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Abstract

The purpose of this paper is to investigate RBF approximation with highly nonuniform
centers. Recently, DeVore and Ron have developed a notion of the local density of a set of
centers – a notion that permits precise pointwise error estimates for surface spline approximation.
We give an equivalent, alternative characterization of local density, one that allows effective
placement of centers at different resolutions. We compare, also, the pointwise results of DeVore–
Ron to previously works of Wu and Schaback and of Duchon.

1 Introduction

This brief article concerns local approximation results for radial basis function (RBF) approximation
with the goal of effectively placing centers at varying resolutions. We consider RBF approximants
of the form x 7→

∑
ξ∈Ξ φ(x−ξ), where the arrangement of centers, Ξ, may be highly nonuniform. A

motivation for this set up is that centers may be placed strategically to treat defects in the target
function. This becomes very important in high dimensions, where conventional quasi-uniform
placement of centers is extremely costly; error estimates assuming a (small) fill distance h require
a placement of O(h−d) centers; obtaining a comparable error with fewer centers is clearly desirable.
To this end, we seek a method by which Ξ can be chosen to achieve a pointwise error that reflects
the local arrangement of Ξ. In turn, this requires finding a useful measure of the local density of Ξ.

In [4], DeVore and Ron establish powerful local error estimates for kernel based approximation;
along the way they develop a satisfactory notion of local density – the majorant – expressed as a
function over a domain containing the centers (see (3) below). This function gives, roughly, the
distance to the nearest unisolvent subset of Ξ. However, it also satisfies an extra condition of global
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compatibility: it may not grow or shrink too rapidly. This condition is not stated explicitly, rather
it is contained in the definition, but it plays an essential role in their local error estimates. In this
article we investigate this compatibility condition and give an equivalent condition that lends itself
to effective placement of highly nonuniform centers.

Error estimates in [4] show that kernel approximation bears a strong similarity to univariate spline
approximation, which exhibits local convergence in the sense that error decays rapidly over intervals
where breakpoints are tightly spaced. Indeed, such results have long been known for spline quasi-
interpolation, at least since [2]. If QT is the quasi-interpolation operator of order r associated with
knots T = (tj), then [3, (4.18)] in conjunction with a theorem of Whitney [3, Theorem 4.2] tells us
that for x ∈ [tj , tj+1],

|f(x)−QT (f)(x)| ≤ Crωr+1(f, tj+r − tj−r+1).

We note that the error from spline approximation at x depends only on the distribution of knots
near x (the rth nearest neighbors) and the smoothness of the target function in a neighborhood of
x. This result can be attributed to the local nature of the B-splines basis (and its associated dual
functionals).

Because kernels are often globally supported, and because a truly local basis similar to the B-
splines seems to be out of the question, the distance to the nearest neighbors may be unsuitable
for measuring local density. Kernel approximants exhibit far field effects, meaning that each kernel
has a global influence, and the majorant of DeVore – Ron, via the global compatibility condition,
penalizes remote, sparse density in an effort to mitigate such far field effects.

Remarkably, it is sometimes the case that RBF interpolation is local in a stronger sense than
considered by DeVore – Ron. Specifically, rates of convergence for interpolation of certain target
functions (those coming from the native space) with certain RBFs can be measured in terms of an
expression that takes into account only the local distribution of centers. However, the drawback is
that such results are presently only known to hold for target functions from a specific class.

In the following section, we present an alternative, equivalent characterization of the majorant of
Devore and Ron, one that involves a global compatibility condition, and we give a self-contained
development of their pointwise error estimates that explicitly uses this compatibility condition. In
Section 3, we demonstrate how the compatibility condition may be used to place centers nonuni-
formly. Section 4 is a discussion of (previously known) local error estimates in the native space
context.

2 Local Estimates

In [4], DeVore and Ron construct a local approximation scheme using a simple measure of the local
density of centers. This initial notion of density (given in Definition 1) is not suitable to capture far
field effects, and the analysis of the scheme’s convergence eventually relies on a more refined notion
of local density: the initial density’s majorant. In this section, we recast the DeVore – Ron result
with a different but equivalent local density parameter, one that lends itself to efficient placement
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of centers. As in [4], we begin by giving the initial definition of local density, a function on R
d which

at each α ∈ R
d indicates a radius sufficient to capture a K-stable local polynomial reproduction of

order ℓ:

Definition 1 (Local Density). Given a set of centers Ξ ⊂ R
d, a local density (LD) ρ : Rd → R+

is a function with an associated local polynomial reproduction of precision ℓ. That is to say, there
is a kernel a : Ξ× R

d → R : (ξ, α) 7→ a(ξ, α) so that the following hold:

(Support) For |ξ − α| > ρ(α), a(ξ, α) = 0.

(Precision) For all p ∈ Πℓ we have
∑

ξ∈Ξ a(ξ, α)p(ξ) = p(α).

(Stability) There is K > 0 such that
∑

ξ∈Ξ |a(ξ, α)| < K for all α.

We note that this definition is given, in more or less the same form, by Wu and Schaback in [8,
Lemma 2] (we discuss their local results in Section 4.2).

This construction allows the surface spline, φ

φ(x) := φk(x) := Ck,d

{
|x|2k−d log |x| for even d

|x|2k−d for odd d
(1)

(also known as polyharmonic splines because they are the fundamental solution of the k-fold Lapla-
cian ∆k), to be approximated by a linear combination of nearby shifts. This is accomplished with
a small, local error:

|φ(x− α) −
∑

a(ξ, α)φ(x − ξ)| ≤ C ρ(α)2k−d

(
1 +

|x− α|

ρ(α)

)−ν

, ν := ℓ+ d− 2k,

and one can generate the approximant:

TΞf(x) :=

∫

Rd

∆kf(α)
∑

ξ∈Ξ

a(ξ, α)φ(x − ξ) dα.

This leads to convenient pointwise error estimates:

|f(x)− TΞf(x)| ≤ C

∫

Rd

|∆kf(α)| ρ(α)2k−d

(
1 +

|x− α|

ρ(α)

)−ν

dα. (2)

Observe that the construction of the approximation operator TΞ depends only on a local poly-
nomial reproduction (ξ, α) 7→ a(ξ, α). The estimate (2) holds for any LD with local polynomial
reproduction a. In particular, it holds for any function ρ′ with ρ′ ≥ ρ. With this in mind, it may
seem tempting to use an optimally small ρ: the LD so that ρ(α) is the minimal radius around α
that captures a K-stable polynomial reproduction of order ℓ. Sadly, because of the global nature
of the kernels, this is unsuitable for producing precise estimates.
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In [4] the LD is used to create a “majorant”:

H(x) = sup
y∈Rd

ρ(y)

(
1 +

|x− y|

ρ(y)

)−r

. (3)

In short, the coefficient kernel associated to the LD is used to create the approximant, but, in order
to attack the estimate (2), an expression involving the majorant controls the error. The initial LD
only plays an ancillary role: to construct the approximant via the coefficient kernel and to generate
the majorant.

To be sure, the entire exercise could be repeated using only H and entirely without ρ. It is a simple
task to show that H is itself an LD (since H(x) ≥ ρ(x) and the local polynomial reproduction
(ξ, x) 7→ a(ξ, x) is a local polynomial reproduction for H as well). Moreover, the majorant of H is
simply a constant multiple of H (a constant depending only on r). It follows that by replacing the
initial LD ρ with its majorant H, one would obtain the same results.

Alternately, from the beginning one may impose the assumption that the LD is equivalent to its
majorant (i.e., it is self-majorizing). This is a change of perspective: from the point of view that
centers have been given outside of our control (and with the goal of remaining faithful to the local
distribution of data by having error estimates reflecting the local density) to the setting where the
spacing of centers is chosen to reflect regions of interest or to attack defects in the target function.
We will choose centers having an LD that is correct from the start, having an extra condition
designed to handle far field effects. The condition on the LD will be different from that of [4];
it is a slightly more easily verified property: slow growth. To proceed, we formalize both extra
assumptions (slow growth and self-majorization) under the heading of global compatibility and
take a moment to discuss their equivalence.

Definition 2 (Global Compatibility). If there is a constant Csg > 0 so that for every x and α, we
have

ρ(α) ≤ Csgρ(x)

(
1 +

|x− α|

ρ(x)

)1−ǫ

, (4)

we say ρ exhibits 1− ǫ slow growth.

The function ρ : Ω → R+ exhibits self-majorization of order r if there is a constant Csm > 0 so
that for every x and y, we have

ρ(y) ≥ Csmρ(x)

(
1 +

|x− y|

ρ(x)

)−r

(5)

The equivalence of these two assumptions can be expressed formally:

Lemma 3. If ρ satisfies the property of self-majorization (5) then it satisfies the property of slow
growth (4) with ǫ = 1

r+1 and constant Csg depending only on r and Csm. Likewise, if ρ satisfies (4)

then it satisfies (5) with r = 1−ǫ
ǫ and constant Csm depending only on ǫ and Csg.

4



Proof. When |x− α| ≥ ρ(x), (4) implies that ρ(α) ≤ 21−ǫCsgρ(x)
ǫ|x− α|1−ǫ, so

2ǫ−1

Csg
ρ(α)ǫ

(
|x− α|

ρ(α)

)ǫ−1

≤ ρ(x)ǫ.

On the other hand, when |x− α| < ρ(x), ρ(α) ≤ 21−ǫCsgρ(x), so ρ satisfies self-majorization with

Csm = min

(
2ǫ−1

Csg
,
(
2ǫ−1

Csg

)1/ǫ)
.

When |x− α| ≥ ρ(x), (5) implies that ρ(α) ≥ 2−rCsmρ(x)
1+r|x− α|−r, so

2r

Csm
ρ(α)1+r

(
|x− α|

ρ(α)

)r

≥ ρ(x)1+r.

On the other hand, when |x − α| < ρ(x), ρ(α) ≤ 2−rCsmρ(x), so ρ satisfies slow growth with

Csg = max

(
2r

Csm
,
(

2r

Csm

)1/(1+r)
)
.

Either of these extra assumptions on ρ are sufficient to obtain the error estimate in [4]:

Theorem 4 (DeVore Ron I). Let ℓ > 2k−d+1. Suppose that ρ satisfies Slow Growth with ǫ > 2k
ℓ .

There is a constant C so that for f ∈ C2k(Rd) having compact support,

|f(x)− TΞf(x)| ≤ Cρ(x)2k‖∆kf‖∞

Proof. This follows by applying the growth assumption to (2) and writing γ = 1− ǫ to obtain:

|f(x)− TΞf(x)| ≤ C

∫

Rd

|∆kf(α)|ρ(x)2k−d

(
1 +

|x− α|

ρ(x)

)γ(2k−d)

1 +

|x−α|
ρ(x)(

1 + |x−α|
ρ(x)

)γ




−ν

dα

≤ Cρ(x)2k−d‖∆kf(α)‖∞

∫

Rd

(
1 +

|x− α|

ρ(x)

)2k−d−ℓ+ℓγ

dα

≤ Cρ(x)2k‖∆kf(α)‖∞

∫ ∞

0
(1 +R)2k−d−ℓ+ℓγRd−1dR.

The second inequality follows by writing (2k − d)γ − ν(1 − γ) = (2k − d)γ − (ℓ − 2k + d)(1 − γ).
The convergence of the last integral is a consequence of the assumption γ < 1− 2k

ℓ .

A further result from [4], is that functions of lower smoothness can also be treated with local error
estimates. The operator TΞ is instrumental in obtaining low smoothness results, albeit indirectly.
This is the point of [4, Theorem 5.3], which, for completeness, we rephrase in a simplified form
as Theorem 5 in terms of the slow growth assumption. The lower order result is technically more
complicated than that of Theorem 4. It is a common technique to use interpolation theory to obtain
direct approximation results for functions of lower smoothness. DeVore and Ron use an argument
of this type, that splits f into a rough but benign part, b, and a smooth part, g. This is done in a
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way that is not entirely straightforward, by controlling the size of b (and the smoothness of g) in a
precise way to match the local density.

To discuss lower smoothness estimates, we first introduce fractional smoothness spaces. These
can be expressed in numerous different ways: as Besov spaces, Triebel-Lizorkin spaces or (more
familiarly) Hölder-Zygmund spaces. In the setting we consider, these are the same spaces. That is,
we consider F σ

∞,∞(Rd) = Bσ
∞,∞(Rd) = C(σ)(Rd). However, the exact smoothness norm we employ

is the Bσ
∞,∞ norm, defined in terms of wavelet coefficients. Smooth functions can be expanded as

f =
∑∞

j=0 cjψj and the smoothness seminorm is expressed in terms of coefficients cj .

A totally standard construction, used also in [4], indexes wavelets by gendered, dyadic cubes: ν ∈ D,
where each ν = (eν , Iν) is a pair comprising:

• a gender e = eν ∈ {0, 1}d \ {0}

• and a dyadic cube I := Iν = 2−j(k + [0, 1]d).

For a general dyadic cube of this form we denote the corner by c(I) := 2−jk and the side-length
by ℓ(I) := 2−j . These definitions extend for gendered cubes: c(ν) := c(Iν) and ℓ(ν) := ℓ(Iν).
Under this indexing, each gendered cube ν has exactly one parent ν ′, where Iν ⊂ Iν′ , eν = eν′ and
ℓ(ν ′) = 2ℓ(ν).

The wavelet system we employ is a family of Cr, compactly supported functions, with r > 2k. Each

wavelet is related to one of 2d−1 prototypes by affine changes of variable: ψν(x) = Ψeν

(
x−c(ν)
ℓ(ν)

)
. In

other words, each wavelet is a translated, rescaled copy of one of the 2d− 1 functions Ψe ∈ C
r(Rd).

Consequently the supports of wavelets are obtained by affine transformations, and each is contained
in a ball with radius proportional to the side-length and centered at the corner of the cube I(ν).
I.e., there is Γ > 0 so that for all ν ∈ D

Iν := supp(ψν) = c(ν) + ℓ(ν)× supp(Ψeν ) ⊂ B
(
c(ν),Γℓ(ν)

)
.

For orthogonal wavelet systems, compactly supported continuous functions have the unique expan-
sion f =

∑
ν∈D fνψν . The smoothness seminorm of f is

|f |Bσ
∞,∞

:= sup
ν∈D

(
ℓ(ν)−σ |fν |

)
.

Theorem 5 (DeVore Ron II). Let ℓ > 2k−d+1. Suppose that ρ satisfies Slow Growth with ǫ > 2k
ℓ .

There is C > 0 so that for all compactly supported f ∈ Bσ
∞,∞, σ < 2k, there is sf,Ξ ∈ span(φ,Ξ)

so that
|f(x)− sf,Ξ(x)| ≤ Cρ(x)σ‖f‖Bσ

∞,∞
.

Proof. We split f = g + b where |b(x)| . ρ(x)σ |f |Bσ
∞,∞

and |∆kg(x)| . ρ(x)σ−2k |f |Bσ
∞,∞

. A con-
sequence of this and Theorem 4 is that |f(x) − TΞg(x)| . ρ(x)σ‖f‖Bσ

∞,∞
and the theorem follows

with sf,Ξ = TΞg.
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To obtain the split, partition D = Dg ∪Db by selecting cubes ν according to the density over Iν :

ν ∈ Dg iff ℓ(ν) ≥ ρ(ν) := max
y∈Iν

ρ(y).

Define g :=
∑

ν∈Dg
fνψν =

∑
ℓ(ν)≥ρ(ν) fνψν . Estimating the iterated Laplacian of a wavelet is

straightforward: for x ∈ Iν , |∆
kψν(x)| ≤ Cℓ(ν)−2k. Consequently,

|∆kg(x)| ≤ C
∑

ν∈Dg

x∈Iν

fνℓ(ν)
−2k ≤ C |f |Bσ

∞,∞

∑

ν∈Dg

x∈Iν

ℓ(ν)σ−2k ≤ C ′|f |Bσ
∞,∞

(ρ(x))σ−2k .

The final estimate deserves some explanation. Note that ν ∈ Dg and x ∈ Iν imply that ℓ(ν) ≥ ρ(x).
Finding j ∈ Z so that 2j ≥ ρ(x) > 2j−1, the number of wavelets with ℓ(ν) = 2j that have x in their
support is bounded, #{ν : ℓ(ν) = 2j , x ∈ Iν} ≤ N , with a constant independent of x and j. We
may rewrite the sum in the next to last expression in the chain of inequalities as

∑

ν∈Dg

x∈Iν

ℓ(ν)σ−2k ≤
∑

ℓ(ν)=2j

x∈Iν

∞∑

i=0

(
2j+i

)σ−2k
≤ N2j(σ−2k)

∞∑

i=0

(
2i
)σ−2k

≤ C
(
ρ(x)

)σ−2k
.

Estimating the size of b(x) :=
∑

ν∈Db
fνψν , we write |b(x)| ≤

∑
ν∈Db,x∈Iν

|fν |, which is bounded by

|f |Bσ
∞,∞

∑
ν∈Db,x∈Iν

(
ℓ(ν)

)σ
. If x and y are in Iν and if ρ(y) > ℓ(ν) then

ρ(x) ≥ Csmρ(y)

(
1 +

|x− y|

ρ(y)

)−r

≥ ℓ(ν)Csm(1 + 2Γ)−r ⇒ ℓ(ν) ≤ Cρ(x)

As in the case of g, it follows that the series |b(x)| ≤ |f |Bσ
∞,∞

∑
ℓ(ν)≤Cρ(x),x∈Iν

(
ℓ(ν)

)σ
can be

rewritten as a sum of geometric series, to obtain |b(x)| ≤ C |f |Bσ
∞,∞

(
ρ(x)

)σ
.

3 Placing Centers

We now turn to a discussion of how condition (4) may be directly implemented to produce effective
global approximants with local error estimates. In this section we present an algorithm for gener-
ating a set of centers with a fixed spacing, having a more refined spacing on a particular subset.
This can be done in such a way that the pointwise error from surface spline approximation using
φk (the surface spline of order k > d/2), reflects the local arrangement of centers.

We begin with a compact set Ω (e.g., a finite set or some lower dimensional manifold) in which we
wish to place centers with increased density (say a spacing of hs, s > 1). Furthermore, we wish to
have an “ambient” density of h outside of Ω. Without loss, we assume h = 2−j and hs = 2−js.

Invoking a 1 − ǫ slow growth condition from Definition 2 (a range of valid ǫ’s will be determined
momentarily), with ρ(α) = 2−sj and ρ(x) = 2−j , we see that extra centers must be placed in
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a region Ω̃ with Ω ⊂ Ω̃ ⊂ {x | dist(x,Ω) ≤ 2−j( 1−sǫ
1−ǫ

)}. This imposes a certain condition on the
relationship between s, the slow growth parameter ǫ, and ultimately the polynomial precision ℓ (by
the conditions of Theorem 4).

To force the set Ω̃ \Ω to shrink with h, ǫ× s should be less than 1; the smaller this product is, the
smaller the region of extra centers will be. In turn, Theorem 4 forces ℓ > 2k/ǫ.

We place extra, gridded centers with dyadic spacing in annular regions around Ω. That is, we
identify a sequence of annular regions Ω0, . . . ,Ωj0 (with j0 = sj − j − 1) around Ω. In each region
ΩJ we place centers ΞJ having constant spacing, and this spacing diminishes the farther ΩJ is
from Ω. Specifically, the Jth region, ΩJ , has centers with spacing 2−js+J . The union of these sets⋃sj−j−1

J=0 ΩJ is Ω̃.

Initial step: The first such set, Ω0, contains Ω and has centers with spacing 2−sj. We make it
slightly larger, in order to ensure that sufficiently many centers are present to satisfy Definition 1.
Thus we set

Ω0 = {x | dist(x,Ω) ≤ ℓ} and Ξ0 = 2−sj
Z
d ∩ Ω0

Inside Ω0 we have placed a set of gridded centers with spacing 2−sj .

From this, we have ρ(α) = ℓ 2−sj for α ∈ Ω. Indeed, for α ∈ Ω, there is a simplex Sα containing α
and contained in Ω0, with side-length ℓ2−sj and corners in Ξ0. The points Sα ∩ Ξ0 are in general
position for interpolation by Πℓ, and the associated Lagrange functions for polynomial interpolation
lξ(α) give the required local polynomial reproduction a(ξ, α) = lξ(α). The stability constant K is

none other than the Lebesgue constant for this interpolation problem, which is bounded by
(
2ℓ−1
ℓ

)
,

as demonstrated in [1, Theorem 2.2].

General step: As we did before, the width of ΩJ can be determined from the slow growth
condition. Setting

ΩJ :=
{
x | dist(x,Ω) ≤ ℓ 2(

J
1−ǫ

−js)
}
\

J−1⋃

ν=0

Ων and ΞJ := ΩJ ∩ 2J−sj
Z
d

guarantees that ρ(α) = ℓ 2J−sj in ΩJ−1, since α ∈ ΩJ−1 is at the center of a ball of radius ℓ2J−sj

contained in
⋃J

ν=0Ων . As before, there is a simplex Sα containing α contained in this ball, and the
corresponding Lagrange functions give the required coefficient kernel.

Verifying the slow growth condition: It follows that for x ∈ Ω and α ∈ ΩJ the distance

dist(x, α) ≥ ℓ2
J−1

1−ǫ
−js, and

2J−sj = 2−sj+1

(
2

J−1

1−ǫ
−sj

2−sj

)1−ǫ

=⇒ ρ(α) ≤ 2ρ(x)

(
1 +

dist(x, α)

ρ(x)

)1−ǫ

Likewise, for α ∈ ΩJ ′ and x ∈ ΩJ with J = J ′ +m and m ≥ 1, we can bound the distance by

dist(x, α) ≥ ℓ2
J′

+m
1−ǫ

−js − ℓ2
J′

1−ǫ
−js ≥ ℓ2−js2

J′

1−ǫ

(
2

m
1−ǫ − 1

)
≥ 1

22
−js2J

′

2
m

1−ǫ .

8



This allows us to bound dist(x,α)

2J′+1−js
from below by 1

42
m

1−ǫ ; in turn, 2m ≤ 41−ǫ
(

dist(x,α)

2J′+1−js

)1−ǫ
. Thus,

ρ(x) = 2J
′+m+1−js ≤ 41−ǫ2J

′+1−js

(
1 +

dist(x, α)

2J ′+1−js

)1−ǫ

= 41−ǫρ(α)

(
1 +

dist(x, α)

ρ(α)

)1−ǫ

.

It follows that Theorems 4 and 5 hold for approximation by φk and for this set of centers with local
density ρ.

Example. In this example the global spacing is h = 2−j , while the spacing near the origin will be
h2 = 2−2j . We choose to impose a slow growth condition with ǫ = 1/3. By Theorem 4 we observe
that the LD must have precision ℓ > 2k/ǫ, so we choose ℓ = 7k.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: A configuration of centers for thin plate spline approximation (k = 2, as in the first
remark) where the density ranges from ρ(0) ∼ h2 = 2−6 to the coarsest density is ρ(x) ∼ h = 2−3.
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The spacing of centers immediately around the origin should be 2−2j , but there is an intermediate
region where the spacing grows slowly. We decompose this in j regions of increasing width:

ΩJ := {x : |x| ≤ 7k × 2
3J
2
−2j} \

⋃

0≤ℓ<J

Ωℓ, J = 1, . . . , j

in which we place gridded centers with spacing hJ = 2J−2j . Thus, ρ(x) ≤ 42/3ρ(y)(1 + |x|
ρ(y) )

2/3

holds throughout Rd, and by Theorem 5 there is a constant C so that for any f with smoothness
0 < s ≤ 2k we have a good approximant with dramatically increased accuracy at the origin:

‖f − sf‖∞ ≤ Chs‖f‖s and |f(0)− sf (0)| ≤ Ch2s‖f‖s.

In fact, for x ∈ ΩJ , one has |f(x)− sf (x)| ≤ C2s(J−2j)‖f‖s.

We note finally that the cardinality of centers in the ball B(0, 7k × 2−j/2) is less than

j∑

J=0

(7k)d2d(
3J
2
−2j)2−d(J−2j) ≤ (7k)d

j∑

J=0

2d(
J
2
) ≤ Cd(7k)

d2d(
j

2
).

Since the same ball filled with centers having uniform spacing h = 2−j holds roughly (7k)d2d(j/2)

centers, the increased precision comes at a cost of adding only a multiple of the original centers.

4 Local Error Estimates for RBF Interpolation

Many RBF interpolation results provide (implicitly or explicitly) local error estimates similar to
those of Theorem 4. In this section we discuss two well known techniques for providing error
estimates for RBF interpolation which happen to give estimates that are local.

In sharp contrast to the results of DeVore and Ron, only Definition 1 is needed for these estimates,
and no extra global compatibility assumptions such as Definition 2 are needed for these (in other
words, the estimates depend only on the nearest neighbors to point where the error is being mea-
sured). The drawback comes from the fact that the estimates hold for only particular classes of
target functions (i.e., for functions in the native space), and, although the error being measured is
pointwise, the smoothness assumption on the target function is generally not measured in L∞.

This section is organized in two parts: first we discuss the localness inherent in Duchon’s seminal
result [5] concerning surface spline interpolation, and then we discuss the more general (in that it
treats more kernels, and also addresses error of the derivative) “power function” method.

4.1 Local Error Estimates for Surface Spline Interpolation

In this case we consider interpolation of a function f , defined initially on a bounded domain Ω with
Lipschitz boundary, at a finite set of points Ξ ⊂ Ω using surface splines defined in (1). That is, for

10



k > d/2 we consider the unique interpolant to f at Ξ of the form

IΞf(x) =
∑

ξ∈Ξ

Aξφ(x− ξ) + p(x), with p ∈ Πk−1 and
∑

ξ∈Ξ

Aξq(ξ) = 0 for all q ∈ Πk−1.

This is equivalent to finding the interpolant sf,Ξ in the Beppo-Levi space (also known as the
homogeneous Sobolev space) D−kL2(R

d) := {f ∈ C(Rd) | Dαf ∈ L2(R
d) ∀|α| = k} to f at Ξ that

minimizes the Sobolev seminorm on R
d: |u|k := |u|W k

2
(Rd), where the Sobolev seminorm defined on

a measurable set U is defined as

|u|2
W k

2
(U)

:=

∫

U

∑

|α|=k

(
k

α

)
|Dαu(x)|2 dx.

Duchon’s error estimates result from two key observations:

1. a “zeros lemma” stating that any function defined on a ball B, in the Sobolev class W k
2 (B)

(with k > d/2), having many zeros in B is necessarily small in L∞(B), and

2. an observation that the interpolation projector is bounded on D−kL2, indeed, it is orthogonal
with respect to the D−kL2 semi-inner product, with the space of functions vanishing on Ξ as
its nullspace.

1. Zeros Lemma It is not difficult, in this context, to derive a simplified, pointwise version of
Duchon’s zeros lemma [5, Proposition 2]. Namely, for k > d/2 and u ∈ W k

2 vanishing on a set Ξ
satisfying the conditions of Definition 1 with precision ℓ ≥ k − 1, we have

|u(α)| ≤ C
(
ρ(α)

)m−d/2
|u|

W k
2

(
B(α,ρ(α))

). (6)

To demonstrate this, we begin by observing that |u(α)| ≤ (1+K)‖p−u‖
L∞

(
B(α,ρ(α))

). This follows
directly from the fact that |u(α)| ≤ |p(α)|+ |u(α) − p(α)|, for all p ∈ Πℓ, and from Definition 1:

|p(α)| ≤ K sup
ξ∈Ξ∩B(α,ρ(α))

|p(ξ)| ≤ K sup
ξ∈Ξ∩B(α,ρ(α))

|p(ξ)− u(ξ)| ≤ K‖p− u‖
L∞

(
B(α,ρ(α))

).

Estimate (6) follows by dilating and translating a well-known result from polynomial approximation:
infp∈Πℓ

‖p − u‖
L∞

(
B(0,1)

) ≤ infp∈Πk−1
‖p − u‖

L∞

(
B(0,1)

) ≤ C|u|
W k

2

(
B(0,1)

).

2. Orthogonal Projection By [5, Lemma 3.2], the interpolation operator

IΞ : D−kL2(R
d) 7→




∑

ξ∈Ξ

AΞφ(· − ξ) + p | p ∈ Πm−1 and
∑

ξ∈Ξ

Aξq(ξ) = 0 for all q ∈ Πk−1





satisfies the orthogonality relationship

|IΞf |
2
k + |f − IΞf |

2
k = |f |2k

for all f ∈ D−kL2(R
d).
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Local Error Estimate At this point, we can apply the argument of [5, Proposition 3]. We have

|f(α)− IΞf(α)| ≤ C
(
ρ(α)

)k−d/2
|f − IΞf |W k

2

(
B(α,ρ(α))

)

≤ C
(
ρ(α)

)k−d/2
|f − IΞf |k

≤ C
(
ρ(α)

)k−d/2
|f |k.

We note that no extra conditions are necessary beyond Definition 1, but this comes with the
drawback that the order is known only for functions in W k

2 (R
d), and that this is an unconventional

smoothness space (for this problem), in that it measures smoothness in L2 rather than L∞. In
contrast, Theorems 4 and 5 seem to require Definition 2, but they give orders in the range s ∈ [0, 2k]
for functions from Cs.

4.2 Local error estimates via the power function method

An alternative method for measuring error, due originally to Wu and Schaback, estimates the
pointwise error in terms of the ‘power function’ associated with a conditionally positive definite
kernel φ,

PΞ(x) :=


φ(0)− 2

∑

ξ∈Ξ

χξ(x)φ(x− ξ) +
∑

ξ,ζ∈Ξ

χζ(x)χξ(x)φ(ζ − ξ)




1/2

.

At each point x, it measures, roughly, the norm of the representer of the interpolation error at x:
δx(Id − IΞ) in a certain reproducing kernel semi-Hilbert space, the native space. Our discussion is
follows its development in the article of Wu and Schaback, [8], where the local RBF error estimates
we now discuss were first presented, and Wendland’s text [7].

Consider RBF interpolation by a radial function that is conditionally positive definite of order m:
a radial function φ which, for any finite Ξ ⊂ R

d, has a collocation matrix CΞ :=
(
φ(ξ − ζ)

)
ξ,ζ

that

is positive definite on vectors A ∈ R
Ξ satisfying

∑

ξ∈Ξ

Aξp(ξ) = 0 for all p ∈ Πm−1 (7)

(we assume Π−1 = {0} when m = 0, in this case the kernel is simply positive definite). For any
finite, unisolvent Ξ ∈ R

d (with respect to Πm−1), the interpolation problem possesses a unique
solution IΞf in Sm(Ξ) := {

∑
ξ∈ΞAξφ(· − ξ) + p | p ∈ Πm−1,A satisfying (7) }.

The associated native space is a semi-Hilbert space N with a semi-inner product 〈·, ·〉N determined
by φ. See [6] or [7, Chapter 8] for a detailed construction. The semi-inner product has Πm−1 as its
nullspace and there is a reproducing kernel, in the following sense:

f(x) = (Projm−1f)(x) + 〈f,G(·, x)〉N for all f ∈ N. (8)
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The operator Projm−1 is a projector onto Πm−1 with nullspace determined by a fixed set of points
X poised for interpolation by Πm−1. I.e., X is a fixed, unisolvent set of points (with respect to

Πm−1) with #X = dimΠm−1. The nullspace of Projm−1 is simply
(
spanxj∈X δxj

)
⊥, the joint

kernel of the functionals δxj
. For each x, the function G(·, x) (which is uniquely determined by

the projector Projm−1 and, in turn, by the fixed set X) is in N, and reproduces the functional
δ(x) := δx − δxProjm−1.

By expressing the interpolant in terms of the Lagrange basis, IΞf =
∑

ξ∈Ξ f(ξ)χξ, the interpolation
error can be expressed, with the help of (8) as

|f(x)− IΞf(x)| =

∣∣∣∣∣∣
〈f,G(·, x)〉N + Projm−1f(x)−

∑

ξ∈Ξ

(
〈f,G(·, ξ)〉N + Projm−1f(ξ)

)
χξ(x)

∣∣∣∣∣∣
.

Since Πm−1 ⊂ Sm(Ξ), p ∈ Πm−1 can be written as p =
∑

ξ∈Ξ p(ξ)χξ, and we can simplify the above
expression:

|f(x)− IΞf(x)| =

∣∣∣∣∣∣

〈
f,G(·, x) −

∑

ξ∈Ξ

χξ(x)G(·, ξ)

〉

N

∣∣∣∣∣∣
≤ |f |

N

∣∣∣∣∣∣
G(·, x) −

∑

ξ∈Ξ

χξ(x)G(·, ξ)

∣∣∣∣∣∣
N

.

The quadratic form Qx(u) := φ(0)−2uTRΞ(x)+uTCΞu, with RΞ(x) =
(
φ(x−ξ)

)
ξ∈Ξ

, is defined for

u ∈ R
Ξ, and one easily sees that PΞ(x)

2 = Qx(u
∗) with u∗ = (χξ(x))ξ∈Ξ. By [7, Lemma 11.3], one

has for certain admissible vectors u – namely for u ∈ Mx := {u ∈ R
Ξ |
∑

ξ∈Ξ uξp(ξ) = p(x)} that

the quadratic form is related to the function G by Qx(u) = |G(·, x)−
∑

ξ∈Ξ uξG(·, ξ)|
2
N
. Therefore,

it follows that |f(x)− IΞf(x)| ≤ |f |
N
PΞ(x), which is [8, Theorem 4], and was alluded to in the first

paragraph of this subsection.

We can say more, however, since the minimum of Qx(u) over Mx is PΞ(x)
2, [8, Theorem 1]. It

follows that one can estimate the power function at x using Qx(u), for any other u ∈ Mx. We
choose u determined by the coefficient kernel uξ = a(ξ, x) obtained from Definition 1 (with precision
ℓ ≥ m− 1). In other words,

(
PΞ(x)

)2
≤ φ(0) − 2

∑

ξ∈Ξ

a(ξ, x)φ(x− ξ) +
∑

ξ,ζ∈Ξ

a(ζ, x)a(ξ, x)φ(ζ − ξ)

Assume now that the RBF φ is in Cs(Rd), s ∈ (0,∞) and that Definition 1 holds with polynomial
precision ℓ where ℓ = max(⌈s⌉,m)− 1. Polynomial reproduction then gives, for any p ∈ Πℓ:

(
PΞ(x)

)2
≤ φ(x− x)− p(x− x)−

∑

ξ∈Ξ

a(ξ, x) (φ(x− ξ)− p(x− ξ))

−
∑

ξ∈Ξ

a(ξ, x)


(φ(x− ξ)− p(x− ξ))−

∑

ζ∈Ξ

a(ζ, x) (φ(ζ − ξ)− p(ζ − ξ))




≤ (1 +K)‖φ− p‖
L∞

(
0,ρ(x)

) + (K +K2)‖φ− p‖
L∞

(
0,2ρ(x)

) ≤ C(1 +K)2
(
ρ(x)

)s
.
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It follows that for f ∈ N the interpolation error satisfies the pointwise bound:

|f(x)− IΞf(x)| ≤ C(1 +K)
(
ρ(x)

)s/2
|f |N.

In this case, we note that, again, no extra conditions are necessary beyond Definition 1, but this
comes with the drawback that the order is known only for functions in N, which typically measures
smoothness in L2 rather than L∞. In this case, however, the power function approach has an
extra advantage, which we have not discussed (treated in [8] and [7, Chapter 11]) in that it gives
estimates for derivatives of the error, as well.
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