Skip to main content
Log in

An approach to geometric interpolation by Pythagorean-hodograph curves

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The problem of geometric interpolation by Pythagorean-hodograph (PH) curves of general degree n is studied independently of the dimension d ≥ 2. In contrast to classical approaches, where special structures that depend on the dimension are considered (complex numbers, quaternions, etc.), the basic algebraic definition of a PH property together with geometric interpolation conditions is used. The analysis of the resulting system of nonlinear equations exploits techniques such as the cylindrical algebraic decomposition and relies heavily on a computer algebra system. The nonlinear equations are written entirely in terms of geometric data parameters and are independent of the dimension. The analysis of the boundary regions, construction of solutions for particular data and homotopy theory are used to establish the existence and (in some cases) the number of admissible solutions. The general approach is applied to the cubic Hermite and Lagrange type of interpolation. Some known results are extended and numerical examples provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, G., Farouki, R.T.: Construction of C 2 Pythagorean-hodograph interpolating splines by the homotopy method. Adv. Comput. Math. 5(4), 417–442 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allgower, E.L., Georg, K.: Numerical continuation methods. In: Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990). An introduction

    Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Choi, H.I., Lee, D.S., Moon, H.P.: Clifford algebra, spin representation, and rational parameterization of curves and surfaces. Adv. Comput. Math. 17(1–2), 5–48 (2002). Advances in geometrical algorithms and representations

    Article  MathSciNet  MATH  Google Scholar 

  5. Dattorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing (2009)

  6. Farin, G., Hoschek, J., Kim, M.S.: Handbook of Computer Aided Geometric Design, 1st edn. Elsevier, Amsterdam (2002)

    MATH  Google Scholar 

  7. Farouki, R.T.: The conformal map zz 2 of the hodograph plane. Comput. Aided Geom. Des. 11(4), 363–390 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farouki, R.T.: Pythagorean-hodograph curves: algebra and geometry inseparable. In: Geometry and Computing, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  9. Farouki, R.T., Neff, C.A.: Hermite interpolation by Pythagorean hodograph quintics. Math. Comput. 64(212), 1589–1609 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farouki, R.T., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34(5):736–752 (1990)

    Article  MathSciNet  Google Scholar 

  11. Farouki, R.T., Manni, C., Sestini, A.: Shape-preserving interpolation by G 1 and G 2 PH quintic splines. IMA J. Numer. Anal. 23(2), 175–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jaklič, G., Kozak, J., Krajnc, M., Vitrih, V., Žagar, E.: Geometric Lagrange interpolation by planar cubic Pythagorean-hodograph curves. Comput. Aided Geom. Des. 25(9), 720–728 (2008)

    Article  MATH  Google Scholar 

  13. Jaklič, G., Kozak, J., Krajnc, M., Vitrih, V., Žagar, E.: On interpolation by planar cubic G 2 Pythagorean-hodograph spline curves. Math. Comput. 79(269), 305–326 (2010)

    Article  MATH  Google Scholar 

  14. Jaklič, G., Vitrih, V., Žagar, E.: Closed form formula for the number of restricted compositions. Bull. Aust. Math. Soc. 81, 289–297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comput. 70(235), 1089–1111 (2001)

    MATH  Google Scholar 

  16. Jüttler, B., Mäurer, C.: Cubic Pythagorean-hodograph spline curves and applications to sweep surface modeling. Comput. Aided Geom. Des. 31, 73–83 (1999)

    MATH  Google Scholar 

  17. Kozak, J., Krajnc, M.: Geometric interpolation by planar cubic G 1 splines. BIT 47(3), 547–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kozak, J., Krajnc, M.: Geometric interpolation by planar cubic polynomial curves. Comput. Aided Geom. Des. 24(2), 67–78 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kozak, J., Žagar, E.: On geometric interpolation by polynomial curves. SIAM J. Numer. Anal. 42(3), 953–967 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kwon, S.H.: Solvability of G 1 Hermite interpolation by spatial Pythagorean-hodograph cubics and its selection scheme. Comput, Aided Geom, Des. 27(2), 138–149 (2010)

    Article  MATH  Google Scholar 

  21. Meek, D.S., Walton, D.J.: Hermite interpolation with Tschirnhausen cubic spirals. Comput. Aided Geom. Des. 14(7), 619–635 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pelosi, F., Farouki, R.T., Manni, C., Sestini, A.: Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics. Adv. Comput. Math. 22(4), 325–352 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wagner, M.G., Ravani, B.: Curves with rational Frenet–Serret motion. Comput. Aided Geom. Des. 15(1), 79–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Žagar.

Additional information

Communicated by R. T. Farouki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaklič, G., Kozak, J., Krajnc, M. et al. An approach to geometric interpolation by Pythagorean-hodograph curves. Adv Comput Math 37, 123–150 (2012). https://doi.org/10.1007/s10444-011-9209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9209-0

Keywords

Mathematics Subject Classifications (2010)

Navigation