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Abstract In this paper we construct discrete quasi-interpolants based on C? cubic
multi-box splines on uniform Powell-Sabin triangulations of a rectangular domain. The
main problem consists in finding the coefficient functionals associated with boundary
multi-box splines (i.e. multi-box splines whose supports overlap with the domain) in-
volving data points inside or on the boundary of the domain and giving the optimal
approximation order.

They are obtained either by minimizing an upper bound for the infinity norm of the
operator w.r.t. a finite number of free parameters, or by inducing the superconvergence
of the gradient of the quasi-interpolant at some specific points of the domain.

Finally, we give norm and error estimates and we provide some numerical examples
illustrating the approximation properties of the proposed operators.
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1 Introduction

Let 22 = [0,m1h] x [0, mah], m1,ma > 5, be a rectangular domain divided into mjims
equal squares, each of them subdivided into two triangles by its main diagonal and then
each of these two triangles subdivided into six subtriangles by its medians, obtaining
the Powell-Sabin triangulation T,,Iffmz [18], see Fig. 1.

Let S%(Q, T,,Ifl‘?mz) be the space of C2 cubic splines on T,,I;f’:mz. According to [6],

the dimension of this space is
. 2 PS
dim S5(2, Ty m,) = 2mima + 4(m1 + ma) + 6,

and it is spanned by dilation/translation of the vector ¢ = [p1,@a]? of multi-box
splines (see [5,14-16]). There are (m1 + 1)(ma + 1) shifts of ¢1, denoted by ¢1 4,
a€ A, A1 ={(:,7),0<i<mq, 0<j <ma} and (m1 + 3)(ma + 3) — 2 shifts of g2,
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Fig. 1 The Powell-Sabin triangulation

denoted by @2 o, & € A2, A2 ={(4,7), -1 <i<mi+1, -1 <j<mo+1; (i,j) #
(m1+1,-1),(—1,ma2+1)} whose supports overlap with or are included in the domain,
totaling to 2mymeo+4(my+ms)+8 = dim S3(£2, T,ffmz )+2. Therefore, the generators
of S?%(_Q7 Trﬁf m,) are linearly dependent, however, this fact is not important for quasi-
interpolation.

Since 1 and g are centered at the origin (see Figs. 3 and 4) we define their scaled
translates in the following way:

P1,0(2,9) = ¢1,3.5) (@ 9) = @1 (
©2.a(%,Y) = @2 .5 (@,y) = 2 (

whose supports are centered at the points co = ¢; j = (ih, jh).
In the space 53 (12, ’T”Iffmz) we consider discrete quasi-interpolants (abbr. dQIs) of
type
Qf = > Malf) A2alh)Pa (1)

acAs

where, in order to satisfy the partition of unity in 2, g = [¢1, <,52]T are the normalized
multi-box splines

Y1 = %@1, P2 = %m

with @1, =0 for a € A2\ A1. In Figs. 3 and 4 the supports and the graphs of ¢1 and
o2 are shown.

The set {[A1,a(f),A2,a(f)], @ € A2} is a family of linear functionals which are
local, in the sense that they are linear combinations of values of f at some points
lying inside §2 and in the neighbourhood of the supports of @n. Moreover, they are
constructed in order that @ is exact on the space P3(R?) of bivariate polynomials of
total degree at most three.

The data points used in the definition of A1, (f), A2,a(f) are the vertices of each
square, Aq = Ay ; = (kh,lh), with o € A= {(k,1), k=0,...,m1,1=0,...,ma}, see
Fig. 2, and fo denotes the value of the function f at the point Aq, i.e. fo = f(Aa)-

In [11], the authors proposed two kinds of differential and discrete quasi-interpolants
on the whole plane R2. If we use them on a bounded domain, the coefficient functionals
associated with boundary multi-box splines (i.e. multi-box splines whose supports over-
lap with the domain) make use of data points outside £2. Therefore, in order to obtain
a discrete quasi-interpolant of the form (1) using data points inside or on the bound-
ary of {2, the aim of this paper is to define new coefficient functionals for boundary
multi-box splines.
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Fig. 2 Data points

Here is an outline of the paper. In Section 2 we recall the main results on multi-
box spline generators and the differential and discrete quasi-interpolants defined on the
whole plane and proposed in [11]. In Sections 3 and 4 we construct two different discrete
quasi-interpolants on bounded domains: near-best dQls, obtained by minimizing the
infinity norm of each coefficient functional, and dQIs with superconvergence properties
for the gradient. Finally, in Section 5 we give norm and error estimates and, in Section 6
we provide some numerical examples illustrating the approximation properties of the
proposed dQIs.

2 C? cubic splines on uniform Powell-Sabin triangulations and
quasi-interpolants on R2

The space of C? cubic splines on uniform Powell-Sabin triangulations of the plane R?
has been recently studied in [6,7], where it is shown that any element of this space
can be expressed as linear combination of a pair of refinable generators ¢ = [p1, g@g]T.
In [5] Chap.6, the author identifies 1, p2 as particular examples of multi-box splines,
introduced in [16], on the six-directional mesh shown in Fig. 1 and defined by the
direction vectors

e1 = (1,0), ez
€4 = (_17 1)7 €5

The support of ¢ is the unit hexagon with vertices {te1, tea, £es}, see Fig. 3(a),
and o is defined as @ = gol(Al_l), where

2 -1
w1,

(07 1)a €3 = (15 1)7
(2,1), e = (1,2).

Thus
1 1
pa(r1,T2) = 1 (g(l’rl - z2), g(wl - 2992))

and the support of g is the hexagon with vertices {teq, £es, Leg}, see Fig. 4(a).
The functions 1, p2 are defined by their Fourier transforms. Setting ¢ = [p1, <p2]T,
21 = e ™M, 29 = e 2 the Fourier transform is equal to
[u1, w1 +ug]R(21, 22)
uruz(ug + u2)(ur — u2)(ur + 2uz) (2ug + u2)

Plur, uz) = [P (u1, uz), Ga(ur, uz)]’ =



Fig. 4 The support (a) and the graph (b) of @a

where
Py (z1,22) Pa(z1,22)
Q1(z1,22) Qa(z1,22) |’

whose elements are given by the following Laurent polynomials with real coefficients

R(z1,22) =

-1 —1_-1 -1
Py(z1,22) = 21 + 22120 + 22 — 2] — 227 "zy — 2y ,

)
Po(z1,22) = —32’%22 + 32{1252 + 3zf2z;1 — 321,2%,
Qi1(z1,22) = =221 — 2120 + 22 + 221_1 +zl_122_1 — 22_1,
Q2(z1,22) = 32%22 + 3z122_1 — 321_222_1 — 3z1_1z2.
In [11] the authors propose two differential quasi-interpolants, exact on P3(R?) of
second and fourth order, respectively

Qf = Y Palf), Az.a( e, (2)

a€Z?

a€Z?



where )
/):1 a(f) = fa + %A*fa,
/)‘\2,0z(f) = foc - %A*fom
5\l,oc(f) = fa + %QA*fOé + 1%8 (A*)Zfaa
Ma(f) = fo = T A% fo + {55 (4%)* fa,

. x _ a2 2 _ 92 %
with A™ = 81 +6182 +82 = TCEf + 071072 + Tw%
From these differential quasi-interpolants, two different discrete quasi-interpolants
are constructed in [11]:

Q=D MNalh)AsalH)]a, (3)

a€Z?
Q**f = Z [)‘){:ka(f)a )‘E:koc(f)]@a7 (4)

a€Z?

where
T,a(f) = %f % (fate, + fate,) + 2*14 (fates — fates) s (5)
A;,a(f) = %foz - %( fate, + fate,) — 2%1 (fod:es — fates) s (6)
Tfa(f) = zflf 4 (for:l:e1 + fa:l:62 + fa:i:e3) (7)
7% (fa:l:Zel + fOé:l:2€2 + fa:tZeg)
>\§,*a(f) = ﬂf 54 (fa:l:el + fa:l:ez + fa:t53)

5 (8)

(faiZel + faiQeg + foziQeg)
and with infinity norm bounded by

5 % 23
10 < 2 =25, @], < 2 ~2s56

The discrete supports of functionals are shown in Fig. 5 and in Fig. 6.
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Fig. 5 Functionals associated with @1 (a) and @2 (b) in Q*

These operators are exact on Pg (RQ) and the approximation order is 4 for smooth
functions, i.e. f—Q*f and f—Q** f are O(h*) . Furthermore they satisfy the following
superconvergence properties: the approximation order of the gradient is 4 and V(f —
Q*f), V(f — Q**f) are O(h*) for smooth functions, at the following points (see Fig.
7):

- the vertices of squares Ay ; = (kh,lh), (k1) € 72,
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Fig. 6 Functionals associated with @1 (a) and @2 (b) in Q**

- the centers of squares My ; = ((k — 2)h, (I — 2)h), (k,1) € 72,
- the midpoints C ; = ((k — 7)h, lh) of horlzontal edges Ap_1, A, (k,1) € 72,
- the midpoints Dy, ; = (kh, (I — %) ) of vertical edges Ay 1Ay, (k1) € z2.

Moreover f — Q** f is O(h%) at the points Ap.

Ag—1, Chr,1 Ag

Dy_1, My, D 1

Ag—10-1  Cki-1 Agi—1
Fig. 7 Points of superconvergence

Using the method presented in [19], we are interested in the construction of two
different types of discrete quasi-interpolants

Qlf = ZQGA2 [Ml,a(f% NZ,a(f)]QZ’Ou
Q2f =2 nea,Malf), A2,a(f)]@a,

whose coefficients are linear functionals of the form

poa(f)= Y oualB)f(Ap), v=1,2 (9)
BGFU,Q

Xoo(f)= Y ma(B)f(Ag), v=12
BEG'U,OL

where, for v = 1,2, the finite sets of points {Aﬁ, CAS Fv,a}, {Aﬁ, B e G’v,a}, Fy.a,
Gy,a C A lie in some neighbourhood of supp @v,o N {2 and such that Q. f = f for all
f in P3(R?).

The construction of such coefficient functionals is related to the differential quasi-
interpolant exact on P3(R?) and defined on the infinite plane, given by (2).



We propose two different ways of constructing functionals associated with the scaled
multi-box splines whose supports are not entirely inside (2: the first leads to functionals
(denoted by pw,a) of near-best type, and the second leads to functionals (denoted by
Av,a) inducing superconvergence of the gradient at some specific points of the domain.

In the interior of the domain, for i = 1,...,m; — 1, j = 1,...,m2 — 1, our quasi-
interpolants make use of the same inner functionals defined by (5) and (6).

We have not proposed quasi-interpolants with inner functionals of type (7) and
(8), instead of (5) and (6), because, in this case, we would have to construct a greater

number of functionals. Indeed, only for i = 2,...,m; — 2, j = 2,...,mg — 2 the data
points involved in (7) and (8) lie inside or on the boundary of the domain, therefore,
fori=1m;—1,j=1,....meg—land i =2,...,m; — 2, 5 = 1,mg — 1, we would

have to consider other coefficient functionals.

3 Construction of near-best boundary functionals

In this section we construct convenient boundary coefficient functionals, called near-
best functionals, giving the optimal approximation order as in the case of the whole
space R? (see Section 2).

In the definition of functionals, we consider more data points than the number of
conditions we are imposing, thus we obtain a system of equations with free parame-
ters and we choose them by minimizing an upper bound for the infinity norm of the
operator.

The method used in this subsection is closely related to the techniques given in [1-3,
17] to define near-best discrete quasi-interpolants on type-1 and type-2 triangulations
(see also [4,19,21]).

From (9) it is clear that, for ||f|lcc < 1 and o € A2, |pv,a(f)| < |low,all1, where
Ov,a is the vector with components oy,q(3). Therefore, since the sum of scaled trans-
lates of @1 and @2 is equal to one, we deduce immediately

< < . 10
(1Q1]lo0 < [Dnax max [po,a ()] < Inax max llow,alla (10)

Now we can try to find a solution o7, 4 € Reard(Fu.a)

e.g. [3], [17] Chap.3)

of the minimization problem (see

lov,alll = min{HUU,aHUUa e RerAFue), Wo,a0v,0 = bv,a} , v=1,2

where Vi, a0v,a = bu,o is a linear system expressing that ()1 is exact on P3 (Rz). In our
case we require that the coefficient functionals coincide with the differential ones for
/€ P3(R?).

This problem is a l;-minimization problem and there are many well-known tech-
niques for approximating the solutions, not unique in general (cf. [23] Chap.6). Since
the minimization problem is equivalent to a linear programming one, here we use the
simplex method.

Before giving the explicit expressions of each coefficient functional, we propose
a general method to find a ‘good direction’ for minimizing the infinity norm. The
exactness of Q1 on IPg(Rz) gives ten conditions (or six in case of symmetry of the
support w.r.t. the line y = x). Thus we start with a scheme for the coefficient functionals



containing ten (or six) unknown parameters. Therefore the resulting linear system has
an equal number of equations and unknowns.

In order to reduce the infinity norm, we consider a new functional scheme obtained
from the preceding one by adding a new parameter. We consider several schemes and in
each of them the new parameter is associated with different data points. We compute
the infinity norm of each new functional and we select as new scheme the one having
the smallest norm.

We explain this method in detail in the cases py 9,0y and po (—1,_1). For the other
cases we follow the same logical scheme (see [20] for detail).

3.1 Example 1: the functional p1,(0,0)

We consider the 9-point linear functional, defined using 6 unknowns

#1,0,0)(f) = a1 fo,0 + a2(f1,0 + fo,1) +as(f2,0 + fo,2) + aafin
+as(f3,0 + f0,3) + as f2,2,

and we impose u17(0,0)(f) =(f+ %A*f)(cop), co,0 = (0,0), for f=1, =, xQ, Ty, 1‘3,
#2y. Due to the symmetry of the support of ¥1,(0,0) W-I.t. the line y = z, we have only
6 conditions to impose (the monomials y, y2, zy? and y> can be excluded). This leads
to the system:

a1 + 2a2 + 2a3 4+ a4 + 2a5 + ag = 1, ag + 2a3 + a4 + 3as + 2a¢ = 0,
az +4as + aq4 +9as +4ag =1/3, a4+ 4ag = 1/6,
as + 8asz + aq + 27as + 8ag = 0, aq + 8ag =0,

whose unique solution is

47 7 17 1 1 1
a1 = —, a2 = ——=, a3 = — a)s = — as = ——=, ag = ——,
To T e BT My BT e 0T Ty
with a norm |[|py (0,0)llcc = 6.42.
If we want a functional with a smaller norm, we can add a parameter: a7. For

example we consider the following coefficients

11 0,0)(F) = 10,0y (f) + a7(f2,1 + f1,2), (11)
11(0,0)(F) = 11,0,0) (f) + a7(fa.0 + fo,4), (12)
11 .(0,0)(F) = 11,0,0)(f) + a7 f3,3. (13)

In each example the parameter a7 is associated with different data points.
Solving the corresponding systems and minimizing the norm ||u'17(0,0) |loc, we obtain
the values
case (11): H;A'L(O’O)HOO ~ 5.92,
case (12): Hl/l,(o,o)HOO ~ 4.33,
case (13): |} (9,0 lloo = 3.07.

Therefore we choose the functional proposed in (13), where

269 1 5 1 13

= — =0 = — = —— = —— = — = ——
ai 2167 a2 , a3 87 a4 67 as 27> ag 24’ ar

and with discrete support shown in Fig. 8(a).



3.2 Example 2: the functional B2, (—1,-1)

We consider the 9-point linear functional, defined using 6 unknowns

2, (—1,—1)(f) = a1 fo,0 +a2(f1,0 + fo,1) + as(f,0 + fo,2) +aafi
+as(f3,0 + f0,3) + as f2,2,

and we impose g (_1,_1)(f) = (f — %A*f)(c,L,l), ¢c—1,-1 = (=h,—h), for f =1,
z, x2, Ty, mg, mQy. Due to the symmetry of the support of $2,(~1,-1) WI.t. the line
y = x, we have only 6 conditions to impose (the monomials y, y2, my2 and y3 can be
excluded). This leads to the system:

a1 + 2a2 + 2a3 + a4 + 2a5 + ag = 1, ag + 2a3 + a4 + 3as + 2a6 = —1,
ag + 4a3 + a4 + 9as + dag = 2/3, a4 +4ag =5/6,
as + 8asz + a4 + 27as + 8ag = 0, a4 + 8ag = —1/3,

whose unique solution is

185 20 B o a2 =
247 2 = 33 3_87 4 = 4, 5 = 37 6 = 24a

a] =
with a norm |[[ug (_1, _1)llec ~ 30.92.
If we want a functional with a smaller norm, we can add a parameter: a;. For
example we consider the following coeflicients

po (—1,-1y () = pia,(—1,-1)(F) + a7 (f21 + f1.2), (14)
F‘/Z,(—l,—n(f) = po,(—1,-1)(f) + ar(fa,0 + fo,4), (15)
po,(—1,-1)(F) = pa,(—1,-1)(f) + a7 f3,3. (16)

In each example the parameter a7 is associated with different data points.
Solving the corresponding systems and minimizing the norm ||u'27(_1,_1)|\oo, we
obtain the values
case (14): ||/.L/2,(_17_1)Hoo ~ 27.92,
case (15): [l (1 _q)lloc = 22,
case (16): ||,LL’27(_L_1)|\OO ~ 12.56.

Therefore we choose the functional proposed in (16), where

a*ﬁ a*—E a*Oa*—H a*i a*E a*—§
1_95 2 = 127 3_7 4 = 43 5_363 6_63 7T = 36

In the same manner, we add the parameter ag, considering for example

po (—1,—1)(f) = pa,(—1,-1)(f) + avf33 + as(fa,1 + f1.2), (17)
ph (—1,—1)(f) = pa,(—1,-1)(f) + avf33 + as(fa0 + fo.4), (18)
py (—1,—1y(f) = pra,(—1,-1)(F) + a7 f3,3 + ag faa. (19)

Solving the corresponding systems and minimizing the norm ||ug’(71’71) |loo, We obtain
the values

case (17): ||,u'2”(71771)|\00 ~ 12.56,

case (18): ||,u'2/’(71771)|\oo =12.5,

case (19): ||,u/2/’(71’71)|\oo = 8.125.
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Therefore we choose the functional proposed in (19), where

1351 5 95

a] = 32 a9 = 0, a3z = 3_9ﬂ7 a4 = _35}76’
1:

as = o7, 043*0, a7 = 198> 48 = —7{i4-

and with discrete support shown in Fig. 9(a).

For the other cases we use the same technique: we start with an initial scheme
containing an equal number of conditions and unknowns and then, in order to reduce
the infinity norm, we add points searching the ‘good direction’.

The ‘good direction’ for which we have the smallest norm is given by the vertical
line © — ih = 0, i.e. the vertical line through the center of the support, or, in special
cases of functionals symmetric with respect to = and y, the diagonal line x —y = 0 (or
z+y—mih = 0), on which we choose the data points. We obtain the functionals with
discrete supports shown in Figs. 8+11.

By the functional construction (see e.g. the construction of Nz,(—l,—l))v we notice
that the infinity norm of the coefficient functionals reduces when more parameters are
added, but this reduction slows down as the number of parameters increases. It would
be interesting to analyse in detail the convergence of this reduction.

The method proposed for the construction of near-best boundary coefficient func-
tionals is a heuristic technique that proceeds gradually adding at each step one new
parameter and taking into account the ‘good position’ of the parameters obtained in
the previous step.

Another technique consists in the search of the very best solution (i.e. with the
smallest infinity norm out of all possible combinations of data points) for a fixed number
of parameters, that can be formulated as a single integer programming problem. We
have decided to solve this sequence of linear programming problems because is simpler
from a computational point of view.

_ 1
| 1 7 121 1 | 1 L
27 54 6 18 9
1 13 1 1 e 3
8 24 8 0 24 24 8
5 1 1 5
0 s 3 5 [0 6 O
269 | 1 |1 3 3 1 | 1 |3 77
16 8 27 1 8 9 48 0 L7

(a) (b) (c)
Fig. 8 Near-best functionals associated with @1 (0,0y (@), #1,(1,0) (b) and @1, (m,,0y (¢)
Therefore we define the discrete QI Q1

Qif = > [m.a(f) n2.a(f)l@a, (20)

aEAs
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5 1 5 2
124 0 0 3 1o [0 (3
195 L7 | 1] 2 |11 17515
0 136 31403 136 1243 L4
3 5 |2 9 5 7
BN\ T4 o7 & L6 N0 T3¢ 24 03
(a) (b) (c)
Fig. 9 Near-best functionals associated with @ (_1 1) (@), @2 (0,—1) (b) and @3 (1,_1) (€)
5
112
T
8
1 7
10 27 51
| 4
0 1 113
A 5 8 24
2 (2 [ 5
13 | vl \ ¢
6 i 24 163 1|2
/ / 16 40/ '8 Lo7
- 0
(a)

Fig. 10 Near-best functionals associated with @3 (;m,,—1) (a) and @3 (0,0) (b)

giving the expression of its coefficient functionals. Thanks to symmetry properties, only
the following functionals are required:

11,00,0)(f) = 392 fo.0 + g (f2,0 + fo,2) — 31,1 — 3= (f3,0 + fo.3)
13 7
+55fe2 — 5733,

11 (mr,0)(F) = 25 fmu 0 + 2 (Fmy—2,0 + fmi,2) — 3fma—11
— 5 (Fmr—3,0 + fm1,3) + 25 fmi—2.2 — 5fmi—3.3,

pio,(—1,—1)(f) = 153 fo.0 — 2 (f2.0 + fo,2) — 32 f11
+55(f3,0 + fo,3) + 1o f3,3 — 101 fa.4,

19 5 5 7 1
t2,0,—1)(f) = F foo + 51,0 — 35 3,0 — 3f0,1 — 3f11
2 1 19 11 31
—sfe1+ gf12+ 1503+ 35/3.1 — 75 fo,4,

65 7 3 1 5
12, (my,—1)(f) = 37 fma,0 + 12Fmi—1,0 = $Fm1—2,0 + §Fm1-3,0 = 3fmi 1

1 1 1 7 5
+t5fmi—11+ 5 mi—-21— 7fmi-1,2 + gfmia — 5Sma 5
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Fig. 11 Near-best functionals associated with @5 (1,0y (@) and @3 (;m,,0) (b)

12, 0,0)(f) = 355 fo.0 — §(f2.0 + fo,2) + 3f1

+o=(f3,0 + fo,3) — s f2,2 + 5 f3.3,
12, (m1,0)(f) = §fmi0 + 5 (fmi—1,0 + fmi1) + 3 fmi—11
—1(fmi—3,0 + fmy,3) = g1fmi—2,2 + 15 (Fmy—4,0 + fmy 2)-
Along the lower edge, for i =1,...,m; — 1, we have
11,600 (f) = 2 fic1,0+ $fi0 + §fivr0 — 5fim11 — §fin
+3fict2+ opfirt2 + &fis — 15fia
tio, i, —1)(f) = S5 fio + 13 fit1,0 — 15fi-1,1 — 3fi1 — Ffiv1n
+5fici2+ 2fit12+ 5 fis — agfia,
— _ 1l 8 1 p 1r S R B
to,i,0)(f) = —3fi—10 + 3 fi0 — wfivr0+ gfi-11 + 15fin — 13 fit11
1. 5, i
_ﬁfl—l,Q - §fz,3 + ﬁfz,ély
and analogous formulas for the three other edges and vertices of 2. In the interior of

the domain, for i = 1,...,m; — 1,5 = 1,...,mg — 1, the coefficient functionals are
defined by (5) and (6) i.e.

p, i) (f) = %fi,j + % (fig1,j + fim1j + fij+1 + fij—1)
o (firr 41 + fic1j—1 — fit1,j-1 — fi—1,j+1) »
po i) (F) = 5fig — & (fixrg + fic1j + fij1 + fij—1)

1
a1 (fit141 + fic1j—1 — fit1,j—1 — fim1,j+1) -
In Table 1 we give the values of the infinity norms of the coefficient functionals.
A valid choice as boundary coefficient functionals is also represented by the initial
ones with schemes containing an equal number of conditions and unknowns, where
no minimization procedures are required. These coefficient functionals, denoted by

[A1,0(f), B2, (f)] are:

fir (0,0)(f) = 51f0,0 — §(fro+ fo1) + 55 (f2.0 + fo2) + 311
—&(f3,0 + fo.3) — 5122,

ﬂ1,(m1,0)(f) = %fml,o - %(fml—l,o + fml,l) + %(fml—Q,O + fm1,2) - %fml—l,l
— 5 (fmi—3.0 + fm1,3) + 31 Fmi—2.2,
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83 13
ll1,0,0) lloe = 57 = 3.07 ll1, 00l = § =~ 2.17
lee1, om0y loo = % ~ 3.22 lees, i,y lloo = % ~ 1.17

2, (—1,—1)lloo = B =8.125  [lug,0,—1)llec = 3 ~ 8.64

103 53

Iz, (i, —1)lleo = §5 = 8.58 lt2,(my,—1)llc = %~ 8.83
12,0,0loo = 15 & 2.58 112, (5,0)lloe = 4T 2 2.61
42, (my,0)lloc = 35 = 2.08 |2, i ylloo = 5 = 2.5

Table 1 Infinity norms of the coefficient functionals of Q1

fig,(—1,-1)(f) = B2 fo.0 — B (fro+ fo1) + 2 (f2.0 + fo2) +2f11
—2(f3,0 + fo,3) — 95.f2.2,

fiz,(0,—1)(f) = Sfoo+ Tfi0— Bfe0+ f30— 2 fonr
—Ifiit i+ fos+fie—2f0s,

7 7 3 1 21
B2, (my,—1)(f) = 5fm1,0 + 13fmi—1,0 = 1Fm1—2,0 + §fmi—3,0 = TSm0

1 1 37 1 2
+5fmi—11+ 12 fmi—21 + 9 fmi2 — 1fmi—-1,2 — 3fmi 3

fiz 0.0y (f) = 51f0,0 + §(fro+ fo1) — 3% (f2,0 + fo2) — 311
+3(f3,0 + f0,3) + 51.f2,2,

B2, (my1.,0)(f) = 3fmr0 + 3 (Fmy—1,0 + fmi 1) = 3 (fmy—2,0 + Finy 2)

5
1 1 8
+5fmi—1,1 + §(Ffmi—3,0 + fm1,3) — 57 fmi—2,2-

Along the lower edge, for i =1,...,m1 — 1, we have

_ 3 5 1 1 1
Ba,i,0)(f) = gfim1,0+ §fio+ 5fit10— 3fic10— 5fin
1 1 1 1
+gfici2+ 5fi2 + ogfivi2 — §fi3
_ 37 5 7 17 5
R, i,—1)(f) = 13 fio + ﬁfi-’ir-l,o - ngfi—l,l - Ff'i,l - qfir11
5
+igfici2+ gfi2+ 5fiv12 — 5fi3

_ 1 1 1 1 2 1
fig i,0)(f) = =3 fic1,0 + 15600 — T2 fiv1,0 + 1 fic1,1 + 3 fin — 1o fiv1
1 7 1
—1afic1,2 — 13fi2 + §fi3
and analogous formulas for the three other edges and vertices of 2. In the interior of

the domain, for i = 1,...,m; — 1,5 = 1,...,mg — 1, the coefficient functionals are
defined by (5) and (6). We call the corresponding operator Q1

Qlf: Z [ﬂl,a(f)?ﬂla(f)]@oé' (21)

ac Ay

In fact, in order to determine the coefficient functionals fiy (; 0y, f2,(i,—1)> F2,(,0),
although the number of conditions and unknowns is the same, one parameter is free
and a minimization problem has to be solved.
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4 Construction of boundary functionals inducing superconvergence

In this section we construct boundary coefficient functionals inducing superconvergence
of the gradient of the quasi-interpolant Q2 f at some specific points of the domain. Using
the notations

S0 = 07 S; = (Z - %)hy 1 S 1 S mi, Smi+1 = m1h7
to = 07 t] = (] - %)hﬂ 1 S.] < ma, t7n2+1 = mQh,

these specific points are (see Fig. 7):

- the vertices of squares Ay ; = (kh,lh), k=0,...,m1,1=0,...,m2,

- the centers of squares My, ; = (s, 1), k=1,...,m1, 1 =1,...,ma,

- the midpoints C},; = (sg,lh) of horizontal edges Ap_1 ;Ag;, k =1,...,m1, 1l =
0,...,ma,

- the midpoints Dy ; = (kh,t;) of vertical edges Ay ;_1A4k;, k = 0,...,m1, | =
1,...,mo.

We construct the boundary coefficient functionals A1 o (f) and A2 o (f) so that they
coincide, respectively, with the differential ones (f + %A*f)(ca) and (f — %A*f)(ca)
for f € P3(R?).

Since the differential quasi-interpolant (2) is exact on P3(R?), the discrete quasi-
interpolant that we are constructing is also exact on P3 (Rz), therefore the approxima-
tion order is 4 and the approximation order of the gradient is 3 for smooth functions,
ie. f—Qaf = O(h?) and V(f = Qaf) = O(h?).

If we want superconvergence of the gradient at some specific points, i.e. V(f —
Q2f)(M) = O(h4), we have to require that, for f € Py (]RQ), the gradient of the quasi-
interpolant VQa f interpolates the gradient of the function V f at those points. So we
impose V(Qa2f)(M) = Vf(M) for f € P4(R?)\P3(R?), with M a specific point of the
domain.

This leads to a system of linear equations. We consider systems with additional free
parameters and we choose them by minimizing the infinity norms ||A1 oo, [[A2,allco
and solving the corresponding /1-minimization problems.

We remark that on the whole plane R?, the two operators Q* and Q**, defined
by (3) and (4), show superconvergence properties for the gradient at the points above
specified (see [11]), i.e. V(f — Q*f)(M) = O(h*) and V(f — Q**f)(M) = O(h*) for
smooth functions and for any point M of the type Ay ;, My, Cy; or Dy ;.

Hereinafter we analyse the coefficient functionals near the origin of (2, the other
ones can be obtained in a similar way near the other vertices. We consider schemes
for these coefficient functionals containing a number of points greater than or equal
to the number of imposed conditions and such that those points are included in a
neighbourhood of the support of the corresponding scaled multi-box spline. In the
selection of points we take into account the comments made in the previous section on
the ‘good direction’.

We remark that in order to construct functionals inducing superconvergence near
the origin, we have to impose the interpolation of the gradient at the specific points
above defined. Therefore we start at the points where only one kind of boundary
functional is involved, i.e. the points (%h, %h), (2h, h), (2h, %h)
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In fact, if we evaluate the quasi-interpolant Q2 at the point (%h7 %h) (analogously

at the points (2h, h), (2h, %h)) we have:

Qaf (3h,3h) = M 1,1y (N)@1,(1,1) (31 3R) + M (2,2)(H)P1,(2,2) (3. 3h)
+A2,(1, o>(f)s02 (1 o) (3h, 3h) + >\2,(o,1)(f)s52 ©0.1) (3, 3h)
2,1, (NP2,1,1) (3R 3h) + Ao 2,1y (FP2,2,1) (37 5h)
+A2,(1,2) (N)P2,1,2) (35 5h) + A2 2,2)(f)P2,2,2) (35 3h)
+A2 (3 2)(f)%02 3.2) (37 3h) + A (2,3)(/)P2,2,3) (3h. 3R) ,

where @1 (11), P1,(2,2)s P2,(1,1)r P2,(2.1) P2,(1,2) P2,(2,2) P2,(3,2), P2,(2,3) are as-
sociated with coefficient functionals of inner type defined by (5), (6) and @5 (1,0),
$2,(0,1) are associated with boundary coefficient functionals. The supports of ¢, (1 o)
and g (o,1) are symmetric w.r.t. the line y = z, therefore we only construct the func-
tional Ag (1,0), because A (g,1) can be obtained by symmetry. Thus we impose the
interpolation condition for the gradient at these points and construct Ay (1,0)-

Then we consider the points (h,h), (%h,h): following the same logical scheme
above explained and imposing the interpolation condition at these points, we construct
A2,(0,0)- Then we consider the points (2h,0), (2h, ) ( h, g) imposing the interpola-
tion condition at these points, we construct )\27(17_1) A1,(1,0) and we continue using
the same method.

Here we use more data points than in the near-best case, because now we have
more conditions to impose.

We analyse the cases Ay (1,0) and Ay (g,gy- For the other cases we follow the same
logical scheme (see [20] for detail). We obtain the functionals with discrete supports
shown in Figs. 12+-15.

4.1 Example 1: the functional Ay (1 0)

Consider the 13-point linear functional

A2,1,0)(f) = a1fo0 +azfio+ asf20 +asfor +asfi1 + asf21 + a7 fo2+
+agf1,2 +agf22 +aiofo,3 +ai1f1,3 +aiafo,3 +aisfiq,

obtained from the scheme of the corresponding near-best coefficient functional by
adding the points Ag 3 = (0,3h) and Az 3 = (2h, 3h).
We require that:

(Z) )‘2,(1,0)(f) ( - ﬁA*f)(Cl O)a c1,0 = (h70) for f € ]P3(]R2)7 Le for f =1, z, y,
o, xy, y°, 20, Py, ), v

(i1) V(Q2f)(M) = VI(M) for | € P4(R*)\P3(R?), i.e. for f =2, 2y, 2%%, 2®, ¢*
and M = (3h, 3h), (2h,h), (2h, 3h).

This leads to a system whose solution depends on one parameter: if we minimize
the norm [[Ag (1,0)[loc We obtain

31 37 7 7 11
61:—?7 a2:%173@3:—*21, a4:ﬁ% a5 = 15, ag = 0,
a7_7ﬂ7 a8:7ﬁ7 a9:7§7 a10:%7 all = 36

1 _ 1
a12 = 1g, @13 = —g>

with a norm [[Ag (1 0)llcc & 5.72 and discrete support shown in Fig. 12(a).



16

4.2 Example 2: the functional Ay (g 0)

We consider the 15-point linear functional, defined using 10 unknowns

A2,(0,0)(f) = a1 fo,0 +az2(f1,0 + fo,1) + as(fe,0 + fo,2) +aafi,1 +as(f3,0 + fo,3)
+ag(f2,1 + f1,2) + av(fa,0 + fo,4) + agfe2 + agf3 3 + a10fa,4,
obtained from the scheme of the corresponding near-best coefficient functional by
adding the points Ag4 = (0,4h), A4,0 = (4h,0), A12 = (h,2h), A>1 = (2h,h) and
Agg = (4h,4h).
We require that:
(i) Xa,0,0) () = (f = T A*1)(0,0) for f € P3(R?);
(i1) V(Qf)(M) = Vf(M) for f € Py(R?*)\P3(R?) and M = (h, h), (3h,h).
Solving the corresponding system and minimizing the norm we obtain
al 227
ag = —1, a7 =—31, G8 = —35, a9 = 33, a0 = —g,

7 19 7
GQZO, a3:_ﬂ7 a4:ﬁ7 a5:%7

I
W)

with a norm [[A3 (¢,0)llcc = 5.5 and discrete support shown in Fig. 12(b).

1 11 1
G 24 8
5 |23 |1 T 23
36 (36 (18 36 36
4111131 1 1711131
24 12 8 24 12 24
7
gy % st 1 1
2113 |0 VI TANET]
31 |37 | 7 23 717z |2
/ 72 136 17 / 6 {0/ 75136 L34

(a) (0)

Fig. 12 Functionals inducing superconvergence associated with @5 (1,0y (@) and @3 0,0y (b)

Therefore we define the discrete QI Q2
Q2f = > Palf), A2a(f)]Pan (22)
aEAs
giving the expression of its coefficient functionals. Thanks to symmetry properties, only

the following functionals are required:

A0,0)(f) = 53f0,0 + 51 (f2.0 + fo,2) — 1311 — 35 (f3.0 + fo,3)
+ 15 (fa1 + fr,2) + 31 (fa0 + fo.a) + 35 f2,2 — 32 fa.3 + 3 faa,

M, (m1,0)(F) = 33 fma.0 = 5 (Fma—1,0 + 1) + 35 (Fmy—2,0 + frma 2)
_%fml—l,l - %(fml—&o + fml,3) + %(fml—Z,l + fm1—1,2)
+5(Fma—4,0 + fmaa) = 13 (fmi—31 + fmi—1,3) = 95 fmi—2,2,
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1 )
5 = 61
17| 5 | 23 72| 59 L5 | 743 57
172118072 72 96 864
5 11 5 | 1
0 [0 [0 0 18 {36 27 136 0
185 5 325
8 s B 72 10 [s (O 0 |0 lios
19 | 17 | 43 15451 7 123 |5 |13 | 8 1937 11
11879 118 1440 6 12406 48 9 12160 36
6 5o i\ | 37 5
15 |3 18 s \I'36 (0 lig
Bses) 8 0 5 -5
864 9 27 96
(a) (b) (¢)

Fig. 13 Functionals inducing superconvergence associated with @y (1, _1)

(@), ¢2,00,—1) (b)
and @3 (_1,-1) (¢)

2
7 9
36 29 1 5
_a| % 16 b8
9
0 13 17
1 36 36
[ 22 0 263
72 123 |1 | 19
11 |5 i | 203 21 912 475
12 [12 136 [ 36 1|z \
/\ 15 |1 0
15 |1z |19 133
_1 11 _49 /i3 [ 29 18 136 124 0 1
6 12 24, 9 8 /
L (®)
(a)

Fig. 14 Functionals inducing superconvergence associated with @3 (;,,,—1) (@) and @a (0

(0)

3868 fo.0 — S(fro+ fo,1) — B35 f1i1 + 2 (f3,0 + fo,3)

— &= (fa.0+ foa) — 35(f3,1 + f1.3) + 325 fa0
43 61
—so1f4.4 + 276 /5.5

Ao (—1,—1)(f) =

A2, 0,—1)(f) = 109 fo.0 + 31,0 — 35 fo0 + 5 fa0 — 345 fo1 — S fia
— 2 o1+ 2f31 — o fa1+ 2 fo2+ 2fo2
+5 /1,3 — 56 f2.3 — 23 fo,u + 25 fo,5,
)‘2,(m1,—1)(f) = %gfmh() + %fm1—1,0 - %fml—Q,O + %fml—S,O - %fml—4,0
_%f””lal + %f’ml—l,l + %frn]—Q,l - %fml—?),l + %f’mlﬂ
—91fmi—22 — gfmi—1,3 — 3¢ fmia + 35 Fmi—1,4+ 3 fmy .5,

23
6

1
12

X2.00,0)(f) = 58 f0.0 — 55 (f2.0 + fo.2) + 1311 + 55 (f3.0 + fo,3)

(fo1 + f1,2) — 51 (fa0 + foa) — 55 fo2 + 22 f3.3 — g faas

| o
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1 1 1 1
21| o | 23 |8 | 56|23 | 1 | 5
36 36 36 [ 36 | 18 i3 9
7|1 (s 1|13 |1 1|5 |a;
24 |13 |24 24 12 |8 24 |12 |24
| 19 (1 7 | 11 | S5 LT |2
0 12 |12 12 12 |0 12 |12 6 3
49 7 L7 35 | T 1 ] 3 (31 35
36 10 |31 [ 36 36 |72 6 1 |24 24

L 31 [ 2

24 72 3

(a) (b) (c)

Fig. 15 Functionals inducing superconvergence associated with @1 (9,0y (a), ¢1,(1,0) (b) and
®1,(m1,0) (©)

133 19 17
)‘2,(m1,0)(f) = ﬁi;?fml,o - ﬂ(fml—Q,O + {ml,Q) + ﬁfml—l,l
+@(fm1—370 + fm3) + %(fm1—271 +1ém1_172) )
— a5 (fmi—4,0 + fmi,4) — 57 fmi—2,2 + 36 fm, 3,3 — 16 fmi—4.4.

Along the lower edge, for i = 1,...,m1; — 1, we have
1 11 11
A0y (f) = 25 fic1,0+ 33 fi0 + 7 fir1,0 — 1afio1,1 — 13 fit + 31 fi-1,2
13 1 5 23 1 1
+15fi2+ gfit1,2 — 55 i-1,3 — 5513 — 15 fiv1,3 T 5fie
46 2 19 17 43 9
Ao, (i,—1)(f) = 15 fio + 5fit10 — 1Rfi-11 — g fir — i1+ gfic12
1 1 1 2 4
tefiet 2 i1 — Hficia— 5fia— Bfivia+ =fis
31 37 7 7 11 11
A i,0)(f) = =55 fi—10 + 36.fi0 — 75 fit1,0 + 13 fim10 + 15 fin — 3 fio12
1 1 2 1 1
—fi2— 3firi2t asfic13+ 38fis+ 15 fiv1,s — §fids

and analogous formulas for the three other edges and vertices of (2. In the interior of

the domain, for i = 1,...,m; — 1, j = 1,...,mg — 1, the coefficient functionals are
defined by (5) and (6) i.e.
M) (F) = §fig + & (Firg + fimrg + figer + fig—1)
tog (fi1,41 + fim1j—1 — fit1,j-1 — fim1,j+1)

fig =& (Fisrg + ficrg + figar + fij—1)

A2, (i,5)(f) =
31 (Fit1,j41 + fic1j—1 = fit1,j—1 — fim1,j41) »

| wien

In Table 2 we give the values of the infinity norms of the coefficient functionals.

5 Norm and error estimates

In order to study the infinity norms of both operators, Q1 and @2, we express them in
terms of quasi-Lagrange functions L") = [Lc(;l)7 Lg;)]T as follows

Quf = > (P mza(Hga = > [fa, fal LS,

acAs acA

Q2f = 3 Drald) A2a(H]fa =S [far falLS,

acAs acA
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~ 5.67

ol

IA1,0,0) oo = 32 ~ 6.22 1M1, 6,09 loo

A1, (my,0)llc = 5 ~ 9.42 A1, i)l = T A 1.17

A2, —1,-1)lloo = %” ~ 1527 X 0,-1)lleo = %3 ~ 17.67

IA2,(,—1)lloo = % ~ 13.33 A2, (my ,—1)lloc = 152 ~ 20.56
A2, 0,0)lloc = & = 5.5 A2, 0y loc = 48 ~ 5.72
X2, (my,0)lloo = 22 = 6.625 X2, 5)lloo = 5 =25

Table 2 Infinity norms of the coefficient functionals of Q2

and we compute the infinity norm of their Lebesgue functions. The computation of a
good upper bound is based upon a good upper bound of || >~ |L§$’)|||oc, v=1,2.

This process is quite complex, but we know that for bounded functions f, a first
upper bound for the infinity norm of a discrete quasi-interpolant can be obtained
by taking the largest norm of its coefficient functionals. Therefore we can prove the
following theorem.

Theorem 1 For the operators Qu, v = 1,2, defined in Sections 3 and 4, the following
bounds are valid

185 ~ 20.56.

53
Q1 < G ~8.83, [|Q2flc <
Proof For ||f|loc < 1, taking into account (10) and Tables 1-2, we bound above the
infinity norm of the operator @1 by the infinity norm of the functional uy (,,,,, 1) and
that of Q2 by the norm of Ay (,,, 1. Therefore we obtain

53 185
IQilloe < T ~ 883 and || Q2loc < ~57 & 20.56.

Note that the actual infinity norms of @)1 and Q2 are smaller than these values.
Standard results in approximation theory (see also [11]) allow us to deduce the

following theorem, where D? = D182 = %, with 81 + B2 = |8
Theorem 2 Let f € 04((2) and |y| = 0,1,2,3. Then there exist constants Ky~ > 0,
v =1,2, such that

IDY(f = Quf)| o, < Koyh* 1 max HDﬁfH

oo

6 Numerical Results

In this section we present some numerical results obtained by computational procedures
developed in a Matlab environment. These procedures are constructed by adapting
those proposed in [8,9].
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We approximate the following functions
fi(z,y) = (y—2°)° + (1 —2)°,  on the square [~2,2] x [-2,2],

fo(@,y) =In(1+ 2% +4%), on the square [—1,1] x [—1, 1],

and the Franke test function (see e.g. [12])

f3(z,y) = %exp (—i ((9:c — 2)2 + (9y — 2)2)) + %exp (— ((gﬁgl)z (93{7'51)))
+% exp (—% ((995 - 7)2 + 9y — 3)2)) - %exp (— ((92: - 4)2 + (9y — 7)2))

on the square [0,1] x [0, 1].

6.1 Approximation of functions

For each test function, using a 300 x 300 uniform rectangular grid G of evaluation points
in the domain, we compute the maximum absolute error Ef = max(, y)eq |f(u,v) —
Qf(w,v)], @ = Q1,Q1,@2,Q", Q™ (defined by (20), (21), (22), (3) and (4), respec-
tively), for increasing values of m; and ms, and the logarithm of the ratio between two
consecutive errors, rf, see Table 3.

We recall that the quasi-interpolant Q* and Q** use data points outside the domain.

Q1 Q1 Q2 Q* Q™"
m1 = ma Ef rf Ef rf Ef rf Ef rf Ef rf
f1
32 5.1(-4) 2.4(-4) 1.6(-4) 1.6(-4) 3.2(5)
64 32(-5) 4.0 | 15(-5) 4.0 | 9.9(-6) 4.0 || 9.9(-6) 4.0 | 2.0(-6) 4.0
128 2.0(-6) 4.0 | 9.4(-7) 4.0 | 6.2(-7) 4.0 || 6.2(-7) 4.0 | 1.2(-7) 4.0
256 6.7(-8) 4.9 | 3.9(-8) 4.6 | 3.9(-8) 4.0 || 3.9(-8) 4.0 | 7.7(-9) 4.0
f2
32 1.2(:5) 1.2(-5) 1.2(5) 1.2(-5) 3.0(6)
64 7.7(-7) 40 | T.7(-7) 40 | 7.7(-7) 4.0 || 77(-7) 4.0 | 1.8(-7) 4.1
128 48(-8) 4.0 | 4.8(-8) 4.0 | 4.8(-8) 4.0 || 4.8(-8) 4.0 | 1.1(-8) 4.0
256 3.0(-9) 4.0 | 3.0(-9) 4.0 | 3.0(-9) 4.0 || 3.0(-9) 4.0 | 6.7(-10) 4.1
f3
32 88(4) 88(4) 8.8(-4) 88(4) 374
64 6.0(-5) 3.9 | 6.0(-5) 3.9 | 6.0(-5) 3.9 || 6.0(-5) 3.9 | 1.7(-5) 45
128 3.9(-6) 4.0 | 3.9(-6) 4.0 | 3.9(-6) 4.0 || 3.9(-6) 4.0 | 9.2(-7) 4.1
256 24(-7) 40 | 24(-7) 40 | 24(-7) 4.0 || 2.4(-7) 4.0 | 55(-8) 4.1

Table 3 Maximum absolute errors and numerical convergence orders

We observe that the best performances are achieved by Q**, while the behaviour
of the other four operators is similar. Moreover for Q1, @1 and Q2 only data points
inside or on the boundary of the domain are required.

Comparing the three operators proposed in this paper, if we look at the results
obtained with the function f;, we can notice that they are comparable and the best
ones are achieved by Q2.
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6.2 Approximation of gradients

For each test function, using the same uniform rectangular grid G, we also compute the

maximum absolute error VEf = max(, ,)eq |%f(u, v)— (%Qf(u, v)| +| C%f(u, v)—

E%Qf(u,vﬂ), Q = Q1,Q1,Q2,Q",Q**, for increasing values of m1 and mo, and the

logarithm of the ratio between two consecutive errors, denoted by Vr f, see Table 4.

my

= Q1 Q1 Q2 Q* Q**

ms | VEf Vrf | VEf Vrf| VEf Vrf || VEf Vrf| VEf Vrf
f1

32 [ 4.2(2) 12(2) 17(-3) 17(-3) 1.0(-3)

64 | 52(-3) 3.0 | 15(-3) 3.0 | 21(-4) 3.0 | 21(-4) 3.0 | 1.3(-4) 3.0

128 | 6.6(-4) 3.0 | 1.8(-4) 3.0 | 2.6(-5) 3.0 || 2.6(-5) 3.0 | 1.6(-5) 3.0

256 | 8.3(-5) 3.0 | 2.3(-5) 3.0 | 3.3(-6) 3.0 || 3.3(-6) 3.0 | 2.0(-6) 3.0
f2

32 [ 5.9(4) 5.9(-4) 2.8(4) 2.8(-4) 2.0(-4)

64 | 6.2(-5) 32 | 62(-5) 3.2 | 35(-5) 3.0 || 35(-5) 3.0 | 2.5(-5) 3.0

128 | 7.6(-6) 3.0 | 7.6(-6) 3.0 | 4.0(-6) 3.1 || 40(-6) 3.1 | 2.9(-6) 3.1

256 | 9.6(-7) 3.0 | 9.6(-7) 3.0 | 54(-7) 2.9 || 54(7) 29 | 38(-7) 2.9
f3

32 [ 8.9(2) 89(2) 15(-2) 15(2) 35(2)

64 | 89(-3) 33 | 89(-3) 3.3 | 54(-3) 30 | 54(-3) 3.0 |40(3) 3.1

128 | 9.0(-4) 3.3 9.0(-4) 3.3 6.8(-4) 3.0 6.8(-4) 3.0 4.9(—4) 3.0

256 | 9.8(-5) 3.2 | 9.8(-5) 3.2 | 8.6(-5) 3.0 | 8.6(-5) 3.0 | 6.1(-5) 3.0

Table 4 Maximum gradient errors and numerical convergence orders

Also for the approximation of the gradient the same comments given in Section 6.2
on the performances of the proposed operators are valid.

If we evaluate the error at the points where superconvergence holds for the gradient,
we observe that with the operators Qa, Q* and Q** the error is O(h?), see Table 5.
Furthermore, since f is a polynomial of degree four, the operators Q2, Q* and Q**
interpolate the function fi at the points Ay ;, My ;, C; or Dy ;.

7 Final remarks

In this paper we have defined and analysed C? cubic discrete quasi-interpolants, con-
structing their coefficient functionals in several ways, comparing them and giving norm
and error estimates. Interesting applications for these quasi-interpolants are in the sec-
ond stage of the two-stage methods (see e.g. [10,22]) or in the approximation of critical
points and curvatures of a surface (see e.g. [13] for quadratic splines).

Acknowledgements The author is grateful to Prof. C. Dagnino and Prof. P. Sablonniere
for helpful discussions and comments. The author also thanks the referees for their useful
suggestions and remarks which improved this paper.
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m1
Q1 Q1 Q2 Q" Q**

mo VEf vrf VEf vrf VEf vrf VEf vrf VEf vrf
f1

32 [ 4.2(:2) 1.2(2) 2.8(-13) 2.3(-13) 2.3(-13)

64 | 53(-3) 3.0 | 1L.5(-3) 3.0 |57(-13) - || 45(-13) - | 47(-13) -

128 | 6.6(-4) 3.0 | 1.8(-4) 3.0 | 1.3(12) - || 97(13) - | 99(¢13) -

256 | 8.3(-5) 3.0 | 23(-5) 3.0 | 23(-12) - || 1.9(-12) - | 1.9(-12) -
f2

32 [ 5.9(4) 5.9(-4) 8.9(5) 6.4(5) 2.2(-5)

64 | 6.2(-5) 3.2 | 6.2(-5) 3.2 | 47(-6) 42 || 4.0(-6) 4.0 | 1.3(-6) 4.1

128 | 7.6(-6) 3.0 | 7.6(-6) 3.0 | 27(-7) 41 || 2.5(-7) 4.0 | 7.9(-8) 4.0

256 | 9.6(-7) 3.0 | 9.6(-7) 3.0 | 1.6(-8) 41 || 1.6(-8) 4.0 | 4.9(-9) 4.0
f3

32 [ 8.9(-2) 89(-2) 3.4(-2) 3.4(-2) 1.7(-2)

64 | 8.9(-3) 3.3 |89(-3) 33 | 24(-3) 38 || 24(-3) 38 | 8.9(4) 4.3

128 | 9.0(-4) 3.3 | 9.0(4) 3.3 | 1.6(4) 3.9 || 1.6(-4) 39 | 51(-5) 4.1

256 | 9.8(-5) 32 | 9.8(-5) 3.2 | 98(-6) 4.0 || 9.8(-6) 4.0 | 3.1(-6) 4.0

Table 5 Maximum gradient errors at specific points (Section 4) and numerical convergence
orders
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