Skip to main content
Log in

Splitting extrapolation algorithm for first kind boundary integral equations with singularities by mechanical quadrature methods

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The accuracy of numerical solutions near singular points is crucial for numerical methods. In this paper we develop an efficient mechanical quadrature method (MQM) with high accuracy. The following advantages of MQM show that it is very promising and beneficial for practical applications: (1) the \( O(h_{\rm {max}}^{3})\) convergence rate; (2) the \(O(h_{\rm {max}}^{5})\) convergence rate after splitting extrapolation; (3) Cond = \(O(h_{\rm {min}}^{-1})\); (4) the explicit discrete matrix entries. In this paper, the above theoretical results are briefly addressed and then verified by numerical experiments. The solutions of MQM are more accurate than those of other methods. Note that for the discontinuous model in Li et al. (Eng Anal Bound Elem 29:59–75, 2005), the highly accurate solutions of MQM may even compete with those of the collocation Trefftz method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anselone, P.M.: Collectively Compact Operator Approximation Theory. Prentice-Hall, Englewood Cliffs, New Jersey (1971)

    MATH  Google Scholar 

  2. Atkinson, K.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press (1997)

  3. Atkinson, K., Sloan, I.: The numerical solution of the first kind logarithmic-kernel integral equations on smooth open arcs. Math. Comp. 56, 119–139 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao, Y., He, X.-M., Lü, T.: A Splitting extrapolation for solving nonlinear elliptic equations with d-quadratic finite elements. J. Comput. Phys. 228, 109–122 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chapko, R., Johansson, B.T.: An alternating potential-based approach to the Cauchy problem for the Laplace equation in a planar domain with a cut. Comput. Methods Appl. Math. 8, 315–335 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Chapko, R., Kress, R.: On a quadrature method for a logarithmic integral equation of the first kind. In: Agarwal R.P. (ed.) World Scientific Series in Applicable Analysis, Contributions in Numerical Mathematics, vol. 2, pp. 127–140. World Scientific, Singapore (1993)

    Google Scholar 

  7. Cheng, A.H., Cheng, D.T.: Heritage and early development of boundary elements. Eng. Anal. Bound. Elem. 29, 268–302 (2005)

    Article  MATH  Google Scholar 

  8. Costabel, M., Ervin, V.J., Stephan, E.P.: On the convergence of collocation methods for Symm’s integral equation on open curves. Math. Comp. 51, 167–179 (1988)

    MATH  MathSciNet  Google Scholar 

  9. Davis, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)

    MATH  Google Scholar 

  10. Elschner, J., Graham, I.: An optimal order collocation method for first kind boundary integral equations on polygons. Numer. Math. 70, 1–31 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Graham, I., Qun, L., Rui-Feng, X.: Extrapolation of Nystr öm solutions of boundary integral equations on non-smooth domains. J. Comput. Math. 10, 231–244 (1992)

    MATH  MathSciNet  Google Scholar 

  12. Grisvard, P.: Elliptic Problems in Non-Smooth Domains, vol. 24. Monograph and Studies in Mathematics, Pitman (1985)

    Google Scholar 

  13. He, X.-M., Lü, T.: Splitting extrapolation method for solving second-order parabolic equations with curved boundaries by using domain decomposition and d-quadratic isoparametric finite elements. Int. J. Comput. Math. 84, 767–781 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. He, X.-M., Lü, T.: A finite element splitting extrapolation for second order hyperbolic equations. SIAM J. Sci. Comput. 31, 4244–4265 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huang, J., Lü, T.: Splitting extrapolations for solving boundary integral equations of linear elasticity Dirichlet problems on polygons by mechanical quadrature methods. J. Comput. Math. 24, 9–18 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Huang, J., Lü, T., Li, Z.C.: Mechanical quadrature methods and their splitting extrapolations for boundary integral equations of first kind on open arcs. Appl. Numer. Math. 59, 2908–2922 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kress, R.: Inverse scattering from an open arc. Math. Methods Appl. Sci. 18, 267–293 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kress, R., Tran, T.: Inverse scattering for a locally perturbed half-plane. Inverse Probl. 16, 1541–1559 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, Z.C., Lu, T.T., Hu, H.Y., Cheng, H.D.: Particular solutions of Laplace’s equations on polygons and new models involving mild singularities. Eng. Anal. Bound. Elem. 29, 59–75 (2005)

    Article  MATH  Google Scholar 

  20. Lin, C.B., Lü, T., Shih, T.M.: The Splitting Extrapolation Method. World Scientific, Singapore (1995)

    Google Scholar 

  21. Paris, F., Cans, J.: Boundary Element Method. Oxford University Press (1997)

  22. Rüde, U., Zhou, A.: Multi-parameter extrapolation methods for boundary integral equations. Adv. Comput. Math. 9, 173–190 (1988)

    Article  Google Scholar 

  23. Saranen, J.: The modified quadrature method for logarithmic-kernel integral equations on closed curves. J. Integral Equ. Appl. 3, 575–600 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Saranen, J., Sloan, I.: Quadrature methods for logarithmic-kernel integral equations on closed curves. IMA J. Numer. Anal. 12, 167–187 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sidi, A.: A new variable transformation for numerical integration. Numer. Math. 112, 359–373 (1993)

    MathSciNet  Google Scholar 

  26. Sidi, A., Israrli, M.: Quadrature methods for periodic singular Fredholm integral equation. J. Sci. Comput. 3, 201–231 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sloan, I.H., Spence, A.: The Galerkin method for integral equations of first-kind with logarithmic kernel: theory. IMA J. Numer. Anal. 8, 105–122 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sloan, I.H., Spence, A.: The Galerkin method for integral equations of first-kind with logarithmic kernel: applications. IMA J. Numer. Anal. 8, 123–140 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stephan, E.P., Wendland, W.L.: An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18, 183–219 (1984)

    Article  MathSciNet  Google Scholar 

  30. Yan, Y.: The collocation method for first-kind boundary integral equations on polygonal regions. Math. Comp. 54, 139–154 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yan, Y.: Cosine change of variable for Symm’s integral equation on open arcs. IMA J. Numer. Anal. 10, 521–535 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yan, Y., Sloan, I.: On integral equation of the first kind with logarithmic kernels. J. Integral Equ. Appl. 1, 517–548 (1988)

    Article  MathSciNet  Google Scholar 

  33. Yan, Y., Sloan, I.: Mesh grading for integral equations of the first kind with logarithmic kernel. SIAM J. Numer. Anal. 26, 574–587 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

Communicated by Yuesheng Xu.

The work is supported by the National Natural Science Foundation of China (10871034).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Zeng, G., He, X. et al. Splitting extrapolation algorithm for first kind boundary integral equations with singularities by mechanical quadrature methods. Adv Comput Math 36, 79–97 (2012). https://doi.org/10.1007/s10444-011-9181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9181-8

Keywords

Mathematics Subject Classifications (2010)

Navigation