, k ≥ 0, z ∈ C \ {0}
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associated to the masks {a(k), k ≥ 0}. Also, the corresponding sub–symbols

a
(k)

even
(z) =

∑

i∈Z

a
(k)
2i z

i, a
(k)

odd
(z) =

∑

i∈Z

a
(k)
2i+1 z

i, z ∈ C \ {0},

related to the symbols by the relation

a
(k)

even
(z2) + z · a(k)

odd
(z2) = a(k)(z),

are useful tools for subdivision analysis. Note that since the masks are always sup-
posed to be finitely supported, all symbols are Laurent polynomials. Nevertheless,
for the analysis of subdivision properties of our concern we can always assume to
work with polynomial symbols, at least after the application of a suitable shift at
each iteration.

A celebrated class of stationary subdivision schemes is given by degree-n poly-
nomial B-spline subdivision schemes, whose (unique) symbol is

Bn(z) =
(1 + z)n+1

2n
, k ≥ 0. (2.3)

The non-stationary counterpart of (2.3) is the symbol of the so-called exponential
B-splines. They are piecewise functions whose pieces are exponential polynomials
(the latter ones will be recalled in the next definition). These are defined in terms
of a linear differential operator and turn out to be of great interest in geometric
modeling for the design of important analytical shapes like conic sections, spirals
and classical trigonometric curves.

Definition 1. (Space of exponential polynomials) Let T ∈ Z+ and γ = (γ0, γ1, · · · , γT )
with γT 6= 0 a finite set of real or imaginary numbers and let Dn the n-th order dif-
ferentiation operator. The space of exponential polynomials VT,γ is the subspace

VT,γ := {f : R → C, f ∈ CT (R) :
T∑

j=0

γjD
j f = 0}. (2.4)

A characterization of the space VT,γ is provided by the following:

Lemma 1. [3] Let γ(z) =
∑T

j=0 γjz
j and denote by {θℓ, τℓ}ℓ=1,··· ,N the set of zeros

with multiplicity of γ(z) satisfying

γ(r)(θℓ) = 0, r = 0, · · · , τℓ − 1, ℓ = 1, · · · , N.

It results

T =
N∑

ℓ=1

τℓ, VT,γ := Span{xreθℓ x, r = 0, · · · , τℓ − 1, ℓ = 1, · · · , N}.
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As proved in [19] (see also [24]) exponential B-splines can be generated via a
non-stationary subdivision scheme based on the symbols

B(k)
n (z) = 2

N∏

ℓ=1

(
e

θℓ

2k+1 z + 1

e
θℓ

2k+1 + 1

)τℓ

, k ≥ 0 . (2.5)

Its limit function belongs to the subclass of CT−2 degree-n L-splines [23] (with
n = T−1) whose pieces are exponentials of the space VT,γ . Notice that, when θ1 = 0

with τ1 = n + 1, then B
(k)
n (z) in (2.5) does not depend on k being the symbol of a

degree-n B-spline given in (2.3). An important aspect of subdivision schemes is their
convergence capability to specific classes of functions. In particular, a subdivision
scheme is said to possess the property of generating exponential polynomials if, for
any initial data uniformly sampled from some exponential polynomial function, the
scheme yields a function belonging to the same space in the limit. Even more, the
subdivision scheme is reproducing exponential polynomials if, for any initial data
uniformly sampled from some exponential polynomial function, the scheme yields
the same function in the limit. To this purpose, we recall the following two important
definitions (see, for example, [7] and [25]).

Definition 2 (VT,γ -Generation). Let {a(k)(z), k ≥ 0} be a set of subdivision sym-
bols. The subdivision scheme associated with the set of symbols {a(k)(z), k ≥ 0} is
said to be VT,γ -generating if it is convergent and for f ∈ VT,γ and for the initial
sequence f0 := {f(t0i ), i ∈ Z}, it results

lim
k→∞

S
a(k) · · ·Sa(0)f0 = f̃ , f̃ ∈ VT,γ .

Definition 3 (VT,γ -Reproduction). Let {a(k)(z), k ≥ 0} be a set of subdivision
symbols. The subdivision scheme associated with the symbols {ak(z), k ≥ 0} is
said to be VT,γ -reproducing if it is convergent and for f ∈ VT,γ and for the initial
sequence f0 := {f(t0i ), i ∈ Z}, it results

lim
k→∞

S
a(k) · · ·Sa(0)f0 = f .

Since the space of exponential polynomials trivially includes standard polynomi-
als, Definitions 2 and 3 include, as special cases, the notion of polynomial generation
and polynomial reproduction, respectively. For a complete analysis of the latter con-
cepts in the stationary situation –which are very much related to the approximation
order of the subdivision scheme– the interested reader can see [11].

We conclude by recalling that a subdivision scheme is said to be interpolatory if
the refinement masks {a(k), k ≥ 0} satisfy

a
(k)
2i = δi,0, or equivalently, a

(k)

even
(z) = 1, k ≥ 0, (2.6)

meaning that all points generated by the subdivision process at a given level k will
be kept in the next level k + 1. We also mention that from (2.6) it follows that a
mask a(k) is interpolatory if and only if all its symbols a(k)(z) satisfy the algebraic
condition

a(k)(z) + a(k)(−z) = 2, ∀k ≥ 0. (2.7)
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3 From approximating to interpolatory subdivi-

sion schemes

In this section we introduce the key ingredients of our proposed algorithm termed
Appint to generate a family of non-stationary interpolatory subdivision schemes
starting from an initial non-stationary approximating one. At the core of this al-
gorithm there is a procedure which, for a given fixed non-interpolatory subdivision
symbol a(k)(z), k ≥ 0, effectively constructs a corresponding interpolatory symbol
denoted by m(k)(z). The procedure is applied step-by-step for k = 0, 1, . . .. For the
sake of notational simplicity we can therefore omit the superscript k by denoting
a(k)(z) = a(z) and m(k)(z) = m(z). The construction stems from a theoretical result
presented in [5, Theorem 2] which describes the conditions being satisfied for the
associated interpolatory symbol m(z). In Subsection 3.1 this result is reviewed and
generalized to some extent by removing unnecessary restrictions on the input symbol
a(z). In the case where a(z) is of the form (2.5) and it is known in factorized form
by means of the set of zeros {θℓ, τℓ}ℓ=1,··· ,N , then an efficient method for computing
a suitable representation of m(z) is described in Subsection 3.2. Finally, by putting
all these ingredients together, Appint is formally stated in Subsection 3.3.

3.1 From approximating to interpolatory subdivision sym-

bols

In the matrix environment the linear operator Sa defined in (2.1) and associated with
the symbol a(z) =

∑
i∈Z aiz

i, z ∈ C \ {0} is represented by a bi-infinite Toeplitz-
like matrix Sa = (ai−2j), i, j ∈ Z. Since a(z) is a Laurent polynomial, say a(z) =∑κ

j=−κ ajz
j , max{|a−κ|, |aκ|} > 0, it follows that Sa is banded with bandwidth

⌈κ
2
⌉ at most. Let p(z) =

∑h
j=−h pjz

j , max{|p−h|, |ph|} > 0, be another Laurent
polynomial and denote by P the bi-infinite Toeplitz matrix associated with p(z),
namely, P = (pi−j). Observe that P is again banded with bandwidth h. For the
product operator

S : = P · Sa = (si,j), i, j ∈ Z,

we have

si,j =

i+h∑

r=i−h

pi−r ar−2j =

h∑

ℓ=−h

pℓ ai−2j−ℓ = si+2,j+1, i, j ∈ Z.

This means that the product operator S is a bi-infinite Toeplitz-like matrix of the
same form as the subdivision operator Sa with entries si,j = si−2j , i, j ∈ Z. By
setting

q(z) = a(z) · p(z) =
h+κ∑

j=−h−κ

qjz
j , (qj = 0 if |j| > h + κ),

we find that

qj =

h∑

i=−h

pi aj−i, −(h + κ) ≤ j ≤ h+ κ,
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and, therefore,
qi−2j = si,j = si−2j , i, j ∈ Z.

There follows that the product operator S can be seen as the subdivision operator
associated with the Laurent polynomial q(z), i.e.,

S = Sq, q(z) = a(z) · p(z),

where a(z) is the symbol of Sa and p(z) can be suitably chosen in such a way to
satisfy the interpolation condition. By expressing q(z) in terms of its sub–symbols

q(z) = q even(z
2) + z · q odd(z

2) z ∈ C \ {0},

we find that
q(z) + q(−z) = 2 · q even(z

2).

Then by imposing the interpolation condition (2.6), i.e., q even(z) = 1, we arrive
at the relation

a(z) · p(z) + a(−z) · p(−z) = 2 (3.8)

which is a generalized Bezout equation providing necessary and sufficient conditions
for a Laurent polynomial p(z) to convert the subdivision operator associated with
a(z) into the interpolating subdivision operator generated by q(z) = a(z) · p(z).

Suitable coefficient-wise representations of p(z) are introduced to investigate con-
ditions under which the (generalized) Bezout equation is solvable as well as to de-
velop effective computational methods for its solution. Observe that if p(z) is of the
form

p(z) = pκz
κ + pκ+1z

κ+1 + . . .+ pκ+mz
κ+m, (3.9)

with m = 2κ− 1, and, moreover, it satisfies

a(z) · p(z) + (−1)ja(−z) · p(−z) = 2zj , 0 ≤ j ≤ 2m+ 1, (3.10)

then z−jp(z) solves (3.8). Computing polynomial solutions of (3.10) of the form
(3.9) reduces in a matrix setting to solving a structured linear system whose co-
efficient matrix is Sylvester-like. Let a0 = [a−κ, . . . , a0, . . . , aκ]

T ∈ R2κ+1 denote
the coefficient vector of the Laurent polynomial a(z). The associated extended co-
efficient vector â+ ∈ R2κ+m+1 is defined by â

T
+ =

[
a
T
0 , 0, . . . , 0

]
. Similarly let us

introduce the extended coefficient vector â− ∈ R2κ+m+1 associated with the polyno-
mial a(−z). Moreover let Z = (zi,j) ∈ R2(m+1)×2(m+1) be the down-shift matrix given
by zi,j = δi−1,j, where δi,j is the Kronecker delta symbol. Set R+ ∈ R2(m+1)×(m+1)

the striped Toeplitz matrix

R+ = [â+|Zâ+| . . . |Zm
â+] ,

and, similarly, define
R− = [â−|Zâ−| . . . |Zm

â−] .

The coefficient matrix of the linear system (3.10) is R+ = [R+|R−] ∈ R2(m+1)×2(m+1)

or R− = [R+| − R−] ∈ R2(m+1)×2(m+1) depending on the parity of j. It is well known
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that R+ andR− are resultant matrices and, therefore, they are invertible if and only
if a(z) and a(−z) are relatively prime polynomials.

Due to the special structure of the polynomial pair (a(z), a(−z)) it is shown
that both linear systems can be reduced to smaller systems of half the size. Let
Pm+1 ∈ R2(m+1)×2(m+1), Pm+1 = (δi,σ(j)) be the permutation matrix associated with
the “perfect shuffle” permutation given by

σ : {1, . . . , 2m+2} → {1, . . . , 2m+2}, σ(j) =





(j + 1)/2 +m+ 1, if j is odd;

j/2, if j is even.

Furthermore, let Gm+1 ∈ R2k×2k be the matrix defined by

Gm+1 =

(
Im+1 −Dm+1

Dm+1 Im+1

)
,

where Dm+1 = diag[−1, (−1)2, . . . , (−1)k−1, (−1)m+1]. There follows that

Pm+1 · R− ·G−1
m+1 = H− ⊕H, (3.11)

where H ∈ R(m+1)×(m+1) is a certain matrix and

H− =




a−κ+1 a−κ 0 . . . . . . . . .
a−κ+3 a−κ+2 a−κ+1 a−κ 0 . . .
a−κ+5 a−κ+4 a−κ+3 . . . . . .

...
...

...
... . . .

...
...

...
... . . .

a−κ+2m+1 a−κ+2m a−κ+2m−1 . . . . . .




.

Similarly we find that
Pm+1 · R+ ·G−1

m+1 = Ĥ ⊕̂ H+, (3.12)

where Ĥ ∈ R(m+1)×(m+1) is a certain matrix, ⊕̂ denotes the direct sum with respect
to the main anti-diagonal, and, moreover,

H+ =




a−κ 0 . . . . . . . . .
a−κ+2 a−κ+1 a−κ 0 . . .
a−κ+4 a−κ+3 a−κ+2 . . . . . .

...
...

...
... . . .

...
...

...
... . . .

a−κ+2m a−κ+2m−1 a−κ+2m−2 . . . . . .




.

In this way we arrive at the following generalization of [5, Theorem 2].

Proposition 1. Let â(z) = zκa(z) be a degree-n polynomial, n = m + 1, relatively
prime with â(−z). Then H− and H+ are invertible and, moreover, the polynomial

9



p⋆i (z), ⋆ ∈ {+,−}, with coefficients given by the entries of the i-th column of (H⋆)−1,
1 ≤ i ≤ n, is the unique polynomial of degree less than n such that

â(z)p⋆i (z) ⋆ â(−z)p⋆i (−z) = 2 z2i−ℓ⋆ , 1 ≤ i ≤ n, ⋆ ∈ {+,−} (3.13)

where

ℓ⋆ =

{
2 if ⋆ = +;
1, elsewhere.

As an immediate consequence of Proposition 1 we obtain the following.

Proposition 2. Given a degree-n polynomial â(z) relatively prime with â(−z) and
such that â(1) = 2, â(−1) = 0, then the Laurent polynomials

m⋆
i (z) :=

â(z)p⋆i (z)

z2i−1
, 1 ≤ i ≤ n, (3.14)

where p⋆i (z) solves (3.13), ⋆ ∈ {+,−}, are the associated interpolatory symbols and
satisfy

m⋆
i (1) = 2, m⋆

i (−1) = 0, 1 ≤ i ≤ n.

Remark 1. It is worth noting that Proposition 1 defines a double family of associated
interpolatory symbols depending on the sign of ⋆. In the symmetric case where â(z)
is a symmetric polynomial, that is, aj = a−j, 0 ≤ j ≤ κ, the number of associated

symbols halves since all the matrices H, Ĥ, H+ and H− are suitably related and, in
particular, H+ can be obtained from H− by reversion of rows and columns.

These results provide a practical way to construct a family of finitely supported
interpolatory masks from a given approximating one consisting in computing the
matrix (H⋆)−1 and reading its entries. This approach seems to be especially tai-
lored for symmetric Hurwitz subdivision symbols which result into computations
with totally positive (TP) Hurwitz matrices. The procedures described in [20] can
be adjusted for the efficient and stable computations of the coefficients of the inter-
polatory masks generated in the B-spline case and “shifted” affine combinations of
them (see [5, Section 4]). However, in the case of exponential B-splines and their
affine combinations the approximating symbol is generally known by assigning the
spectrum of the symbol, that is, its zeros with their multiplicity. It is therefore
interesting to design a completely different machinery for solving (3.13) using the
information on the roots.

3.2 A root-based polynomial equation solver

Let us suppose that

â(z) = â0 + â1z + . . .+ ânz
n = ân

m∏

j=0

(z − zj)
kj ,
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with zi 6= zj if i 6= j and k0+ . . .+km = n. Then it is shown that the unique solution
pi(z) of (3.13) can be obtained by imposing certain interpolation conditions at the
zeros of â(z) and â(−z).

Let us start by recalling the concept of Hermite-Lagrange interpolation poly-
nomial of a given differentiable function f(z) on the set of nodes η0, . . . , ηℓ with
multiplicities h0, . . . , hℓ, h0 + . . .+ hℓ = r + 1, respectively. Suppose that the func-
tion f(z) possesses derivatives f (j)(ηi), 0 ≤ j ≤ hi − 1, 0 ≤ i ≤ ℓ. Then there
exists a unique polynomial Hf(z) of degree at most r satisfying the interpolation
conditions

H
(j)
f (ηi) = f (j)(ηi), 0 ≤ j ≤ hi − 1, 0 ≤ i ≤ ℓ.

This polynomial is generally referred to as the Hermite-Lagrange interpolation poly-
nomial of f(z) on the prescribed set of nodes. By setting ω(z) := (z− η0)

h0 · · · (z −
ηℓ)

hℓ we find the Lagrange-type representation

Hf (z) =

ℓ∑

i=0

hi−1∑

j=0

hi−j−1∑

h=0

f (j)(ηi)
1

h!j!

(
(z − ηi)

hi

ω(z)

)(h)

z=ηi

ω(z)

(z − ηi)hi−j−h

and, equivalently, the partial-fraction representation

Hf(z) = ω(z)

ℓ∑

i=0

hi∑

s=1

1

(z − ηi)s

(
hi−s∑

j=0

S(hi − j − s, j, i)

)
= ω(z)

ℓ∑

i=0

hi∑

s=1

ci,hi−s

(z − ηi)s
,

where

S(h, j, i) = f (j)(ηi)
1

h!j!

(
1

ωi(z)

)(h)

z=ηi

, wi(z) =
ω(z)

(z − ηi)ki
,

and, moreover, by Leibniz’s rule

ci,j =

j∑

ℓ=0

S(j − ℓ, ℓ, i) =
1

j!

(
Hf(z)

ωi(z)

)(j)

z=ηi

.

Let ℓ = 2m + 1 and η0 = z0, . . . , η(ℓ−1)/2 = zm, η(ℓ+1)/2 = −z0, . . . , ηℓ = −zm with
multiplicities h0 = h(ℓ+1)/2 = k0, . . . , hℓ = h(ℓ−1)/2 = km. Observe that

r + 1 = h0 + . . .+ hℓ = 2k0 + . . .+ 2km = 2n

and

ω(z) =

m∏

i=0

(z − zi)
ki

m∏

i=0

(z + zi)
ki = â−2

n (−1)nâ(z)â(−z).

By replacing the right hand side f(z) = 2z2t−ℓ⋆ of (3.13), where t is fixed and
1 ≤ t ≤ n, with its Hermite-Lagrange form we find that

(−1)nâ2n

(
p⋆t (z)

â(−z) ⋆
p⋆t (−z)
â(z)

)
=

ℓ∑

i=0

hi∑

s=1

ci,hi−s

(z − ηi)s
, ⋆ ∈ {+,−}.

Since â(z) and â(−z) are relatively prime we can separate the partial fraction de-
compositions of the two rational functions on the left-hand side. This gives the
following
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Proposition 3. Let â(z) = ân
∏m

j=0(z − zj)
kj be a polynomial of degree n, where

zi 6= zj if i 6= j, k0 + . . . + km = n and â(z) and â(−z) are relatively prime. Then,
the unique polynomial solution p⋆t (z), 1 ≤ t ≤ n, ⋆ ∈ {+,−}, of (3.13) satisfies

pt(z) = (−1)ℓ
⋆

â−1
n

m∏

j=0

(z + zj)
kj

m∑

i=0

ki∑

s=1

(−1)sci,ki−s

(z + zi)s
,

where

ci,j =
1

j!

(
2z2t−ℓ⋆

ωi(z)

)(j)

z=zi

, 0 ≤ j ≤ ki − 1, 0 ≤ i ≤ m,

ω(z) is the monic polynomial associated with â(z)â(−z) and wi(z) =
ω(z)

(z − zi)ki
.

Example 1. To illustrate the computational meaning of the previous result let us
consider the interpolatory symbols associated with the cubic exponential B-spline with
k-level symbol

B
(k)
3 (z) =

1

2
(z + 1)2

z2 + 2v(k)z + 1

2(v(k) + 1)
,

where the parameter v(k) ∈ (0,+∞) is defined through the expression

v(k) =
1

2

(
eθ/2

k+1

+ e−θ/2k+1
)

with θ ∈ {θℓ, ℓ = 1, ..., N}, as in Lemma 1. As shown in [2] this means that B
(k)
3 (z)

corresponds to (2.5) with N = 3, θ1 = 0, θ2 = t, θ3 = −t and τ1 = 2, τ2 = τ3 = 1,
and, moreover, once assigned the starting value v(−1) ∈ (−1,+∞), the parameter
v(k) can be recursively updated at each successive iteration through the formula

v(k) =

√
v(k−1) + 1

2
, k ≥ 0. (3.15)

For any fixed k ≥ 0, the symmetric interpolatory scheme of smallest support associ-
ated with B

(k)
3 (z) is obtained from the choice i = 2 and ⋆ = − in (3.13). By using

Proposition 3 we find that the corresponding solution pk2(z) is given by

p
(k)
2 (z) =

(1− z)2

2vk(vk − 1)
− z2 − 2vkz + 1

2(vk − 1)
=

1

2vk
(
−z2 + 2(vk + 1)z − 1

)
,

which from Proposition 2 defines the interpolatory symbol

m
(k)
3,2(z) : =

B
(k)
3 (z)p

(k)
2 (z)

z3
, k ≥ 0.

The partial fraction decomposition is not a flexible computational tool and sev-
eral difficulties arise in order to find efficient updating procedures for computing the
solutions of (3.13) associated with slightly modified symbols (as usually it is the
case in non-stationary subdivision schemes depending on a parameter, see Section
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5). In this respect the tool of incomplete partial fraction decomposition [14] is much
more suited. The general strategy proceeds as follows. From the partial fraction
decomposition we get two polynomials h(z) and k(z) of degree less than n such that

1

â(z)â(−z) =
h(z)

â(z)
+

k(z)

â(−z) . Since â(z) is given in factored form we can determine

k(z) as the Hermite-Lagrange polynomial interpolating the function g(z) = 1/â(z)
on the zeros of â(−z). Then the polynomial p⋆t (z) which solves (3.13) can be ob-
tained by means of the polynomial division between 2z2t−ℓ⋆k(z) and â(−z). Again
this operation reduces to computing the Hermite-Lagrange polynomial interpolat-
ing 2z2t−ℓ⋆ · k(z) on the zeros of â(−z). In the case where the initial symbol â(z) is
modified by a linear or a quadratic factor, both the two steps in the above procedure
can be modified accordingly. For instance the polynomial k(z) can be specified in
the form k(z) = k1(z) + â(−z)ψ(z), where k1(z) is the Hermite-Lagrange polyno-
mial interpolating the function g(z) = 1/â(z) on the zeros of â(−z) and ψ(z) is
a linear factor whose coefficients are determined so that k(z) satisfies the modified
equation. This approach has been implemented and used for computing the interpo-
latory symbols associated with certain affine combinations of exponential B-splines.
Some computational results are shown in Section 5.

3.3 The Appint algorithm for the non-stationary case

So far we have introduced a quite general strategy for deriving a family of interpola-
tory symbols from a given approximating symbol based on the solution of equation
(3.13). In the non-stationary setting, we compute a family of non-stationary interpo-
latory subdivision schemes associated with a non-stationary approximating one via
the solution of (3.13) at each recursion step. Therefore, the procedure we consider
turns out to be as follows: assuming {â(k)(z), k ≥ 0} are the degree-n(k) symbols of
an approximating non-stationary scheme with â(k)(z) and â(k)(−z) relatively prime
for all k ≥ 0, we construct the non-stationary interpolatory subdivision scheme based
on the symbols {m(k)

i(k)(z), k ≥ 0} where, for each k, m
(k)
i(k)(z), 1 ≤ i(k) ≤ n(k), is

one of the interpolatory symbols satisfying (3.13). Here and hereafter for the sake
of simplicity we omit the superscript ⋆ ∈ {+,−} since we assume that the sequence

(i(k), ⋆), k ≥ 0, is given in input and, therefore, m
(k)
i(k)(z) denotes the unique solution

of (3.13) for the given pair (i(k), ⋆). Surely, the performance of the non-stationary
subdivision scheme will depend on the selection of the sequence (i(k), ⋆), k ≥ 0. The
computational kernel consists of finding the solution of (3.13) for the input symbol
â(k)(z) and the fixed pair (i(k), ⋆). This task can be accomplished by the inversion
of the corresponding matrices H⋆ or, alternatively, by means of the procedure de-
scribed in the previous section based on computing the incomplete partial fraction
decomposition. The auxiliary routine Solve takes in input a suitable representation
of â(k)(z) together with the pair (i(k), ⋆) and returns as output the corresponding so-

lution p
(k)
i(k)(z) of (3.13). For clarity we describe the overall procedure in algorithmic

form.
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Appint Algorithm

Input: {â(k)(z), k ≥ 0}, degree-n(k) symbols;

{(i(k), ⋆), k ≥ 0}, with 1 ≤ i(k) ≤ n(k)
For k = 0, 1, . . .

Check whether â(k)(z) is relatively prime with â(k)(−z)
Set p

(k)
i(k)(z) := Solve[â(k)(z), (i(k), ⋆)]

Construct the interpolatory symbol m
(k)
i(k)(z): =

â(k)(z)p
(k)
i(k)

(z)

z2 i(k)−1

Output: {m(k)
i(k)(z), k ≥ 0}

Some theoretical properties of the computed sequence {m(k)
i(k)(z), k ≥ 0} are

discussed in Section 4 whereas computational examples are reported in Section 5.

4 Properties of non-stationary interpolatory sub-

division schemes derived from their approxi-

mating counterparts

For the family of non-stationary interpolatory subdivision schemes generated by
symbols {m(k)

i (z), k ≥ 0}, 1 ≤ i ≤ n(k), we can prove an important reproduction
result: the exponential polynomial space reproduced by the interpolatory scheme
is the same function space generated by the approximating scheme it is originated
from. To prove it, we first need a preliminary result given in [12]. Within the rest

of this section VT,γ is the space given in Definition 1 and z
(k)
ℓ := e−

θℓ

2k+1 , ℓ =
1, · · · , N, k ≥ 0.

Proposition 4. Let {m(k)(z), k ≥ 0} be a sequence of interpolatory symbols. The
subdivision scheme associated with such a sequence reproduces VT,γ if and only if
for each k ≥ 0

m(k)(z
(k)
ℓ ) = 2, m(k)(−z(k)ℓ ) = 0, ℓ = 1, · · · , N

dr

dzr
m(k)(±z(k)ℓ ) = 0, r = 1, · · · , τℓ − 1, ℓ = 1, · · · , N.

(4.16)

We are now in a position to state the reproduction result.

Proposition 5. Let {â(k)(z), k ≥ 0} be a sequence of symbols with â(k)(z) relatively
prime with â(k)(−z) for all k ≥ 0. If the non-stationary approximating subdivision
scheme based on the symbols {â(k)(z), k ≥ 0} generates the space VT,γ , then for
all 1 ≤ i ≤ n(k) the non-stationary interpolatory subdivision scheme based on the
symbols

m
(k)
i (z) =

âk(z)pki (z)

z2i−1
, k ≥ 0,

whenever convergent, reproduces the same space VT,γ .
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Proof: Due to [25, Theorem 1] the symbols â(k)(z) satisfy

â(k)(−z(k)ℓ ) = 0,
dr

dzr
â(k)(−z(k)ℓ ) = 0, r = 1, · · · , τℓ − 1, ℓ = 1, · · · , N.

By the Leibnitz’s differentiation rule, we easily get an analogous relation to be
satisfied by all m

(k)
i (z) (for any 1 ≤ i ≤ n(k)) that is

m
(k)
i (−z(k)ℓ ) = 0,

dr

dzr
m

(k)
i (−z(k)ℓ ) = 0, r = 1, · · · , τℓ − 1, ℓ = 1, · · · , N.

It remains to consider the behavior of m
(k)
i (z) and its derivatives at the points z

(k)
ℓ .

Now, since for each k

m
(k)
i (z) +m

(k)
i (−z) = 2, 1 ≤ i ≤ n(k),

it follows that
m

(k)
i (z

(k)
ℓ ) = 2

as well as

dr

dzr
m

(k)
i (z

(k)
ℓ ) = (−1)r+1 d

r

dzr
m

(k)
i (−z(k)ℓ ) = 0, r = 1, · · · , τℓ − 1, ℓ = 1, · · · , N.

The use of Proposition 4 concludes the proof. �

Remark 2. We notice that, if an interpolatory subdivision scheme is VT,γ-generating,
then due to the interpolatory nature (that is due to the fulfillment of equation (2.7)),
it is also VT,γ-reproducing.

Remark 3. Unfortunately, contrary to the result in Proposition 5, a general re-
sult concerning convergence and/or smoothness of a non-stationary interpolatory
subdivision scheme induced by a non-stationary approximating one is not available.
However, in all specific examples discussed in Section 5 and many others we tested,
convergence and smoothness analysis of the induced non-stationary interpolatory
subdivision schemes is provided. From the examples we see that the smoothness
order of the interpolatory scheme is the half of that of the approximating one it
is originated from. This observation gives us a hint for a theoretical result to be
investigated in future researches.

5 Interpolatory exponential reproducing non-sta-

tionary subdivision schemes

Aim of this section is to show the application of our strategy to a family of approxi-
mating schemes depending on free parameters. This leads to a parameter-dependent
family of corresponding interpolatory schemes that can be used to design interesting
new non-stationary interpolatory schemes. In particular, we show that by means
of a five term affine combination of exponential B-splines, we can generate novel
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smooth non-stationary interpolatory subdivision schemes possessing very interest-
ing reproduction properties.

Let us consider the interpolatory scheme based on the symbolsm
(k)
3,2(z) introduced

in Example 1. The C2 approximating scheme with symbols {B(k)
3 (z), k ≥ 0} was

originally introduced in [19] where the authors also showed its capability generation
of the function space V4,γ = {1, x, etx, e−tx} (see also [24]). According to the results
in Section 4, the associated interpolatory scheme turns out to be the C1 4-point
interpolatory scheme reproducing the function space V4,γ = {1, x, etx, e−tx} (see also
[21]). The reproduction properties of this scheme can be improved by considering the
family of approximating subdivision schemes given by a 5-term affine combination
of B

(k)
3 (z) of the form

â(k)(z) = B
(k)
3 (z)

(
α(k) + β(k)z + (1− 2α(k) − 2β(k))z2 + β(k)z3 + α(k)z4

)

= B
(k)
3 (z)

(
α(k) +

β(k)+
√

(4α(k)+β(k))2−4α(k)

2
z + α(k)z2

)(
1 + 2(1−2β(k)

−4α(k))

β(k)+
√

(4α(k)+β(k))2−4α(k)
z + z2

)

where α(k), β(k) ∈ R are free parameters. By imposing the primality conditions
for â(k)(z), â(k)(−z) it turns out that (3.13) can be solved whenever α(k) 6= 0 and

β(k) 6∈ {0, 1
2
− 2α(k), 4(v

(k))2α(k)
−4α(k)+1

2(1−v(k))
}. In the case α(k) = 0 the equation can be

degree-reduced in such a way that a polynomial solution can still be found.
By applying the procedure described in Subsection 3.2 we have computed the

polynomial p(k)(z) corresponding with the pair (i(k), ⋆) = (4,−), k ≥ 0, and set

m(k)(z) = â(k)(z)p(k)(z)z−7.

By accurately choosing the free parameters α(k) and β(k), we can obtain an inter-
polatory scheme m(k)(z) that improves the properties of the interpolatory scheme

m
(k)
3,2(z) associated with the combined symbol B

(k)
3 (z). Improvements can concern

with its reproduction capabilities and/or its smoothness order. In particular:

1. When α(k) = 0 and β(k) = 1
4
, â(k)(z) = (z+1)4(z2+2v(k)z+1)

16(v(k)+1)
, namely it is the C4

exponential B-spline that generates V6,γ = {1, x, x2, x3, etx, e−tx}. The symbol
m(k)(z) is the C2 interpolatory 6-point scheme that reproduces the same space
(as previously shown in [21]).

2. When α(k) = 0 and β(k) = 1
4(v(k))2

, then

â(k)(z) =
(z + 1)2(z2 + 2v(k)z + 1)(z2 + 2(2(v(k))2 − 1)z + 1)

16(v(k))2(v(k) + 1)
,

namely it is the C4 exponential B-spline that generates V6,γ = {1, x, etx, e−tx,
e2tx, e−2tx}, while m(k)(z) is the C2 interpolatory 6-point scheme that repro-
duces the same space (see, again, [21]).

3. When α(k) = 0 and β(k) = 1
2(1+v(k))

, then

â(k)(z) =
(z + 1)2(z2 + 2v(k)z + 1)2

8(v(k) + 1)2
,
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namely it is the C4 exponential B-spline that generates V6,γ = {1, x, etx, e−tx,
xetx, xe−tx} andm(k)(z) is the C2 interpolatory 6-point scheme that reproduces
the same space [21].

4. When α(k) = 1
8(v(k))2(v(k)+1)(2v(k)−1)2

and β(k) = 4(v(k))2−2v(k)−1

4(v(k))2(2v(k)−1)2
, then

â(k)(z) =
(z+1)2(z2+2v(k)z+1)(z2+2(4(v(k))3−3v(k))z+1)(z2+2(2(v(k))2−1)z+1)

32(v(k))2(v(k)+1)2(2v(k)−1)2
,

i.e. it is the C6 exponential B-spline generating V8,γ = {1, x, etx, e−tx, e2tx, e−2tx,
e3tx, e−3tx}, while m(k)(z) defines the C3 interpolatory 8-point scheme that re-
produces the same space (see [6]).

5. When α(k) = 1
8(v(k))2(v(k)+1)

and β(k) = 2v(k)−1
4(v(k))2

, we deal with the C6 exponential

B-spline

â(k)(z) =
(z + 1)2(z2 + 2v(k)z + 1)2(z2 + 2(2(v(k))2 − 1)z + 1)

32(v(k))2(v(k) + 1)2

generating the function space V8,γ = {1, x, etx, e−tx, e2tx, e−2tx, xetx, xe−tx}.
The symbols m(k)(z) define a C3 interpolatory 8-point scheme that repro-
duces the same space (see Proposition 5). The smoothness of the subdivision
scheme {m(k)(z), k ≥ 0} can be obtained through asymptotical equivalence
[9] with the C3 Dubuc-Deslauriers 8-point interpolatory scheme [8, 13].

The last non-stationary interpolatory subdivision scheme corresponds to a new
proposal never presented in the literature. Other interesting proposals can be ob-
tained by assigning different suitable values to the free parameters α(k) and β(k). In
all these kinds of interpolatory schemes, by making the parameter v(−1) local, namely
by assuming a different parameter v

(−1)
i in correspondence of each edge qi qi+1 of the

starting polyline, we can combine the two important issues of local shape control
and special functions reproduction. This means that, in the same limit curve, we can
include an alternation of exponential polynomial pieces in those regions where the
starting samples belong to one of these curves and smooth limit segments with local
tension otherwise. Also, due to the recurrence relation (3.15), the shape parameter
v(k) turns out to be independent of the parametric values t(k), thus reducing compu-
tational costs of the algorithm. In addition to the general reasons discussed in the
introduction, these properties contribute to make these interpolatory subdivision
schemes more convenient with respect to the corresponding classical interpolatory
methods.

6 Conclusions and future work

A novel approach has been presented for the computation of a family of interpo-
latory non-stationary subdivision schemes from a non-stationary, non-interpolatory
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one. The approach reduces the updating problem either to the inversion of certain
structured matrices (which can be of Hurwitz type or Sylvester resultant matrices)
or to the solution of certain Bezout-like polynomial equations. If the approximat-
ing symbols are defined in terms of spectral information it is shown that the partial
fraction decomposition provides an effective tool for solving these equations by yield-
ing a representation of the associated interpolatory symbols in terms of generalized
interpolating conditions. The newly constructed interpolatory schemes are capa-
ble of reproducing the same exponential polynomial space as the one generated by
the original approximating scheme. Although a general result concerning the rela-
tionship between convergence and/or smoothness orders of the approximating and
interpolatory schemes is not yet available, ad hoc techniques can be used by show-
ing that in many cases the proposed approach leads to novel smooth non-stationary
interpolatory subdivision schemes possessing very interesting reproduction proper-
ties. The analysis of more general convergence properties of the subdivision schemes
generated by our techniques is an ongoing research.
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