Skip to main content
Log in

Finite rank kernels for multi-task learning

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Motivated by the importance of kernel-based methods for multi-task learning, we provide here a complete characterization of multi-task finite rank kernels in terms of the positivity of what we call its associated characteristic operator. Consequently, we are led to establishing that every continuous multi-task kernel, defined on a cube in an Euclidean space, not only can be uniformly approximated by multi-task polynomial kernels, but also can be extended as a multi-task kernel to all of the Euclidean space. Finally, we discuss the interpolation of multi-task kernels by multi-task finite rank kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73, 243–272 (2008)

    Article  Google Scholar 

  2. Argyriou, A., Micchelli, C.A., Pontil, M.: When is there a representer theorem? Vector versus matrix regularizers. J. Mach. Learn. Res. 10, 2507–2529 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Argyriou, A., Micchelli, C.A., Pontil, M.: On spectral learning. J. Mach. Learn. Res. 11, 935–953 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 334–404 (1950)

    Article  MathSciNet  Google Scholar 

  5. Bakker, B., Heskes, T.: Task clustering and gating for Bayesian multi-task learning. J. Mach. Learn. Res. 4, 83–99 (2003)

    Google Scholar 

  6. Blanz, V., Schölkopf, B., Bülthoff, H., Burges, C., Vapnik, V., Vetter, T.: Comparison of view-based object recognition algorithms using realistic 3D models. In: von der Malsburg, C., von Seelen, W., Vorbrüggen, J.C., Sendhoff, B. (eds.) Artificial Neural Networks–ICANN’96. Lecture Notes in Computer Science, vol. 1112, pp. 251–256. Springer, Berlin (1996)

  7. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proc. of the 5th Annual Workshop of Computational Learning Theory, vol. 5, pp. 144–152. ACM, Pittsburgh (1992)

    Chapter  Google Scholar 

  8. Burges, C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 375–381. MIT Press, Cambridge, MA (1997)

    Google Scholar 

  9. Caponnetto, A., Micchelli, C.A., Pontil, M., Ying, Y.: Universal multi-task kernels. J. Mach. Learn. Res. 9, 1615–1646 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Caruana, R.: Multi-task learning. Mach. Learn. 28, 41–75 (1997)

    Article  Google Scholar 

  11. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  12. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6, 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: International Conference on Knowledge Discovery and Data Mining (2004)

  14. Goldberg, Y., Elhadad, M.: splitSVM: fast, space-efficient, non-heuristic, polynomial kernel computation for NLP applications. In: Proceedings of ACL-08: HLT, Short Papers (Companion Volume), pp. 237–240 (2008)

  15. Isozaki, H., Kazawa, H.: Efficient support vector classifiers for named entity recognition. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING02) (2002)

  16. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. Technical report, LS VIII Number 23. University of Dortmund (1997)

  17. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pp. 24–31 (2003)

  18. Lorentz, G.G.: Bernstein Polynomials. University of Toronto Press, Toronto (1953)

    MATH  Google Scholar 

  19. Micchelli, C.A., Pontil, M.: On learning vector-valued functions. Neural Comput. 17, 177–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Micchelli, C.A., Xu, Y., Zhang, H.: Universal kernels. J. Mach. Learn. Res. 7, 2651–2667 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge, MA (2002)

    Google Scholar 

  22. Thrun, S., Pratt, L.: Learning to Learn. Kluwer Academic Publishers (1997)

  23. Tong, H., Chen, D., Peng, L.: Learning rates for regularized classifiers using multivariate polynomial kernels. J. Complex. 24, 619–631 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuesheng Xu.

Additional information

Communicated by Lixin Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Micchelli, C.A., Wang, R. et al. Finite rank kernels for multi-task learning. Adv Comput Math 38, 427–439 (2013). https://doi.org/10.1007/s10444-011-9244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9244-x

Keywords

Mathematics Subject Classifications (2010)

Navigation