Skip to main content
Log in

A posteriori parameter choice strategy for fast multiscale methods solving ill-posed integral equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We apply fast multiscale methods for solving ill-posed integral equations via the Tikhonov regularization. A modified a posteriori parameter choice strategy is presented, which leads to optimal convergence rates. Numerical experiments are given to illustrate the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Micchelli, C.A., Xu, Y., Zhao, Y.: Wavelet Galerkin methods for second-kind integral equations. J. Comput. Appl. Math. 86, 251–70 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, Z., Micchelli, C.A., Xu, Y.: The Petrov-Galerkin methods for second kind integral equations II: multiwavelet scheme. Adv. Comput. Math. 7, 199–233 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Z., Micchelli, C.A., Xu, Y.: Fast collocation methods for second kind integral equations. SIAM J. Numer. Anal. 40, 344–375 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z., Wu, B., Xu, Y.: Multilevel augmentation methods for solving operator equations. Numer. Math. J. Chinese. Univ. 14, 31–55 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Chen, Z., Xu, Y., Yang, H.: Multilevel augmentation methods for solving ill-posed operator equations. Inverse Probl. 22, 155–174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Z., Cheng, S., Nelakanti, G., Yang, H.: A fast multiscale Galerkin method for the first kind ill-posed integral equations via Tikhonov regularization. Int. J. Comput. Math. 87, 565–582 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Solodky, S.G.: On a quasi-optimal regularized projection method for solving operator equations of the first kind. Inverse Probl. 21, 1473–1485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rajan, M.P.: A posteriori parameter choice strategy and an efficient discretization scheme for solving ill-posed problems. Appl. Math. Comput. 204, 891–904 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Maass, P., Pereverzev, S.V., Ramlau, R., Solodky, S.G.: An adaptive discretization for Tikhonov Phillips regularization with a posteriori parameter selection. Numer. Math. 87, 485–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, X.J.: Fast multilevel iteration methods for solving linear operator equations. J. Northeast. Math. 24(1), 1–9 (2008)

    MATH  Google Scholar 

  11. Luo, X.J., Li, F.C.: An optimal regularized projection method for solving ill-posed problems via dynamical systems method. J. Math. Anal. Appl. 370, 379–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pereverzev, S.V.: Optimization of projection methods for solving ill-posed problems. Computing 55, 113–124 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gfrerer, H.: An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rate. Math. Comput. 49, 507–522 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Z., Micchelli, C.A., Xu, Y.: Discrete wavelet Petrov–Galerkin methods. Adv. Comput. Math. 16, 1–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Micchelli, C.A., Xu, Y.: Using the matrix refinement equation for the construction of wavelets on invariant sets. Appl. Comput. Harmon. Anal. 1, 391–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Micchelli, C.A., Xu, Y.: Reconstruction and decomposition algorithms for biorthogonal multiwavelets. Multidimens. Syst. Signal Process. 8, 31–69 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pereverzev, S.V., Solodky, S.G.: On one approach to the discretization of the Lavrent’ev method. Ukr. Math. J. 48(2), 239–247 (1996)

    Article  MATH  Google Scholar 

  18. Solodky, S.G.: The optimal approximations for solving linear ill-posed problems. J. Complex. 17, 98–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nair, M.T., Rajan, M.P.: Arcangeli’s discrepancy principle for a modified projection scheme for ill-posed problems. Numer. Funct. Anal. Optim. 22, 773–787 (2001)

    Article  MathSciNet  Google Scholar 

  20. Nair, M.T., Rajan, M.P.: Arcangeli’s type discrepancy principle for a class of regularization methods using modified projection scheme. Abstr. Appl. Anal. 6, 339–356 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raus, T.: About discrepancy principle for solving ill-posed problems. Uchenye Zapiski Tartuskogo Universiteta 672, 16–26 (1984) (in Russian)

    MathSciNet  Google Scholar 

  22. Neubauer, A.: An a posteriori parameter choice for Tikhonov regularization in the presence of modelling error. Appl. Numer. Math. 4, 507–519 (1987)

    Article  MathSciNet  Google Scholar 

  23. Chen, Z., Jiang, Y., Song, L., Yang, H.: A parameter choice strategy for a multi-level augmentation method solving ill-posed operator equations. J. Integral Equ. Appl. 20, 569–590 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjun Luo.

Additional information

Communicated by Yuesheng Xu and Hongqi Yang.

Supported in part by the Natural Science Foundation of China under grant 11061001, Jiangxi Provincial Natural Science Foundation of China under grant 2008GZS0025 and the Science Foundation of Jiangxi Provincial Department of Education under grant GJJ10586.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, X., Li, F. & Yang, S. A posteriori parameter choice strategy for fast multiscale methods solving ill-posed integral equations. Adv Comput Math 36, 299–314 (2012). https://doi.org/10.1007/s10444-011-9229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9229-9

Keywords

Mathematics Subject Classifications (2010)

Navigation