Skip to main content
Log in

Multivariate interpolation with increasingly flat radial basis functions of finite smoothness

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider multivariate interpolation with radial basis functions of finite smoothness. In particular, we show that interpolants by radial basis functions in ℝd with finite smoothness of even order converge to a polyharmonic spline interpolant as the scale parameter of the radial basis functions goes to zero, i.e., the radial basis functions become increasingly flat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Dordrecht (2004)

    Book  MATH  Google Scholar 

  2. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  4. Fasshauer, G.E., Ye, Q.: Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numer. Math. (to appear)

  5. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, Y.J., Yoon, G.J., Yoon, J.: Convergence of increasingly flat radia basis interpolants to polynomial interpolants. SIAM J. Math. Anal 39, 537–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schaback, R.: Comparison of radial basis function interpolants. In: Jetter, K., Utreras, F. (eds.) Multivariate Approximation: From CAGD to Wavelets, pp. 293–305. World Scientific, Singapore (1993)

    Google Scholar 

  12. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21, 293–317 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schaback, R.: Limit problems for interpolation by analytic radial basis functions. J. Comput. Appl. Math. 212(2), 127–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15, 543–639 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schmid, D.: A trade-off principle in connection with the approximation by positive definite kernels. In: Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XII: San Antonio 2007, pp. 348–359. Nashboro Press, Brentwood (2008)

    Google Scholar 

  17. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995). MR 1366510 (96h:41025)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  20. Wu, Z.M.: Compactly supported positive definite radial functions. Adv. Comput. Math. 4(3), 283–292 (1995). MR 1357720 (97g:65031)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Song.

Additional information

Communicated by R. Schaback.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, G., Riddle, J., Fasshauer, G.E. et al. Multivariate interpolation with increasingly flat radial basis functions of finite smoothness. Adv Comput Math 36, 485–501 (2012). https://doi.org/10.1007/s10444-011-9192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9192-5

Keywords

Mathematics Subject Classifications (2010)

Navigation