Skip to main content
Log in

Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we explore the effect of numerical integration on the Galerkin meshless method used to approximate the solution of an elliptic partial differential equation with non-constant coefficients with Neumann boundary conditions. We considered Galerkin meshless methods with shape functions that reproduce polynomials of degree k ≥ 1. We have obtained an estimate for the energy norm of the error in the approximate solution under the presence of numerical integration. This result has been established under the assumption that the numerical integration rule satisfies a certain discrete Green’s formula, which is not problem dependent, i.e., does not depend on the non-constant coefficients of the problem. We have also derived numerical integration rules satisfying the discrete Green’s formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atluri, S.N., Shen, S.: The Meshless Local Petrov Galerkin Method. Tech. Sci. Press (2002)

  2. Atluri, S.N., Zhu, T.: A new meshless local petrov-galerkin (mlpg) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Banerjee, U., Osborn, J.: Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12, 1–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Banerjee, U., Osborn, J.: On the approximability and the selection of particle shape functions. Numer. Math. 96, 601–640 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Banerjee, U., Osborn, J., Li, Q.: Quadrature for meshless methods. Int. J. Numer. Methods Eng. 76, 1434–1470 (2008)

    Article  MATH  Google Scholar 

  6. Babuška, I., Banerjee, U., Osborn, J., Zhang, Q.: Effect of numerical integration on meshless methods. Comput. Methods Appl. Mech. Eng. 198, 2886–2897 (2009)

    Article  MATH  Google Scholar 

  7. Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2007)

    Google Scholar 

  11. Carpinteri, A., Ferro, G., Ventura, G.: The partition of unity quadrature in meshless methods. Int. J. Numer. Methods Eng. 54, 987–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carpinteri, A., Ferro, G., Ventura, G.: The partition of unity quadrature in element free crack modelling. Comput. Struct. 81, 1783–1794 (2003)

    Article  Google Scholar 

  13. Chen, J.-S., Wu, C.-T., Yoon, S., You, Y.: A stabilized conformal nodal integration for a Galerkin mesh-free method. Int. J. Numer. Methods Eng. 50, 435–466 (2001)

    Article  MATH  Google Scholar 

  14. Chen, J.-S., Yoon, S., Wu, C.-T.: Non-linear version of stabilized conforming nodal integration Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 53, 2587–6515 (2002)

    Article  MATH  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  16. De, S., Bathe, K.J.: The method of finite spheres. Comput. Mech. 25, 329–345 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. De, S., Bathe, K.J.: The method of finite squares with improved numerical integration. Comput. Struct. 79, 2183–2196 (2001)

    Article  MathSciNet  Google Scholar 

  18. Dolbow, J., Belytschko, T.: Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech. 23, 219–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fries, T.-P., Matthies, H.-G.: Classification and overview of meshfree methods. Technical report, Technical University Braunschweig, Brunswick, Germany (2004)

  20. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method. II. Efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23, 1655–1682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, W., Meng, X.: Error analysis of the reproducing kernel particle method. Comput. Methods Appl. Mech. Eng. 190, 6157–6181 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, S., Liu, W.K.: Meshfree and particle methods and their application. Appl. Mech. Rev. 55, 1–34 (2002)

    Article  Google Scholar 

  23. Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, New York (2004)

    MATH  Google Scholar 

  24. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Melenk, J.M.: On approximation in meshless methods. In: Blowey, J., Craig, A. (eds.) Frontiers in Numerical Analysis, Durham 2004. Springer, New York (2005)

    Google Scholar 

  26. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  27. Strang, G.: Variational crimes in the finite element method. In: Aziz, A.K. (ed.) Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 698–710. Academic, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Banerjee.

Additional information

Communicated by Z. Chen.

This research was partially supported by the NSF Grant # DMS-0610778, Natural Science Foundation of China grant 11001282, Fundamental Research Funds for Central Universities and by Prof. Y. Xu’s grant from 985 project at Sun Yat-sen University, Guangdong Provincial Natural Science Foundation of China under grants S2011040003030.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Banerjee, U. Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients. Adv Comput Math 37, 453–492 (2012). https://doi.org/10.1007/s10444-011-9216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9216-1

Keywords

Mathematics Subject Classifications (2010)

Navigation