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Abstract Consider a continuous function g ∈ L2(R) that is supported on
[−1, 1] and generates a Gabor frame with translation parameter 1 and modula-
tion parameter 0 < b < 2N

2N+1 for some N ∈ N. Under an extra condition on the
zeroset of the window g we show that there exists a continuous dual window
supported on [−N, N]. We also show that this result is optimal: indeed, if
b > 2N

2N+1 then a dual window supported on [−N, N] does not exist. In the limit
case b = 2N

2N+1 a dual window supported on [−N, N] might exist, but cannot be
continuous.
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1 Introduction

Given a Gabor frame with compactly supported window, it is natural to ask
whether a compactly supported dual window exists. Various results about
this can be found in the literature. For example, in the case of rational
oversampling a characterization of the cases where a compactly supported dual
exists can be found in the paper [1] by Bölsckei and Janssen. For a window
supported on [−1, 1] the authors showed in [4] that a compactly supported
dual window always exists.

If a compactly supported dual window exists, the size of the support is
clearly important for practical applications. The purpose of this paper is to
provide a detailed analysis of the necessary size of the support for the dual
window. In particular, we will see that the length often can be shortened by a
factor of two compared to previously known results.

We will consider a continuous function g ∈ L2(R) that is supported on
[−1, 1] and generates a Gabor frame with translation parameter 1 and mod-
ulation parameter 0 < b < 2N

2N+1 for some N ∈ N. Under an extra condition
on the zeroset of the window g we show that there exists a continuous dual
window supported on [−N, N]. We also show that this relationship between
the parameter b and the size of the support is the best one can hope for:
indeed, if b > 2N

2N+1 then a dual window supported on [−N, N] does not exist.
In the limit case b = 2N

2N+1 a dual window supported on [−N, N] might exist,
but cannot be continuous. The proofs of these results are quite technical, so we
provide small examples to illustrate the main ideas.

In the rest of the introduction we state a few well known definitions and
some of the needed results from the literature. The new results are stated in
Section 2, and all the proofs are in Section 3.

Let g ∈ L2(R) and consider the Gabor system {Emb Tng}m,n∈Z given by

Emb Tng(x) := e2π imb xg(x − n), x ∈ R.

Note that we consequently takes the translation parameter to be a = 1. This
can always be obtained using a scaling of the function g and a change of the
parameter b .

Recall that {Emb Tng}m,n∈Z is a frame for L2(R) if there exist constants
A, B > 0 such that

A || f ||2 ≤
∑

m,n∈Z

|〈 f, Emb Tng〉|2 ≤ B || f ||2, ∀ f ∈ L2(R).

If at least the upper frame condition is satisfied, {Emb Tng}m,n∈Z is a Bessel
sequence. Given a frame {Emb Tng}m,n∈Z, a Bessel sequence {Emb Tnh}m,n∈Z is
a dual frame if

f =
∑

m,n∈Z

〈 f, Emb Tnh〉Emb Tng, ∀ f ∈ L2(R). (1.1)

The function g generating the frame {Emb Tng}m,n∈Z is called the window and
h is called a dual window. For more information about Gabor frames and
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their role in time-frequency analysis we refer to, e.g., [6] and [2]. In particular,
the case where b = 1 and {Emb Tng}m,n∈Z is a frame, corresponds to the
classical case of a Riesz basis. For b < 1, the system a frame {Emb Tng}m,n∈Z is
redundant, meaning that several representations of the type (1.1) are possible.

In general it is extremely difficult to characterize the choice of transla-
tion/modulation parameters that lead to a frame for a given function g ∈
L2(R). Complete results have only been obtained for very few functions, e.g.,
the Gaussian. Also, the question of how to obtain a Gabor frame, having a
dual Gabor frame with specified properties, is difficult. Explicit constructions
of pairs of dual Gabor frames appear in [3, 5] and [8]. The key feature of the
constructions in [3] and [5] is that the dual window is given as an explicit linear
combination of integer-translates of the window, which means that it shares
many of the properties of the window.

A characterization of all pairs of dual Gabor frames was provided by Ron
and Shen [9, 10] and Janssen [7]. We will only consider windows g and dual
windows h having compact support. Specifying the size of the support of the
function g and h leads to a characterization of the duality in terms of a finite
collection of equations. Our starting point is the following result, which is a
slightly reformulated version of Corollary 1.2 in [4]:

Proposition 1.1 Let b ∈]0, 1[ and N ∈ N. Assume that g and h are bounded and
real-valued functions with supp g ⊆ [−1, 1] and supp h ⊆ [−N, N], and that

∑

k∈Z

g(x + k)h(x + k) = b , a.e. x ∈ [0, 1]. (1.2)

Then the conditions (i)–(ii) below are equivalent:

(i) {Emb Tng}m,n∈Z and {Emb Tnh}m,n∈Z form dual frames for L2(R);
(ii) For n = ±1, ±2, · · · , ±N,

g
(
x − n

b

)
h(x) + g

(
x− n

b
+1

)
h(x+1) = 0, a.e. x ∈

[ n
b

−1,
n
b

]
. (1.3)

Note that the condition (1.2) actually is satisfied for all pairs of dual Gabor
frames {Emb Tng}m,n∈Z and {Emb Tnh}m,n∈Z, not just the ones considered here.
Also, due to the support conditions in Proposition 1.1, we have

∑

k∈Z

g(x + k)h(x + k) = g(x)h(x) + g(x + 1)h(x + 1), a.e. x ∈ [0, 1].

In this article we will consider windows g belonging to the following subset
of L2(R) :

V := { f ∈ C(R) | supp f = [−1, 1],
f has a finite number of zeros on [−1, 1]}. (1.4)

In Theorem 2.3 in [4] it is shown that if a function g ∈ V generates a Gabor
frame for some b < 1, then there exists a continuous dual window h with
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compact support. Furthermore, the size of the support of a possible choice
of h can be estimated in terms of the size of b :

Proposition 1.2 Let N ∈ N \ {1}. Suppose that a function g ∈ V generates a
Gabor frame {Emb Tng}m,n∈Z. If b < 2N

2N+1 , then there exists a continuous dual
window h with supp h ⊆ [−2N, 2N].

Note that Theorem 2.3 in [4] also contains a characterization of the functions
g ∈ V for which {Emb Tng}m,n∈Z is a Gabor frame for a given b < 1.

Note that in principle one can consider the characterization of dual frames
for windows g supported on a larger interval than [−1, 1]. However, the
number of equations to consider might be very large, and technically it is
very difficult to deal with this. The long-time goal is to extend the calculations
presented here to arbitrary compactly supported windows g.

2 The main results

In this section we present the results. The proofs are quite technical (see
Section 3), so we will provide small examples to illustrate the main ideas.

With Proposition 1.1 as starting point we will provide a closer analysis of
the relationship between the value of the modulation parameter b and the
necessary size of the support of the dual window. The following example
motivates the analysis:

Example 2.1 Let b := 3
5 and

g(x) := 27
20

(x + 1)

(
x − 5

6

)
(x − 1)χ[−1,1](x).

By the results in [4] the function g generates a Gabor frame for a = 1, b = 3/5,

and by Proposition 1.2 we can choose a dual window supported on [−2, 2].
We will now show that it actually is possible to find a dual window supported
on [−1, 1]. In order to do so we check the conditions in Proposition 1.1 with
N = 1. We consider (1.3) for n = 1 and n = −1, that is,

g
(

x − 5
3

)
h(x) + g

(
x − 2

3

)
h(x + 1) = 0, x ∈

[
2
3
,

5
3

]
,

g
(

x + 5
3

)
h(x) + g

(
x + 8

3

)
h(x + 1) = 0, x ∈

[
−8

3
, −5

3

]
.

We see that these equations are satisfied if h(x) = 0 for |x| ≥ 2
3 . Now, the

equation (1.2) means that

g(x)h(x) + g(x + 1)h(x + 1) = 3
5
, x ∈ [−1, 0]. (2.1)
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Fig. 1 The function h in (2.2)
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A direct calculation shows that (2.1) is satisfied if we define h by

h(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x+ 2
3 )(18x3+33x2−3x+4)
(x−1)(x+1)(6x−5)

, x ∈
[
−2

3
, −1

3

]
;

4
9(x + 1)

(
x − 5

6

)
(x − 1)

, x ∈
[
−1

3
,

1
3

]
;

−3
(
x − 2

3

)
, x ∈

[
1
3
,

2
3

]
.

(2.2)

Thus, h is a continuous dual window supported on [−1, 1] (Fig. 1).

The above considerations can be extended to a general result as follows.

Theorem 2.2 Let N ∈ N and b ∈ [ N
N+1 , 2N

2N+1 [. Assume that a function g ∈ V
generates a Gabor frame {Emb Tng}m,n∈Z. Then there exists a continuous dual
window h with supp h ⊆ [−N, N] if and only if

g(x) 	= 0, x ∈
[

N
b

− N − 1, − N
b

+ N + 1
]

.

By Theorem 2.2 careful choices of the window g makes it possible to find a
dual window h supported on [−N, N] if b < 2N

2N+1 (the case b < N
N+1 is covered

by Proposition 1.2). This turns out to be almost optimal. In fact, we will show
that if there exists a dual window supported on [−N, N], then necessarily
b ≤ 2N

2N+1 :

Theorem 2.3 Assume that g is a bounded function with supp g = [−1, 1] and
that {Emb Tng}m,n∈Z is a Gabor frame. If there exists a dual window h with
supp h ⊆ [−N, N], then 0 < b ≤ 2N

2N+1 .

The following example illustrates Theorem 2.3.
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Example 2.4 Let b := 3
4 and

g(x) := (x + 1)

(
x + 3

4

) (
x − 3

4

)
(x − 1)χ[−1,1](x). (2.3)

By the results in [4] the system {E3m/4Tng}m,n∈Z is a Gabor frame. Assume that
there exists a dual window h supported on [−1, 1]. Consider (1.3) for n = 1 and
n = −1, that is,

g
(

x − 4
3

)
h(x) + g

(
x − 1

3

)
h(x + 1) = 0, x ∈

[
1
3
,

4
3

]
, (2.4)

g
(

x + 4
3

)
h(x) + g

(
x + 7

3

)
h(x + 1) = 0, x ∈

[
−7

3
, −4

3

]
. (2.5)

Note that h(x + 1) = 0, x ∈ [ 1
3 , 1] and that h(x) = 0, x ∈ [−2, − 4

3 ]. These
together with (2.4) and (2.5) imply

h(x) = 0, x ∈
[
−1, −1

3

] ⋃ [
1
3
, 1

]
.

Then we have

g(x)h(x) + g(x + 1)h(x + 1) = 0, x ∈
[
−2

3
, −1

3

]
.

But this is a contradiction to (1.2), i.e., the Gabor frame {E3m/4Tng}m,n∈Z does
not have a dual window h supported on [−1, 1]. This is in accordance with the
general result in Theorem 2.3 for N = 1.

Note that compared with Theorem 2.2, Theorem 2.3 also deals with the limit
option b = 2N

2N+1 . In case we want the dual window to be continuous this option
is not available:

Theorem 2.5 Let b = 2N
2N+1 . Assume that g ∈ V, def ined in (1.4), and that

{Emb Tng}m,n∈Z is a Gabor frame. Then there does not exist a continuous
function h with supp h ⊆ [−N, N] such that

∑

k∈Z

g(x − n/b + k)h(x + k) = δ0,n, x ∈ [0, 1], n ∈ Z. (2.6)

The full proof of Theorem 2.2 is technical (see Section 3), so we illustrate
the basic idea by an example:

Example 2.6 Let b := 2
3 and

g(x) := (x + 1)

(
x + 3

4

) (
x − 3

4

)
(x − 1)χ[−1,1](x). (2.7)
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Assume that h is a dual window with supp h ⊆ [−1, 1]. Consider (1.3) for n = 1
and n = −1, that is,

g
(

x − 3
2

)
h(x) + g

(
x − 1

2

)
h(x + 1) = 0, x ∈

[
1
2
,

3
2

]
, (2.8)

g
(

x + 3
2

)
h(x) + g

(
x + 5

3

)
h(x + 1) = 0, x ∈

[
−5

2
, −3

2

]
. (2.9)

Note that h(x + 1) = 0, x ∈ [ 1
2 , 1] and that h(x) = 0, x ∈ [−2, − 3

2 ]. Together
with (2.8) and (2.9) this implies that

h(x) = 0, x ∈
[
−1, −1

2

] ⋃ [
1
2
, 1

]
.

The duality condition with n = 0, i.e.,

g(x)h(x) + g(x + 1)h(x + 1) = 2
3
, a.e. x ∈ [−1, 0]

implies that

h(x) = 2
3g(x)

= 2
(x + 1)

(
x + 3

4

) (
x − 3

4

)
(x − 1)

, x ∈
[
−1

2
,

1
2

]
.

Hence h is not continuous at x = ± 1
2 .

3 Proofs

In this section we provide all the proofs. Note that we do not follow the order
in which the theorems are stated in Section 2.

3.1 Proofs of Theorems 2.3 and 2.5

Lemma 3.1 Let N ∈ N and b ∈ [ N
N+1 , 1[. Assume that g is a bounded function

on R and that supp g = [−1, 1]. Assume further that h is supported in [−N, N],
and that for all n = ±1, ±2, · · · , ±N,

g
(

x − n
b

)
h(x) + g

(
x − n

b
+ 1

)
h(x + 1) = 0, a.e. x ∈

[ n
b

− 1,
n
b

]
. (3.1)

Then

h(x) = 0, a.e. x ∈
{⋃N

k=1

{[ N
b − N + k − 1, k

] ⋃ [
k, k

b

]}
⋃N

k=1

{[− k
b , −k

] ⋃ [−k, − N
b + N − k + 1

]} (3.2)

In particular,

h(x) = 0, a.e. x ∈
[
−1, − N

b
+ N

]
∪

[
N
b

− N, 1
]

. (3.3)
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Proof Note that b ∈ [ N
N+1 , 1[ implies that for n = 1, 2, . . . , N, b ≥ n

n+1 ; thus,

n
b

− 1 ≤ n <
n
b

, (3.4)

which will be used at the several instances in the proof.
We first show that h(x) = 0 a.e. on [ N

b − 1, N] ∪ [N, N
b ] and use induction

on [ N
b − N + k − 1, k] ∪ [k, k

b ] for k = 1, 2, · · · , N − 1 in reverse order.
We consider (3.1) for n = N, and split into two cases:

(1) For a.e. x ∈ [N, N
b ], h(x) = 0, due to the support assumption on h.

(2) For a.e. x ∈ [ N
b − 1, N], which by (3.4) is a subinterval of [N − 1, N], we

see h(x + 1) = 0, due to the support assumption on h. If we note that, by
(3.4) with n = N,

[
N
b

− 1, N
]

⊂
[

N
b

− 1,
N
b

+ 1
]

= supp g
(

· − N
b

)
,

then g(x − N
b ) 	= 0 for a.e. x ∈ [ N

b − 1, N]. This together with (3.1) implies
that

h(x) = 0, a.e. x ∈
[

N
b

− 1, N
]

.

Assuming

h(x) = 0, a.e. x ∈
[

N
b

− N + n0 − 1, n0

] ⋃ [
n0,

n0

b

]
(3.5)

for some n0 ∈ {2, 3, · · · , N}, we will show that

h(x) = 0, a.e. x ∈
[

N
b

− N + n0 − 2, n0 − 1
]

∪
[

n0 − 1,
n0 − 1

b

]
.

An application of (3.4) shows that
[

N
b

− N + n0 − 2, n0 − 1
]

⊂
[

n0 − 1
b

− 1, n0 − 1
] ⋂

supp g
(

· − n0 − 1
b

) ]

and
[

n0 − 1,
n0 − 1

b

]
⊂

[
n0 − 1,

n0

b
− 1

] ⋂
supp g

(
· − n0 − 1

b

)
.

Then we have g(x − n0−1
b ) 	= 0 for a.e. x ∈ [ N

b − N + n0 − 2, n0 − 1] ∪ [n0 − 1,
n0−1

b ] and h(x + 1) = 0 for a.e. x ∈ [ N
b − N + n0 − 2, n0 − 1] ∪ [n0 − 1, n0−1

b ] by
assumption. Considering (3.1) for n = n0 − 1 leads to

h(x) = 0, a.e. x ∈
[

N
b

− N + n0 − 2, n0 − 1
] ⋃ [

n0 − 1,
n0 − 1

b

]
.
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This completes our induction and so

h(x) = 0, a.e. x ∈
[

N
b

− N + k − 1, k
] ⋃ [

k,
k
b

]
, k = 1, . . . , N.

By symmetry, considering (3.1) for n = −1, −2, · · · , −N leads to

h(x) = 0, a.e. x ∈
N⋃

k=1

[
− k

b
, −k

] ⋃ [
−k, − N

b
+ N − k + 1

]
, k = 1, . . . , N.

�


Even though Lemma 3.1 apparently only requires that b ∈ [ N
N+1 , 1[, the

duality condition with n = 0, i.e.,

g(x)h(x) + g(x + 1)h(x + 1) = b , a.e x ∈ [−1, 0] (3.6)

forces an upper bound of b in terms of N as well.

Proof of Theorem 2.3 Since N
N+1 ≤ 2N

2N+1 , it suffices to prove the theorem for
the case N

N+1 ≤ b < 1. By (3.3) on the interval [−1, 1], the function h can at
most be nonzero on the interval [− N

b + N, N
b − N]. In order for the duality

condition to hold, this interval must have length at least 1; that is, we need to
consider b such that 2( N

b − N) ≥ 1, i.e., b ≤ 2N
2N+1 . �


In case g is continuous and we insist on the dual window h being continuous,
already b = 2N

2N+1 has to be excluded:

Proof of Theorem 2.5 Suppose that there exists such a continuous function h.
Then by (3.3),

h(x) = 0, x ∈
[
−1, −1

2

] ⋃ [
1
2
, 1

]
.

Thus h(− 1
2 ) = h( 1

2 ) = 0. But this is a contradiction to (2.6) for continuous g
and h. �


3.2 Proof of Theorem 2.2

Fix b ∈ [ N
N+1 , 2N

2N+1 [ for some N ∈ N. Let n+ ∈ {1, 2, · · · , N − 1}, and define
the function Rn+ on (a subset of) [0, (N − n+)( 1

b − 1)] by

Rn+(y) :=

⎧
⎪⎨

⎪⎩

1
g(y)

, if n+ = 1;
∏n+−1

n=1 g
(
y + n

b − n − 1
)

∏n+−1
n=0 g

(
y + n

b − n
) , if n+ = 2, · · · , N − 1.
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Note that for n = 0, 1, . . . , n+ − 1,

y∈
[

0, (N − n+)

(
1
b

− 1
)]

⇒ n
b

−n ≤ y+ n
b

−n ≤ (N − n+)

(
1
b

− 1
)

+ n
b

− n

= (N − n+ + n)

(
1
b

− 1
)

≤ (N − n+ + (n+ − 1))

(
1
b

− 1
)

= (N − 1)

(
1
b

− 1
)

≤ (N − 1)

(
N + 1

N
− 1

)
= N − 1

N
< 1.

This implies that Rn+ is defined on [0, (N − n+)( 1
b − 1)], except maybe on a

finite set of points.
Similarly, for n− ∈ {1, 2, · · · , N − 1}, we define the function Ln−(y) on

(a subset of) [−(N − n−)( 1
b − 1), 0] by

Ln−(y) :=

⎧
⎪⎨

⎪⎩

1
g(y)

, if n− = 1;
∏n−−1

n=1 g
(
y − n

b + n + 1
)

∏n−−1
n=0 g

(
y − n

b + n
) , if n− = 2, · · · , N − 1.

Lemma 3.2 Let N ∈ N and b ∈ [ N
N+1 , 2N

2N+1 [. Assume that g ∈ V, def ined in
(1.4). Assume that h(x) is continuously chosen for x ∈ [−1, 1] so that the
following four conditions hold:

(1) h(x) = 0, x ∈ [−1, − N
b + N] ∪ [ N

b − N, 1];
(2) g(x)h(x) + g(x + 1)h(x + 1) = b , x ∈ [−1, 0];
(3) If there exist n+ ∈ {1, 2, · · · , N − 1} and y+ ∈ [0, (N − n+)( 1

b − 1)] such
that g(y+) = 0, then the limit

lim
y→y+

{
h

(
y + n+

b
− n+

)
Rn+(y)

}
(3.7)

exists;
(4) If there exist n− ∈ {1, 2, · · · , N − 1} and y− ∈ [−(N − n−)( 1

b − 1), 0] such
that g(y−) = 0, then the limit

lim
y→y−

{
h

(
y − n−

b
+ n−

)
Ln−(y)

}

exists.

Then the equations, for n = ±1, ±2, · · · , ±N,

g
(

x − n
b

)
h(x) + g

(
x − n

b
+ 1

)
h(x + 1) = 0, x ∈

[ n
b

− 1,
n
b

]
(3.8)
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determine h(x) continuously for x ∈ ⋃N+1
k=1

{[−k, − k−1
b ] ⋃[ k−1

b , k]} . Moreover,

h(x) = 0, x ∈
N+1⋃

k=1

{[
−k, − N

b
+ N − k + 1

] ⋃ [
N
b

− N + k − 1, k
]}

(3.9)

and

lim
x→( n

b )+
h(x) = lim

x→(− n
b )−

h(x) = 0, n = 1, · · · , N. (3.10)

Proof We use induction to show that (3.8) determine h(x) continuously for
x ∈ ⋃N+1

k=1

{[−k, − k−1
b ] ⋃[ k−1

b , k]} and satisfy (3.9). First, by assumption, h(x)

is continuously chosen for x ∈ [0, 1] and

h(x) = 0, x ∈
[

N
b

− N, 1
]

by the condition (1). With the purpose to perform an induction argument,
we now assume that, for some 1 ≤ n0 ≤ N, the function h is known to be
continuous on

⋃n0
n=1[ n−1

b , n] and

h(x) = 0, x ∈
[

N
b

− N + n0 − 1, n0

] (
⊂

[
n0 − 1

b
, n0

])
. (3.11)

We consider (3.8) for n = n0, i.e.,

g
(

x − n0

b

)
h(x) + g

(
x − n0

b
+ 1

)
h(x + 1) = 0, x ∈

[n0

b
− 1,

n0

b

]
. (3.12)

We will use (3.12) for x0 in the subinterval [ n0
b − 1, n0]. We split the

argument into two cases:

(a) We first assume that g(x0 − n0
b + 1) 	= 0. Then (3.12) implies

h(x0 + 1) = −g
(
x0 − n0

b

)
h(x0)

g
(
x0 − n0

b + 1
) . (3.13)

In particular, this and (3.11) imply

h(x0 + 1) = 0, if x0 ∈
[

N
b

− N + n0 − 1, n0

]
. (3.14)

(b) We now assume g(x0 − n0
b + 1) = 0. Take y := x − n0

b + 1 in the condition
(3.7). Note that, for n = 1, · · · , n0 − 1,

[
n + 1

b
− 1, n + 1

]
⊂

[ n
b

, n + 1
]
. (3.15)

Combining with (3.8) for n = n0 − 1 implies that

h(x)

g
(
x − n0

b + 1
) = − g

(
x − n0−1

b − 1
)

h(x − 1)

g
(
x − n0

b + 1
)

g
(
x − n0−1

b

) , x ∈
[n0

b
− 1, n0

]
,
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which is well-defined except for a finite number of x-values. Applying
(3.8) and (3.15) repeatedly for n = 1, 2, · · · , n0 − 2 in reverse order im-
plies that

h(x)

g
(
x − n0

b + 1
) = (−1)n0−1 g

(
x− n0−1

b −1
) · · · g

(
x− 1

b − n0+1
)

h(x−n0+1)

g
(
x − n0

b + 1
) · · · g

(
x − 1

b − n0 + 2
)

= (−1)n0−1
(

h(x − n0 + 1)Rn0

(
x − n0

b
+ 1

))
.

If x0 ∈] N
b − N + n0 − 1, n0] then

lim
x→x0

h(x)

g
(
x − n0

b + 1
) = 0,

by (3.11); if x0 ∈ [ n0
b − 1, N

b − N + n0 − 1[, then the limit

lim
x→x0

h(x)

g
(
x − n0

b + 1
) = (−1)n0−1 lim

x→x0

(
h(x − n0 + 1)Rn0

(
x − n0

b
+ 1

))

exists by (3.7); if x0 = N
b − N + n0 − 1, then

lim
x→x0

h(x)

g
(
x − n0

b +1
) = (−1)n0−1 lim

x→x0

(
h(x − n0 + 1)Rn0

(
x − n0

b
+ 1

))
= 0,

by (3.7) and (3.11). Note that if n0 = N and x0 ∈[ n0
b −1, N

b −N +
n0−1], i.e., x0 = N

b − 1, then g(x0 − n0
b + 1) = g(0) 	= 0. Thus we can

define

h(x0 + 1)

=
{

− limx→x0

(
h(x)

g(x− n0
b +1)

)
g

(
x0 − n0

b

)
, if x0 ∈[ n0

b −1, N
b −N + n0−1

[
;

0, if x0 ∈[ N
b −N + n0−1, n0

]
.

(3.16)

Note that g(x − n0
b ), g(x − n0

b − 1) and h(x − 1) are continuous for x ∈
[ n0

b , n0 + 1] ⊂ [ n0−1
b + 1, n0 + 1]. Hence h(x) is determined and continuous

for x ∈ [ n0
b , n0 + 1] by (3.13) and (3.16), and h(x) = 0 for x ∈ [ N

b − N + n0,

n0 + 1](⊂ [ n0
b , n0 + 1]) by (3.14) and (3.16). By induction, h(x) is continuous

for x ∈ ⋃N+1
k=1 [ k−1

b , k], and h(x) = 0 for x ∈ ⋃N+1
k=1 [ N

b − N + k − 1, k].
On the other hand, for x ∈ [n, n

b ], n = 1, 2, · · · , N, the equation

g
(

x − n
b

)
h(x) + g

(
x − n

b
+ 1

)
h(x + 1) = 0

only involves x ∈ [n, n
b ] and x + 1 ∈ [n + 1, n

b + 1] for h, and

([
n,

n
b

]
∪

[
n + 1,

n
b

+ 1
])

∩
(

N+1⋃

k=1

[
k − 1

b
, k

])
= ∅, n = 1, 2, · · · , N.
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By symmetry, considering (3.8) for n = −1, −2. · · · , −N determines h(x)

continuously for x ∈ ⋃N+1
k=1 [−k, − k−1

b ], and h(x) = 0 for x ∈ ⋃N+1
k=1 [−k, − N

b +
N − k + 1]. This proves that h(x) is continuously determined for

x ∈
N+1⋃

k=1

{[
−k, −k − 1

b

] ⋃ [
k − 1

b
, k

]}

and satisfies (3.9).
For (3.10), the condition (2) and g(−1) = 0 imply that g(0) 	= 0. So (3.8)

implies

lim
x→( n

b )+
h(x) = − lim

x→( n
b )

+

g
(
x − n

b − 1
)

h(x − 1)

g
(
x − n

b

) = g(−1)h(n/b − 1)

g(0)
= 0,

for n = 1, · · · , N. Similarly, limx→(− n
b )− h(x) = 0 for n = 1, · · · , N.

�


Proposition 3.3 Under the assumptions in Lemma 3.2, there exists a unique
extension of h to a function with supp h ⊆ [−N, N] so that for n = ±1,

±2, · · · , ±N,

g
(

x − n
b

)
h(x) + g

(
x − n

b
+ 1

)
h(x + 1) = 0, x ∈

[ n
b

− 1,
n
b

]
. (3.17)

This function h is continuous.

Proof We define h(x) for x ∈ ⋃N
k=1

{[−k, − k−1
b ] ⋃[ k−1

b , k]} as in the proof in
Lemma 3.2 and

h(x) = 0, x /∈
N⋃

k=1

{[
−k, −k − 1

b

] ⋃ [
k − 1

b
, k

]}
. (3.18)

From Lemma 3.2, h(x) is a continuous function with supp h ⊆ [−N, N] satisfy-
ing (3.17) for n = ±1, ±2, · · · , ±N. �


As a step towards the proof of Theorem 2.2 we need the following character-
ization of the existence of a dual window supported on [−N, N]. The result is
in the spirit of Theorem 2.3 in [4]. Note that Example 2.2 of that paper explains
the necessity of our technical conditions on the zeroset of g.

Theorem 3.4 Let N ∈ N and b ∈ [ N
N+1 , 2N

2N+1 [. Assume that g ∈ V. Then the
following assertions are equivalent:

(1) g is a frame generator with a dual window h with supp h ⊆ [−N, N];
(2) g is a frame generator with a contiuous dual window h with supp h ⊆

[−N, N];
(3) The following f ive conditions are satisf ied:

(i) |g(x)| + |g(x + 1)| > 0, x ∈ [−1, 0];
(ii) g(x) 	= 0, x ∈ [ N

b − N − 1, − N
b + N + 1];
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(iii) If there exist n+ ∈ {1, 2, · · · , N − 1} and y+ ∈ [0, (N − n+)( 1
b − 1)]

such that g(y+) = 0 and limy→y+ |Rn+(y)| = ∞, then

g
(

y+ + n+
b

− n+ − 1
)

	= 0;

(iv) If there exist n− ∈ {1, 2, · · · , N − 1} and y− ∈ [−(N − n−)( 1
b − 1), 0]

such that g(y−) = 0 and limy→y− |Ln−(y)| = ∞, then

g
(

y− − n−
b

+ n− + 1
)

	= 0;
(v) For y+, y−, n+, n− as in (iii) and (iv),

y+ + n+
b

− n+ 	= y− − n−
b

+ n− + 1, (3.19)

Proof Let h ∈ L2(R) be a dual window of g with supp h ⊆ [−N, N]. Note
that such a function h is essentially bounded due to the frame assumption. By
Proposition 1.1, for n = ±1, ±2 · · · , ±N, we have that

g
(

x − n
b

)
h(x) + g

(
x − n

b
+ 1

)
h(x + 1) = 0, a.e. x ∈

[ n
b

− 1,
n
b

]
; (3.20)

further, by a shift of the equation in (1.2) with n = 0,

g(x)h(x) + g(x + 1)h(x + 1) = b , a.e. x ∈ [−1, 0]. (3.21)

We now verify that the conditions (i)–(v) of (3) in Theorem 3.4 are satisfied.

(i) Since g is continuous and {Emb Tng}m,n∈Z is a frame with lower bound A,

∑

m∈Z

|g(x − m)| ≥ b A

for x ∈ R; since supp g ⊆ [−1, 1], this leads to (i).
(ii) Note that

h(x) = 0, a.e. x ∈
[
−1, − N

b
+ N

] ⋃ [
N
b

− N, 1
]

, (3.22)

by (3.3). This together with (3.21) implies

g(x)h(x) = b , a.e. x ∈
[

N
b

− N − 1, 0
]

,

g(x + 1)h(x + 1) = b , a.e. x ∈
[
−1, − N

b
+ N

]
,

i.e.,

g(x)h(x) = b , a.e. x ∈
[

N
b

− N − 1, − N
b

+ N + 1
]

;

since g(x) is continuous, (ii) holds.
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(iii) Suppose n+ and y+ satisfy the assumption of (iii). Via (3.4),

y+ ∈
[

0, (N − n+)

(
1
b

− 1
)]

⊂ [0, 1[.

Let

x+ := y+ + n+
b

− 1 ∈
[

n+
b

− 1,
N
b

− N + n+ − 1
]

⊂
[n+

b
− 1, n+

]
.

Consider (3.20) with n = n+, i.e.,

g
(

x − n+
b

)
h(x) + g

(
x − n+

b
+ 1

)
h(x + 1) = 0,

a.e. x ∈
[

n+
b

− 1,
N
b

− N + n+ − 1
]

.

Since g have a finite number of zeros in [−1, 1], it follows that

h(x)

g
(
x − n+

b + 1
) = − h(x + 1)

g
(
x − n+

b

) , a.e. x ∈
[

n+
b

− 1,
N
b

− N + n+ − 1
]

;

since g
(
x+ − n+

b

) = g(y+ − 1) 	= 0 by (i) and h is essentially bounded, it
follows that

lim sup
Lh�x→x+

∣∣∣∣∣
h(x)

g
(
x − n+

b + 1
)
∣∣∣∣∣ =: M < ∞,

where Lh is the set of Lebesgue points of h. As in the proof of Lemma
3.2, we have

lim sup
Lh�x→x+

∣∣∣∣∣
h(x)

g
(
x − n+

b + 1
)
∣∣∣∣∣ = lim sup

Lh�x→x+

∣∣∣h(x − n+ + 1)Rn+

(
x − n+

b
+ 1

)∣∣∣ .

Since limx→x+
∣∣Rn+(x − n+

b + 1)
∣∣ = ∞, we conclude that

lim
Lh�x→x+

h(x − n+ + 1) = 0,

i.e.,

lim
Lh�y→y+

h
(

y + n+
b

− n+
)

= 0. (3.23)

By (3.21) and (3.23),

b = lim
Lh�x→x+

{g(x − n+)h(x − n+) + g(x − n+ + 1)h(x − n+ + 1)}

= lim
Lh�x→x+

g(x − n+)h(x − n+).
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Since h(x) is essentially bounded and g(x) is continuous, we have

g(x+ − n+) 	= 0,

i.e.,

g
(

y+ + n+
b

− n+ − 1
)

	= 0.

This proves that (iii) holds.
(iv) This is similar to the proof of (iii) by symmetry, so we skip it. But we

note for use in the proof of (v) that the result corresponding to (3.23) is

lim
Lh�y→y−

h
(

y − n−
b

+ n−
)

= 0. (3.24)

(v) Suppose that y+, n+ and y−, n− are as in (iii) and (iv), respectively. Then
the results in (3.23) and (3.24) hold Note that y+ + n+

b − n+, y− − n−
b +

n− + 1 ∈ [0, 1]. If

y+ + n+
b

− n+ = y− − n−
b

+ n− + 1,

then by (3.21),

b = lim
Lh�y→y+

{
g

(
y + n+

b
− n+ − 1

)
h

(
y + n+

b
− n+ − 1

)

+ g
(

y + n+
b

− n+
)

h
(

y + n+
b

− n+
)}

;
however, this contradicts to (3.23) and (3.24). Hence

y+ + n+
b

− n+ 	= y− − n−
b

+ n− + 1,

i.e., (v) holds.

(3) ⇒ (2) Assume that (i)–(v) in Theorem 3.4(3) hold. We construct h(x)

on [−1, 1] satisfying the hypotheses described in Lemma 3.2. For
m, n = 1, 2, · · · , N − 1, we define the sets Yn and Wm by

Yn =
{

yn,i ∈
]

0, (N − n)

(
1
b

− 1
) ]

: g
(
yn,i

) = 0

and lim
y→yn,i

|Rn(y)| = ∞
}

i=1,2,··· ,rn

and

Wm =
{
wm, j ∈

[
− (N − n)

(
1
b

− 1
)

, 0
[

: g
(
wm, j

) = 0

and lim
y→wm, j

|Lm(y)| = ∞
}

j=1,2,··· ,lm

,
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where rn and lm are the cardinalities of Yn and Wm, respectively.
We denote the open interval of radius ε > 0 centered at x by

B(x; ε) =]x − ε, x + ε[.
Let yn,i ∈ Yn, wm, j ∈ Wm for n, m = 1, 2, · · · , N − 1 and

ỹn,i := yn,i − n + n
b

, ŵm, j := wm, j − m
b

+ m.

The definitions of Yn and Wm imply

ỹn,i ∈
]

n
b

− n,
N
b

− N
]
, ŵm, j ∈

[
N − N

b
, m − m

b

[
. (3.25)

Since g(yn,i) = g(wm, j) = 0, the condition (ii) implies

ŵm, j < wm, j <
N
b

− N − 1 ≤ 0 ≤ − N
b

+ N + 1 < yn,i < ỹn,i.

(3.26)
By the conditions (iii), (iv) and (v),

g
(
ỹn,i − 1

) 	= 0 	= g
(
ŵm, j + 1

)
, (3.27)

and

ỹn,i 	= ŵm, j + 1. (3.28)

Then we can choose ε0 > 0 so that g(x) 	= 0 for

x ∈ B
(
ỹn,i − 1; ε0

) ⋃
B

(
ŵm, j + 1; ε0

)
, (3.29)

B
(
ỹn,i; ε0

) ⋂
B

(
ŵm, j + 1; ε0

) = ∅ (3.30)

and (
B

(
ỹn,i; ε0

) ⋃
B

(
ŵm, j; ε0

)) ⊆ [−1, 0]
for m, n = 1, 2, · · · , N − 1, and i = 1, 2, · · · , rn and j =
1, 2, · · · , lm.

First, we define h(x) on [−1, − N
b + N] ⋃[ N

b − N − 1, N − N
b +

1] ⋃[ N
b − N, 1] by

h(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, x ∈
[
−1, − N

b
+ N

] ⋃ [
N
b

− N, 1
]

;
b

g(x)
, x ∈

[
N
b

− N − 1, − N
b

+ N + 1
]

,

which is well-defined by the condition (ii). Then h satisfies the
condition (3.3) and

g(x)h(x) + g(x + 1)h(x + 1)

= b , x ∈
[
−1, − N

b
+ N

] ⋃ [
N
b

− N − 1, 0
]

.
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Secondly, we define h(x) on B(ỹn,i − 1; ε0)
⋃

B(ỹn,i; ε0). Note
that

ỹn,i /∈
[

0, N − N
b

+ 1
] ⋃ (

N
b

− N, 1
]

by (3.25) and (3.26). We can choose h(x) continuously on B(ỹn,i; ε0)

so that

h(ỹn,i) := 0

and the limit

lim
y→yn,i

{
h

(
y + n

b
− n

)
Rn(y)

}

do exist; if ỹn,i = N
b − N, then we choose h(x) continuously on

B(ỹn,i; ε0) so that

h(ỹn,i) := 0

and

lim
y→(yn,i)−

{
h

(
y + n

b
− n

)
Rn(y)

}
= 0

by the above first case. Now, define h(x) on B(ỹn,i − 1; ε0) by

h(x) = b − g(x + 1)h(x + 1)

g(x)
,

which is well-defined by (3.29). Then

g(x)h(x) + g(x + 1)h(x + 1) = b , x ∈ B(ỹn,i − 1; ε0).

Thirdly, we define h(x) on B(ŵm, j; ε0)
⋃

B(ŵm, j + 1; ε0). Note
that

ŵm, j /∈
[
−1, − N

b
+ N

) ⋃ [
−N + N

b
− 1, 0

]

by (3.25) and (3.26). Choose h(x) continuously on B(ŵm, j; ε0)

so that

lim
y→wm, j

h
(

y − m
b

+ m
)

= 0 =: h
(
ŵm, j

)

and the limit

lim
y→wm, j

{
h

(
y − m

b
+ m

)
Lm(y)

}

do exist; if ŵm, j = N − N
b , then we choose h(x) continuously on

B(ŵm, j; ε0) so that

h(ŵm, j) := 0
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and

lim
y→(wm, j)

+

{
h

(
y − m

b
+ m

)
Lm(y)

}
= 0

by the above first case. Now, define h(x) on B(ŵm, j + 1; ε0) by

h(x) = b − g(x − 1)h(x − 1)

g(x)
,

which is well-defined by (3.29). Then

g(x)h(x) + g(x + 1)h(x + 1) = b , x ∈ B(ŵm, j; ε0).

To summarize all these, let

A :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
−1, N − N

b

] ⋃ [
N
b

− N − 1, 0
] ⋃

(⋃N−1
n=1

⋃rn
i=1 B

(
ỹn,i − 1; ε0

)) ⋃

(⋃N−1
m=1

⋃lm
j=1 B

(
ŵm, j; ε0

))
,

Note that A ⊂ [−1, 0]. We have defined h(x) on A
⋃

(A + 1) so
that

g(x)h(x) + g(x + 1)h(x + 1) = b , x ∈ A.

Finally, we choose h(x) on [−1, 1] \ (A
⋃

(A + 1)) such that h(x)

is continuous on [−1, 1] and

g(x)h(x) + g(x + 1)h(x + 1) = b , x ∈ [−1, 0] \ A,

by the condition (i).
By Proposition 3.3, the function h can be extended to a continu-

ous function supported on [−N, N] that is a dual window.
(2) ⇒ (1) This is trivial.

�


Remark 1 In Theorem 3.4, we only have flexibility in the choice of h(x) for
x ∈] − N

b + N, N
b − N − 1[⋃] − N

b + N + 1, N
b − 1[. In fact, h(x) is determined

on
[
−1, − N

b
+ N

] ⋃ [
N
b

− N − 1, − N
b

+ N + 1
] ⋃ [

N
b

− N, 1
]

by

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ∈
[
−1, − N

b
+ N

]
∪

[
N
b

− N, 1
]

;
b

g(x)
, x ∈

[
N
b

− N − 1, − N
b

+ N + 1
]

.

See Fig. 2.
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Fig. 2 h(x) is arbitrary on
] − N

b + N, N
b − N − 1[ and

on ] − N
b + N + 1, N

b − 1[

We now fix b ∈ [ M−1
M , M

M+1 [ for some M ∈ N. Let n+ ∈ {1, 2, · · · , M − 1},
and define the function Rn+ on (a subset of) [0, n+ − n+

b + 1] by

Rn+(y) :=
⎧
⎨

⎩

1
g(y)

, if n+ = 1;
∏n+−1

n=1 g
(
y+ n

b −n−1
)

∏n+−1
n=0 g

(
y+ n

b −n
) , if n+ = 2, · · · , M − 1.

Similarly, for n− ∈ {1, 2, · · · , M − 1}, we define the function Ln−(y) on
(a subset of) [−n− + n−

b − 1, 0] by

Ln−(y) :=
⎧
⎨

⎩

1
g(y)

, if n− = 1;
∏n−−1

n=1 g(y− n
b +n+1)

∏n−−1
n=0 g(y− n

b +n)
, if n− = 2, · · · , M − 1.

The following result appeared in [4]:

Proposition 3.6 Let M ∈ N \ {1} and b ∈ [ M−1
M , M

M+1 [. Assume that g ∈ V. Then
the following assertions are equivalent:

(1) The function g generates a Gabor frame {Emb Tng}m,n∈Z;
(2) There exists a continuous dual window h with supp h ⊆ [−M, M];
(3) The following four conditions are satisf ied:

(i) |g(x)| + |g(x + 1)| > 0, x ∈ [−1, 0];
(ii) If there exist n+ ∈ {1, 2, · · · , M − 1} and y+ ∈ [0, n+ − n+

b + 1] such
that g(y+) = 0 and limy→y+ |Rn+(y)| = ∞, then

g
(

y+ + n+
b

− n+ − 1
)

	= 0; (3.31)

(iii) If there exist n− ∈ {1, 2, · · · , M − 1} and y− ∈ [−n− + n−
b − 1, 0]

such that g(y−) = 0 and limy→y− |Ln−(y)| = ∞, then

g
(

y− − n−
b

+ n− + 1
)

	= 0;
(iv) For y+, y−, n+, n− as in (ii) and (iii),

y+ + n+
b

− n+ 	= y− − n−
b

+ n− + 1.

Proof of Theorem 2.2

(⇒) This is trivial by the condition (ii) of (3) in Theorem 3.4.
(⇐) It suffices to check the conditions (iii)–(v) of (3) in Theorem 3.4.



Gabor windows supported on [−1, 1] and dual windows with small support 545

(iii) Choose M ∈ {N + 1, N + 2, · · · , 2N} such that

M − 1
M

≤ b <
M

M + 1
.

Assume that there exist n+ ∈ {1, 2, · · · , N − 1} and y+ ∈ [0, (N −
n+)( 1

b − 1)] such that g(y+) = 0 and limy→y+ |Rn+(y)| = ∞. Note
that

b ≥ N
N + 1

⇔ (N − n+)

(
1
b

− 1
)

≤ n+ − n+
b

+ 1.

Since N ≤ M, we have

g
(

y+ + n+
b

− n+ − 1
)

	= 0

by Proposition 3.6. This leads to (iii)
(iv) This is similar to the proof of (iii) by symmetry.
(v) This follows from the condition (iv) of (3) in Proposition 3.6.

�
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