Skip to main content
Log in

A new regularization method for a Cauchy problem of the time fractional diffusion equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a Cauchy problem of the time fractional diffusion equation (TFDE). Such problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α (0 < α ≤ 1). We show that the Cauchy problem of TFDE is severely ill-posed and further apply a new regularization method to solve it based on the solution given by the Fourier method. Convergence estimates in the interior and on the boundary of solution domain are obtained respectively under different a-priori bound assumptions for the exact solution and suitable choices of regularization parameters. Finally, numerical examples are given to show that the proposed numerical method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  2. Gorenflo, R., Mainardi, F.: Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, 400–415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, X.C., Xu, M.Y., Jiang, X.Y.: Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition. Appl. Math. Comput. 208, 434–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mainardi, F., Pagnini, G., Saxena, R.K.: Fox h functions in fractional diffusion. J. Comput. Appl. Math. 178, 321–331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Metzler, R., Klafter, J.: Boundary value problems for fractional diffusion equations. Phys. A 278, 107–125 (2000)

    Article  MathSciNet  Google Scholar 

  8. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53, 1492–1501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56, 2371–2381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Murio, D.A.: Stable numerical evaluation of Grünwald–Letnikov fractional derivatives applied to a fractional ihcp. Inverse Probl. Sci. Eng. 17, 229–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press Inc., San Diego (1999)

    Google Scholar 

  14. Qian, Z., Fu, C.L.: Regularization strategies for a two-dimensional inverse heat conduction problem. Inverse Probl. 23, 1053–1068 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284, 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  16. Scherer, R., Kalla, S.L., Boyadjiev, L., Al-Saqabi, B.: Numerical treatment of fractional heat equations. Appl. Numer. Math. 58, 1212–1223 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shen, S., Liu, F., Anh, V., Turner, I.: Detailed analysis of a conservative difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 1–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sokolov, I.M., Klafter, J.: From diffusion to anomalous diffusion: a century after Einsteins Brownian motion. Chaos 15, 1–7 (2005)

    Article  MathSciNet  Google Scholar 

  19. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zanette, D.H.: Macroscopic current in fractional anomalous diffusion. Phys. A: Statistical Mechanics and its Applications 252, 159–164 (1998)

    Article  Google Scholar 

  21. Zhang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Y., Meerschaert, M.M., Baeumer, B.: Particle tracking for time-fractional diffusion. Phys. Rev. E 78, 1–7 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wei.

Additional information

Communicated by Yuesheng Xu and Hongqi Yang.

The work described in this paper was supported by the NSF of China (10971089), the Fundamental Research Funds for the Central Universities (lzujbky-2010-k10) and the Funds for the Ph.D. academic newcomer award of Lanzhou University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, G.H., Wei, T. A new regularization method for a Cauchy problem of the time fractional diffusion equation. Adv Comput Math 36, 377–398 (2012). https://doi.org/10.1007/s10444-011-9206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9206-3

Keywords

Mathematics Subject Classifications (2010)

Navigation