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Reproducing Kernels of Sobolev Spaces via a Green Kernel
Approach with Differential Operators & Boundary Operators

Gregory E. Fasshauer- Qi Ye

Abstract We introduce a vector fferential operatoP and a vector boundary operatBr

to derive a reproducing kernel along with its associatetdéidtl space which is shown to be
embedded in a classical Sobolev space. This reproducinglkisr a Green kernel of dif-
ferential operatot. := P*TP with homogeneous or nonhomogeneous boundary conditions
given byB, where we ensure that the distributional adjoint operRtoof P is well-defined

in the distributional sense. We represent the inner prooifuitte reproducing-kernel Hilbert
space in terms of the operatdPsandB. In addition, we find relationships for the eigen-
functions and eigenvalues of the reproducing kernel andpiegators with homogeneous
or nonhomogeneous boundary conditions. These eigenfunsctind eigenvalues are used
to compute a series expansion of the reproducing kernel araithonormal basis of the
reproducing-kernel Hilbert space. Our theoretical resptbvide perhaps a more intuitive
way of understanding what kind of functions are well appmeaded by the reproducing
kernel-based interpolant to a given multivariate data damp

Keywords Green kernel reproducing kernel differential operator boundary operator
eigenfunction eigenvalue

Mathematics Subject Classification (2000)MSC 41A30- MSC 65D05

1 Introduction

The reproducing-kernel Hilbert space construction asgesia positive definite kernel with
a Hilbert space of functions often referred to as the natpars of the kernel. This con-
struction can be used to deal with the problem of reconsitgietn unknown function which
lies in the reproducing-kernel Hilbert space from a giveritivariate data sample (seel [9,
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25]) in an “optimal” way. Here this optimality can be quargdiin terms of the norm in-
duced by the Hilbert space inner product. It is thereforengdartance to understand these
spaces (and their inner products) as well as possible suadean understanding will pro-
vide us with insight into the “correct” choice of kernel fomagiven application. Potential
applications of kernel approximation methods can be founahni increasingly wider array
of topics of which we mention only scattered data approxiomaf5) 79} 21/, 25], numerical
solution of partial diferential equations [9,113,114,18]191120, 25], statistieatning [4, 283,
24] and engineering design [15]. Future applications maytlse combination of meshfree
approximation methods and stochastic Kriging methods us#dn a common reproduc-
ing kernel framework to approximate the numerical solutbstochastic partial dierential
equations (see, e.d., [11]).

However, kernel approximation methods still face quitevadéticulties and challenges.
Two important questions in need of a satisfactory answenNdhat kind of functions belong
to a given reproducing-kernel Hilbert spacaddWhich kernel function should we utilize
for a particular application?Our recent papei_[10] establishes what kind of (full-space)
Green function is a (conditionally) positive definite fuoct and then shows how to embed
its related reproducing kernel Hilbert space (or nativecepanto a generalized Sobolev
space defined by a vector distributional operdot (Py,--- , Py, ---)T. This construction
results in an arguably more intuitive interpretation of thproducing kernel Hilbert space
associated with any given kernel. In some cases these tweS@ae even shown to be
equivalent. Our theoretical results produce a rule thainallus to determine which Green
function can be used to approximate (well) an unknown smégthtion. Conversely, we
can use a Green function to formulate an interpolant for aesponding class of smooth
functions. The framework discussed in our earlier papernessicted to full-space Green
functions defined on the whole spak® i.e., without taking into consideration théect of
boundary conditions. In the present paper we will show thatGreen kernel derived using
boundary conditions in a regular bounded open domainR¢ is a reproducing kernel and
that its reproducing kernel Hilbert space is embedded iassatal Sobolev space. We begin
by precisely defining what we mean in this paper by a functjmace being embedded in or
being isomorphic to another space.

Definition 1.1 (|1, Definition 1.25])We say the normed space Heisibedded ithe normed
spaceH if H is a subspace ofH and the identity operator : H — % is a bounded
(continuous) operator, i.e., there is a positive congtastich that|f|l« < C||f||y for each
f € H € H. In particular, ifH is also embedded in H then we say that H atdare
isomorphigi.e., H= H.

Remark 1.1Here equality of two function spaces, H H, means that HC H andH C
H only, i.e., we do not compare their norms. Unless specifiéatlicated otherwise, all
functions discussed in this article are real-valued.

We now present a standard Green kernel example from theytbépartial diferential
equations (seé [8, Chapter 2.2]) to set the stage for ounstsans later on. In order to
solve Poisson’s equation in tlledimensional § > 2) open unit ball? = B(0,1) = {x €
RY : ||x||l, < 1} with (homogeneous) Dirichlet boundary condition, one ¢artss the Green
kernel

G(X9 y) = ¢(X - y) - ¢(”X”2y - X)? X, y € Q,
of the Laplace operatdr = -4 = — 2?21 [;’—:2 subject to the given boundary condition, i.e.,
]

for each fixedy € Q, we haveG(-, y) € H*(Q) (see Sectioi3]1 below for the definition of



the classical k-based Sobolev spacg£™(2)) and

LG(.,y) =6y, inQ,
G(,y)=0, o0noQ,

whereg is the fundamental solution ef41 given by

—5loglixllz,  d=2
_ 27r 4 &
#(X) = { r{d/2+1) X2, d>3,

a(d-2)r72
Just as in our discussion below, the Laplace operater -4 = P*TP = —V'V can be
computed using the gradieft = (P1,---,Pa)’ = V = (5.---, )" and its adjoint

P =(P;, - ,P:;)T = —V. With the help of Green’s formulas][8] we can further checktth
the kernelG satisfies a reproducing property with respect to the gradiemi-inner product,
i.e., forall f € C}(Q) andy € Q, we have

d
(©C9. D= [ POGyTPIGIB =D} [ a0y 7 f09dx= )
=

However, this Green kern@ is not a reproducing kernel (cf. Definitign 2.2) becaGsis
singular along its diagonal, i.65(x, x) = o for eachx € Q.

Therefore, it is our goal to show what kind of Green kernel ieproducing kernel
while maintaining a similar concept for the reproducinggauy. Our Green kernel will be
associated with a fferential operatot. with homogeneous or nonhomogeneous boundary
conditions (see Definitidn4.1), and the inner product afégfsroducing-kernel Hilbert space
will be represented through a vectoffdrential operatoP = (Pq,--- ,Pnp)T and a vector
boundary operatoB = (By,---,By,)", where the dierential operator®; : H™Q) —
L>(2) and the boundary operatoB; : H™(Q) — L»(0R2) are bounded linear operators
which are defined and discussed in Sedfibn 3.

Because the Dirac delta functiopis a tempered distribution in the dual spaeg<) of
the test function spacg(Q) (see Section 311) we shall extend thé&etiential operators and
their adjoint operators to distributional operators fr@{Q) into 2’(2). Thus the diferen-
tial operatorL can be represented by the vectdtetiential operatoP and its distributional
adjoint operatoP* via the formulaL = P*TP = ZTil PiPj. In this article, a dferential
operatorP, its distributional adjoint operatd?* and a boundary operat& are assumed to
be linear with non-constant cfieients, i.e.,

P=) peoD% P =3 (-1)ID"p,, B= > byoDlp,

lalsm lal<sm Blsm-1

wherep, € C*(Q), bz € C(0Q) anda,p € Ng (see Definition 311 arld 3.3).

Based on this construction we can establish a direct coiomelsetween Green kernels
and reproducing kernels. We are also able to show how to esdifflerential operatoP
and boundary operatd to set up reproducing kernel Hilbert spaces which are endsedd
in classical Sobolev spaces (see Sedtion 4). For exampéaréims 3.2, Corollady 3.1 and
Theoreni4b allow us to arrive at a theorem such as

Theorem 1.1 Let @ c RY be a regular bounded open domain and introduce the vec-
tor differential operatorP = (P, -- ,Pnp)T € 2 and vector boundary operatdd =
(By,---,By)" € A5, where m> d/2 and me N. Suppose that there is a Green kernel G
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ofL=PTP = Z;.El P:P; with homogeneous boundary conditions giverBby.e., for each
fixedy € Q, we have @, y) € H™(Q) and

LG(.,y) =6y, inQ,
BG(,y) =0, o0onaQ.

If the null spaceNull(P) := {f € H™(Q) : Pf = 0} is a finite-dimensional space, then the
direct sum space

HZ(Q) = HY(Q) @ HY () = (f = fp + fz : Bfp = 0, Pfg = 0, where p, fz € H™(Q))

equipped with the inner product
Np Ny
(F. Dugo = ), fQ P;F()P;g0)dx + ) fa Bif(0BigAS().  f.g € HEg(),
j=1 j=1

is a reproducing-kernel Hilbert space whose reproducingn&eis a Green kernel K of L
with boundary conditions given i and{I'(-,y) : ye Q} C ®T21L2(69), i.e., for each fixed
y € Q, we have K., y) e H™(Q) and

LK(-,y) = 6y, in Q,
BK(-,y) =TI(-,y), ondQ,

where the boundary conditions also satififyx, -) : x € 0Q} C ®T21NUII(P). Moreover, the

reproducing-kernel Hilbert spaddﬁfB(Q) is embedded in the Sobolev spg¢B(Q) and the
reproducing kernel K can be written in the explicit form

K = G0y + > ), xye e
k=1

where{yy}, 2, is an orthonormal basis o ull(P) with respect to th&-semi-inner product.
(Here the classes?]) and ;) are defined in Sectidd 3.)

Theoreni_L1l shows that the vectoffdiential operatoP and vector boundary operator
B enable us to verify the reproducing property of the reprauys&ernel Hilbert space. This
allows us to show that the Green kertebecomes a reproducing kernel even with nonho-
mogeneous boundary conditions, not just for the case of gemepus boundary conditions.

If Aull(P) = {0} thenK = G has homogeneous boundary conditions which implies that the
reproducing property depends &without having to resort t® — just as we had above
for the case of the Poisson Green kernel. We can now recartbiel@uestion of why the
Poisson Green kernel aboverist a reproducing kernel. Essentially this happens because
m = 1 < d/2 so that the Sobolev embedding theory does not apply. Onttiex band,
Remarl 4]l gives us a counter example demonstrating tharben kernel may not be a
reproducing kernel even if it is uniformly continuous in thbole domain.

In Sectior 4 we also consider the solution of eigenvalue Iprob via the method pre-
sented in[[8], where the authors discuss how to find the aigetibns and eigenvalues of
elliptic partial diferential equations of order 2 with Dirichlet or Neumann taany con-
ditions. This will enable us to see the relationships betwibe eigenfunctions and eigen-
values of Green kernels and those dfatiential operatort with homogeneous or nonho-
mogeneous boundary conditions givenByProposition$ 412 arld 4.6 allow us to transfer



eigenfunctions and eigenvalues from Green kernels @énd vice versa. We also use these
eigenfunctions and eigenvalues to obtain the orthonorrasishof the reproducing-kernel
Hilbert space and the explicit expansion of the Green kexsgt.g., stated in Proposition¥.3
and4y.

In Sectiorl b, we demonstrate that many well-known repradyukernels are also Green
kernels. Examples include the min kernel and the univaBateolev spline kernel. We also
construct other reproducing kernels that can be used itesedtdata interpolation such as
a modification of the thin-plate spline.

In this article we limit our discussion of nonhomogeneousHuary conditions to those
that are determined by a finite bases. However, all the tkieateesults presented here can
be extended to much more general nonhomogeneous boundetiicoes constructed using
a countable basis (see the Ph.D. thesis [26] of the secohdru$uch Green kernel§ can
be seen as a reproducing kernel for the interpolation ofivaulate scattered data obtained
from an unknown functiorf € H™(Q) at data siteX = {x,—}?‘:1 C Q. In a similar fashion as
described in([9,23,25], we further obtain error bounds gpiihtal recovery properties for
the interpolants; x = ZjN:l ¢;K(-, xj) which satisfies the interpolation conditiogx(x;) =
f(x;) foreachj=1,---,N.

2 Positive Definite Kernels and Reproducing-Kernel HilbertSpace

We now provide a very brief summary of reproducing kernebklit spaces. Much more
background information can be found in, e.g../[25].

Definition 2.1 ([25, Definition 6.24])Let 2 C RY. A symmetric kerneK : 2 x Q — R is
calledpositive definitdf, for all N € N, pairwise distinct pointX := {Xs,..., Xy} € £, and
c:=(Cy,...,cn)" € RN\ {0} the quadratic form

N
Z cjoK(xj, xi) > 0.
k=1

N
j=1
If the quadratic form is only nonnegative, then the kerdeis said to be positive semi-
definite.

Definition 2.2 (|25, Definition 10.1])Let 2 ¢ RY and HQ) be a real Hilbert space of
functionsf : Q — R. H(Q) is called areproducing-kernel Hilbert spaceith areproducing
kernel K: Qx Q — R if

(i) K(,y) € HQ) and i) f(y) = (K(-, Y), Pln), forall f e H(Q) and eacly € Q.
In order to formulate the following proposition which we ldter use to verify some

of our results on eigenfunctions and eigenvalues of a Greerekwe first consider a kernel
K € Ly(2 x Q) and define aintegral operatorZk o : L2(Q) — L2(Q) via

Tkof)y) = L K(x,y)f(x)dx, feLy(Q)andye Q. (2.1)

Proposition 2.1 ([25, Proposition 10.28])Suppose that the reproducing kernekl ,(Qx
Q) is a symmetric positive definite kernel on the compactset RY. Then the integral
operator Ik o mapsLz(Q) continuously into the reproducing-kernel Hilbert spadé)



whose reproducing kernel is K. The operai , is the adjoint of the embedding operator
of the reproducing-kernel Hilbert spa¢#(Q) into Lo(92), i.e., it satisfies

fQ F09000 = (. TxoQue, T € H(@) and ge L(©).

Moreover,Rang€ 7 o) = {Ix.od : g € L2(Q)} is dense irtH(Q) with respect to theéd(L)-
norm.

3 Differential Operators and Boundary Operators
3.1 Differential Operators and Distributional Adjoint Operators

Our following proofs will rely on a number of basic conceptsdatechniques from the
Schwartz theory of distributions (see [1, Chapter 1.5] df Chapter 1 and 2]). Of special
importance is the notion of a distributional derivative of iategrable function. Distribu-

tional derivatives are extensions of the standard paréiavdtives

d g d )
FyTN || := Z(Zk, a:= (a1, ,aq) € Ng.
k=1 XZ k=1

Let @ c RY be an open bounded domain (connected subset). We first icioal test
function space §(£2) which consists of all those functions ir°@2) having compact sup-
port in Q. [1, Chapter 1.5] states that the test function spag&d} can be given a locally
convex topology and thereby becomes a topological vectarespalledz(2). Note, how-
ever, thatz(Q) is not a normable space.

Its dual space?’(Q) (the space of continuous functionals 21Q)) is referred to as the
space of tempered distributions. According(to [16, Chapi&}, a distributionT € 2’(Q) is
a linear form onz(Q) such that for every compact sétc Q there exist a positive constant
C and a nonnegative integere Ny such that

D* :=

T(y) <C ) sugDy(x)l, for eachy e C5'(4) € #(Q).

lal<n XEA

For example, the Dirac delta function (Dirac delta disttitwi) 6, concentrated at the point
y € Qis an element o’ (Q), i.e., {6y, Vo = y(y) for eachy € 2(Q). Our later proofs will
make frequent use of the following two bilinear forms. We defadual bilinear form

(T,v)o :=T(y), foreachT € 2’'(Q) andy € 2(Q),

and the usuahtegral bilinear form
(f,9)0 = f f(x)g(x)dx, wherefgis integrable or.
Q

[16, Chapter 1.5] shows that for each locally integrablecfiom f € L'1°°(Q) there exists a
unique tempered distribution; € 2’(Q) that links these two bilinear forms by the Riesz
representation theorem, i.e.,

(Tt,1a = (f,y)e, foreachy € 2(Q). (3.1)



Thusf € L'1°°(Q) can be viewed as an element®f(Q) andT; is frequently identified with
f. This means that'f*(Q) c 2'(Q).

Next we extend the standard derivati®@ to the notion of a distributional derivative
P* . 2/(Q) —» 2’(Q). This distributional derivative is well defined by

(P'T,y)o := (-1)*(T,D%y), foreachT € 2'(Q) andy € 2(Q),

becaus®® is continuous fromz(Q) into 2(2) (seel[16, Definition 3.1.1]). For convenience
P* is also written a*.

Using this notion of distributional derivatives the retdssicall ,-based Sobolev space
H™(Q) is defined by

H™(Q) = {f € LY(Q) : D"f € Lp(Q). lel <m a €N}, meN,

equipped with the natural inner product

(f.Omo = ). fg D f(x)Dg(x)dx, f,ge H™Q).

lal<m

Moreover, the completion of §Q) with respect to the<{™(2)-norm is denoted by7'(2),
i.e., HI'(Q) is the closure of §(Q) in H™(Q) as in [1].

In the literature (see, e.g., [16]) one also often findBedential operators written in the
form p(-, D)y = Y jn<mPo D%y, Wherep(X,y) = Y u<mpe(X)y* is a polynomial iny € R4
andp, € C(Q) (uniformly smooth functions space). The formal adjoinegior can be
represented ap*(-, D)y = ¥ uem(=1)*D%(0.y). If p € C(Q) then it can be seen as a
distributional operatoP, : 2'(Q) — 2'(Q), i.e.,

(P,T,y) :=(T,py), foreachT € 2'(Q) andy € 2(Q),

becausey — py is continuous fromz(Q) into 2(Q) (see [16, Definition 3.1.1]). Here we

identify P, with p. Then this diferential operatop(-, D) and its adjoint operatop*(-, D) :

2(2) —» 2(Q) can be extended to distributional operatBr®* : 2'(Q) — 2’(Q) similar

as the distributional derivatives. To avoid any confusiathwhe symbols we will write

P1P2 = p o D* andP,P; = D* o p whereP; = p andP, = D®. This means that
poDy=p(D%), D opy=(-1)D"(0y), 7€ 2(Q).

Definition 3.1 A differential operator(with non-constant cd&cients)P : 2'(Q) — 2'(Q)

is defined by

P= Z po 0 D?,  wherep, € C(@) anda € NY, me No.

lal<m

Its distributional adjoint operatd?* : 2’'(Q) —» 2’(Q) is well-defined by

P* = Z (—:I.)luZI D% o p,.

lal<m
We further denote iterder by
O(P) := max{|a| paz0, lal<m ae Ng}.

A vector dfferential operatorP := (Py,--- ,Pnp)T is constructed using a finite number of
differential operator®s, - - - , P, and itsorder O(P) := maxO(Py), - - - , O(Py,)}.



After replacing the test function spad(metric space of rapidly decreasing functions
in C*(RY)) and tempered distribution spa& (dual space of) in paper [10], the dfer-
ential operatoP and its distributional adjoint operat®&* have the same properties &s][10,
Definition 4.1], i.e.,Plg ) andP*|5 ) are continuous operators frog(R) into 2(2) and

(PT,y)q = (T, P*y)q and (P*T,y)o = (T, Py)o, for eachT € 2’(Q) andy € 2(Q).

SinceQ is compact and ©(Q) c L,(®Q), the diferential operatoP of orderO(P) = mis
a bounded linear operator frof™(Q) into L,(). Its distributional adjoint operatd?* :
H™(Q) — L,(Q) is also bounded. So we can further use a vectberdintial operatoP :=
(Py,---, Pnp)T of ordermto define &-semi-inner producon H™(Q) via the form

p
(f.9po = Y (Pif.Piglo, f,g€ HMQ).

=1

Remark 3.10ur distributional adjoint operatorftiers from the classical adjoint operator of
a bounded operator defined in Hilbert space or Banach spacep@rator is defined in the
dual space of(Q) and it may not be continuous if the dual @{Q) is defined by its natural
topology. But the dterential operator and its distributional adjoint operatg continuous
when2’(Q) is given the weak-star topology as the duakdfQ), i.e.,Tx — T in 2'(Q) if
and only if(Ty, y)o — (T, y)e for everyy € 2(Q) where(Ty, T}2, € 2'(Q).

WhenP =V = (0%1, e ,& T the P-semi-inner product is the same as the gradient-
semi-inner product on the Sobolev spaéy(Q). The Poincaré inequality [17, Theorem 12.77]
states that the gradient-semi-norm is equivalent toh&2)-norm on the spac%{(}(Q), ie.,
there are two positive constartg andC, such that

Cillflie <Iflve < Collflio.  f e HQ).

In order to prove a generalized Poincaré (Sobolev) inéiyufal the Sobolev spaced™(2)
we need to set up a special class of vectfliedential operators.

Definition 3.2 277 is defined to be a collection of vectofidirential operatorB = (Py,-- -, Pnp)T
of orderm e N which satisfy the requirements that for each fit@d= mande € N9, there
is an elemenPj, € (P;}*, such that

n(e)

P! Pi@ = (-1)"ID* 0 p2 0 D” + Z Q. Quis 1< j(@) <n, n(a)eN,
i=1

wherep, € C*(Q) is positive in the whole domai® andQ,;, Q. ;, i = 1.--- . n(e), are
differential operators and their distributional adjoint opens

Let's consider an example. 4 = 2, then both vector dierential operator®; :=
(P11, P12, Pa)" = ({f—%, \/5#;2, (f—xz%)T andP, := P, = 4 belong to#2 because
Pi,P11=D%010D® wherea =(2,0),
Pi,P12=D%020D® wherea = (1,1),
PisP13=D*010oD? wherea = (0,2),



and (using the definitions ¥, just made)

P5,P21 = D290 10 DGO + P: Py, + PiPy3,
P,P21 = DAY 0 20 DD + P Pyy + PiPys,
P§1P21 = D(O’Z) olo D(O’Z) + P;]_Pll + P;ZPlZ'

Therefore we can verify thd;"P; = 213:1 P1;P1j = P;'P, = P;,P21 = 42, However, the
null spaces oP; andP; are diferent, in factNVull(P1) & Null(P,).

The following lemma extends the Poincaré inequality fromtisual gradient semi-norm
to more generaP-semi norms and higher-order Sobolev norms. Since we caildind it
anywhere in the literature we provide a proof.

Lemma 3.1 If P € 2] then there exist two positive constantsaiid G such that
Cillflime < Iflpo < Collflime,  f € HR(Q). (3.2)

Proof By the method of induction, we can easily check that the sgauequality in [3.2) is
true. We now verify the first inequality ifi(3.2). Fixing ariye H'(€2), there is a sequence
(vl € 2(Q) so thatlyk — fllne — 0 whenk — . Because oP € 22, for each fixed
le| = manda € NJ, there is an elemerR;(,) of P such that

IPj@) fI15 = (Pj(@) T, Piwy o = Ji_'l]o(Pj(a)yk’ Piyke = I!i_r}l(PT(a)Pj(a)Vk, e
n(a)
= Jim (-1)"'D" o % o D"y 7 + Jim 3" (Q} Quivi na
i=1
n(e)
= lim (o, © D"y pa © D% + Jim 3" (Quivi Quivida
i=1

n(e)

= (P 0 D"f,p0 0 D" o+ > (Quif, Quif)o = lloa D I3
i=1

> minlp, (X)12lID° 113
XeQ

Since the uniformly continuous functigm, is positive in the compact subsét we have
min, sl ()| > 0. Therefore,

C3 > ID I < 1112,

lal=m

whereC2 = n¢ min{lpa(x)l2 ‘XeQ, laj=m ae Ng} > 0. According to the Sobolev
inequality [1, Theorem 4.31], there exists a positive can€p such that

CElIfI2o < DIID fIE, | e HTQ).

lal=m

By choosingC; := CpCp > 0 we complete the proof.
]
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3.2 Boundary Operators

In this section we wish to define boundary operators on thel8elspacesH™(2), me N.
Since these boundary operators can not be set up in an aylitanded open domain, we
will assume tha® c RY is aregular bounded open domain (connected subset), e.g., it should
satisfy a strong local Lipschitz condition or a uniform cawndition (seel[ll, Chapter 4.1]
and [17, Chapter 12.10]). This means thdhas a regular boundary trag®. MoreoveroQ
is closed and bounded which implies tid& is compact because the domais open and
bounded.

We begin by defining speciablspaces restricted to the boundary trateas

L2(0Q) :={f : 0Q = R : [[f]lso < oo}

together with an inner product given by
(f, 90 ::f f(X)g(x)dS(x), f,ge L(09Q).
0Q

Here fag f(x)dS(x) implies thatf is integrable on the boundary traé€ and & is the
surface area element whenegkr 2. In the special case = 1 we interpret the restricted
space as

Lo(09Q) :={f : 0Q = {a, b} - R},

and its inner product as

(.90 = f(@)g(a) + F(b)g(b), f,g e L2(d9),

because the measure at the endpoints is defin&¢aas- S(b) = 1.

The crucial ingredient that allows us to deal with boundamyditions will be a boundary
trace mapping which restricts the derivative of df'(Q) function to the boundary trace.
More precisely, for any fixef| < m—1,8 € N4, we will define theboundary trace mapping
of thep™ derivative ¥ and denote it byD#|,0. We will now show that the operat®@®|,,, is
a well-defined bounded linear operator frét(Q) into L,(09Q).

Whend = 1 we haveR := (a,b) andoQ := {a, b} with — < a < b < +c0. According to
the Sobolev embedding theorem (Rellich-Kondrachov thap{&, Theorem 6.3]H™(a, b)
is embedded in ©([a,b]). In this special case the boundary trace mapping ofdhe
derivativeD?, D)5, : H™(a,b) — Lo({a, b}), is well-defined orH™(a, b) via

(DPliap H)(¥) = DPf(x), f e H™(a b)andxe {a,b}.
In the casel > 2 a linear operatob?|;, : C™(Q) — C(92Q) is well-defined by
DB|(’)_Qf = Dﬁflag, fe Cm(ﬁ)

According to the boundary trace embedding theorem ([1, fédreds.36] and[[17, Theo-
rem 12.76]) there is a constad > 0 such that

ID°fllag < CalID  fllig < Cyll fllme,  f € C™(Q),

which shows thaD#|,, is also a bounded operator fron’'@) c HM(Q) into CER) c
L,(0Q). SinceQ is assumed to be regular"@2) is dense inH™(LQ) with respect to the
H™M(Q)-norm by the density theorem for Sobolev spaces$ [17, Timed2.69]. Therefore,
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according to the bounded linear transformation theofem Theorem 5.19]D%|;, has a
unique bounded linear extension opera®®on H™M(Q) such that

BPf = DPlaof = DPflag, T €C™(©Q) and [IB’fllso < Cyllflime, f € H™(Q).
We will call Bf : H™(Q) — L»(69Q) theboundary trace mapping of th&" derivative .
We use the convention for the notatiddg|;, same a$? in this article.

Remark 3.2The construction and definition of these boundary trace ingppare the same
as in [A[17]. In these references it is further shown &, is a surjective mapping from
H™(Q) onto H™F-1/2(9Q) wheneverd > 2. However, we will not be concerned with the
spaceH™ P=2(5Q) in this paper.

Whend = 1 we also denote @) := {f : 9Q = {a,b} - R}. So CPR) cC L,(0Q)
for every dimensiord € N which implies thaths o Df|sof = bg(DPlsof) € L2(02) when
bs € C(0Q) and f € H™(Q). Furthermordy; o Df|y0 is continuous orH™(Q).

Definition 3.3 A boundary operatofwith non-constant cdgcients)B : H™(Q) — L,(0Q)
is well-defined by
B= Z bs o Df|s0, Wherebs € C(92) andB € N3, me N.
|Blsm-1

Theorder of Bis given by
O(B) := max{|| : by # 0, |8 <m-1, geNg}.

A vector boundary operatd® = (By, - - , By,)" is formed using a finite number of boundary
operatorsBy, - - - , By, and itsorder is O(B) := maxO(B;),--- ,O(Bp,)}.
We can use the vector boundary operdot (By, - , B,,)" of orderm - 1 to define a

B-semi-inner producon H™(Q) via the form

Np
(f.Qsa0 = » (Bif.Bigho, f.g€ HMQ).
=1
Given a functionf € H(Q), itis well known thatf € 7{3(!2) if and only if f vanishes on
its boundary trace. Therefore we needfisiently many homogeneous boundary conditions
to determine whether a functidne H™(Q) belongs toH'(Q).

Definition 3.4 27 is defined to be a collection of vector boundary operaoes(By, - - - , Bn,)"
of orderm — 1 € Ny which satisfy the requirement that for each fixed H™(Q)

Bf = 0if and only if D|so f = O for each| < m- 1 ands € N§.

We illustrate Definitior 314 with some examples for the &% in the cased = 1 with
0Q := {0, 1}. Two possible members c@é are

_ d—dxlag _ dihm + lao
B, = or B, = J( .
oo axloe — lae
While these are both first-order vector boundary operatoes;B; andB,-semi-inner prod-
ucts defined irf{2(Q) are diferent.
Because of the trivial traces theoreim [1, Theorem 5.37] veswkihat f € H{'(2) if and

only if D[ f = 0 for eachf| < m-1andg Ng wheneverf € H™(Q). In analogy to this,
we can verify the same trivial trace property for the vectourdary operatorB € 4.

Lemma 3.2 If B € #7, then fe H™(Q) belongs taH['(L) if and only ifBf = 0.
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3.3 Constructing Hilbert Spaces byffgrential and Boundary Operators

LetQ be a regular bounded open domairR8f We want to observe the relationship between
our differential and boundary operators. Given a vectfiedtntial operator and a vector
boundary operator, i.e.,

P=(P-,Py) €23, B=(By-,By) €25 m>d/2andmeN,
the diferential operatot of orderO(L) = 2mis well-defined by

Np
«T *
L=PTP= )PP,
=1

Next we can construct homogeneouffatiential equations with respect toandB in the
Sobolev spacé{™(Q), i.e.,
Lf=0, ingQ,
! 3.3)
Bf =0, ondQ.

Combining Equation{3]3) and the following Lemimnal3.3, we é able to verify that the
inner product spaces}2) and I—E’(Q) defined below are well-defined (see Definitibnd 3.5
and3.6).

Lemma 3.3 Equation [3.B) has the unique trivial solution=f 0 in H™(Q).

Proof It is obvious thatf = 0 is a solution of Equatiori(3.3). Suppose that H™(Q) is a
solution of Equation(3]3). Sind@ € #;, andBf = 0, Lemma 3.2 tells us that € HJ(Q).
Thus there is a sequenpgly. , € 2(RQ) such thatlyy — f|lne — 0 whenk — co. And then,
using the two bilinear forms introduced earlier,

ny np np
2 Pif.Pifg=lim 3 (Pif.Pindo = im > (PiPif. %00 = im(Lf.ye = 0.
j=1 j=1 j=1

SinceP € 277, the generalized Sobolev inequality of Lemimal 3.1 provitiesestimate

Mp
If13 < Ifli2,0 < Celfi o = Co D IPfIZ =0, Cp>0.
=1
This, however, implies that = 0 is the unique solution of Equation (8.3).
|

Note that in the above proof we employed both the integral duel bilinear forms.
Since we can only ensure thfP;f € 2'(Q), this quantity needs to be handled with the
dual bilinear form. On the other hanB; f € L»(®) implies that we can apply the integral
bilinear form in this case. Using the notation introduceddrdl), we therefore obtain that
(Pj f, Pj’}/k)Q = (Pj f, Pjyk>g = <P}<Pj f,)’k)g becauseP,-yk € @(Q)

Definition 3.5
H3(Q) := {f e H™(Q) : Bf = 0},

and it is equipped with the inner product

Np
(f. Dug(o) = (f.9po = D (Pif.Piglo. g€ HA(Q).
=1
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We now show that the &{Q)-inner product is well-defined. if € H3(2) such that] fllnge) =
0, thenBf = 0and||Pjfllo =0, j = 1,---,np, which implies that

np np np
(LE.y)e =Y (PiPif.ya =) (Pif.Pjy)e= Y (0.Py)a=0. ye2(Q).
=1 =1 =1

Thus f solves Equatior(3]3) and then Lemnal 3.3 statesfthka0.

Theorem 3.1 H‘F’,(Q) andH;'(2) are isomorphic, and therefotdg(!)) is a separable Hilbert
space.

Proof Because of Lemma_3.2,%2) = H{'(2). The generalized Poincaré (Sobolev) in-
equality of Lemm&3]1 further shows that th&(&)-norm and theH™(2)-norm are equiv-
alent on the spacg('(Q).

]

In Sectiorl# we will establish relationships betweel(®) and Green kernels with ho-
mogeneous boundary conditions. Furthermore, we will a@rsGreen kernels with non-
homogeneous boundary conditions. To this end we need toedininner product spaces
HZ,(Q) defined below.

Definition 3.6 Let the paire = {zpk;ak}ﬂil for somen, € Ny Where{ak}ﬂil c R* and
U, € NUll(L) = {f € H™(Q) : Lf = 0} is an orthonormal subset with respect to the
B-semi-inner product, i.e.yf, ¥1)s.o = ok, a Kronecker delta functiork,| = 1,--- ,n,.
Denote that

HE' (Q) = spary, - . yn,)
and it is equipped with the inner-product

n, FAPN

k=1

wheref, andgj are the Fourier cdgcients off andg for the given orthonormal subset, i.e.,
Ny R Na R
f=> fo 9= G and (fije,, (G, C R
k=1 k=1

In particular, ifn, = 0 or .« := {0; 0} then I—E’(Q) :={0}and (Q O)Hg(g) =0.

According to Lemm&_3]3, thB-semi-inner product becomes an inner product\aull (L)
which implies that the g((Q)-inner product is well-defined. It is obvious tha§4(152) is
a separable Hilbert space which is embedded in the Sobobmegf™(22) because it is
finite-dimensional.

We have now finally arrived at the definition we will use in ownstruction of repro-
ducing kernel Hilbert spaces connected to Green kernels mahhomogeneous boundary
conditions.
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Definition 3.7 The direct sum space;ﬂ@(!)) is defined as
Z(Q) = HY(Q) @ HY (),
and it is equipped with the inner product
(. Due o) = (e IPdro () + (fB. GB)ngr () f.O€ HEg(9),
wherefp, gp € H(2) and fg, gg € HE (@) are the unique decompositions g, i.e.,
f=fo+fs, g=0gp+0s Wwherefp,gp € H3(Q) andfs,gs € HY (Q).
The direct sum spaceQZBl(.Q) is well-defined becausegﬂQ) N ANull(L) = {0}

Theorem 3.2 Hng(Q) is a separable Hilbert space and it is embedde@ifi(2). Moreover,

(. Qg = (. Opo + Z—g Z W vpo.  .0€ HER),
k=1 k=1 I=1

where A
fk = (fa¢k)B,399 gk = (ga¢k)8099 k: la"' ,na
In particular, if & = {i; ak}Eil further satisfiesf.wk}k 1 S NUll(P) then

L
a f2

11y = 1B+ Y 20, f € HE(@)
k=1

Proof Since l—E(Q) and l—gf(Q) are separable Hilbert spaces which are embedde'{{©2),
we can immediately verify thatﬁ(Q) is a separable Hilbert space and that it is embedded
in H™(Q).

Fixanyf = fp + fg € H 5(Q), wherefp € HQ p(Q) and fg € H”‘Z{(Q) We immediately
haveB fp = 0andLfg = 0. Slncefp € H3(Q) = 7{"‘(9) there is a sequendex},”, € 2(Q)
such thatlyx — fpllme — 0 whenk — co. Thus we have

p p
(fe. fedeo = Jim ;(Pj fe. Piide = Jim ;<Pj fe. Pivoe
p
= lim Z;<P]-‘Pj fo. 700 = lim(Lfe, 700 = 0.
]:

Because oBf = Bfp + Bfg = Bfg, we can compute the Fourier dhieients off as fe =
(f,¥)B.a0 = (fe. ¥i)s.a0 Which implies thatfg = ¥, fiuk and”fB”Ho{(Q) e acltifl2
Since

Na Na

(fs, fB)p0 = Z(P f, Pjfa)o = Z Z ficfi Z(P1¢k, Pivi)e,

k=1 I1=1

we have

Na  Na

(f, Dpo = (fp, TR)po + 2(fp, f)p.0 + (T8, f)P.0 = (fp, fR)Po + Z Z fAkal(lﬁk, Y)p.o.
k=1 1=1
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Summarizing the above discussion, we obtain that

n, £ n, n,
SR AST,

1R ey = W fellPggy + el gy = TR+ Y === > > fefiww e
k=1 k=1 I=1

O

We can also check that%(Q) = HP(Q) @ spadyy),”,, where the direct sum space is
defined by theH™(2)-norm.

Corollary 3.1 If Null(P) is finite-dimensional, then there is a pair as in Definition 3.6
such thatl—lgg(.()) = H'(Q) ® Null(P) with its inner product equal to

(f. Onzzo) = (R Opa + (F.Qeae.  f.0€ HE(Q).
(Here the direct sum spacH7'(2) ® Null(P) is given theH™(£2)-norm.)

Remark 3.3In [26] the finite paire = {y; a,", is generalized to a countable paif =
{Wi; ay, € Null(L) ® R* such that the I(Q) = H™(Q).

Corollary 3.2 H7(2) ® Null(L) = H™(Q).

To achieve the proof, we first show thafull(L) is complete with respect to the™(Q)-
norm. For eacH € H™(Q) we can find its orthogonal projectioia in 7['(€2) with respect
to theP-semi-inner product. Finally, we can check tfigt= f—fp € AMull(L). The complete
proof is worked out in the thesis [26].

4 Constructing Reproducing Kernels via Green Kernels

Let Q be a regular bounded open domainkSt Given a vector dferential operatoP =
(P1,--+,Py)T € 27 and a vector boundary operatBr= (By,--- ,Bp)" € £, where
m > d/2 andm € N, we want to find a Green kernel of theffidirential operatok. = P*TP =
Z:El PiP; with either homogeneous or nonhomogeneous boundary camsligiven byB
so that it is also the reproducing kernel of a reproducingudeHilbert space. Furthermore,
we assume that the pair := {¢; a~, € Null(L) ® R* satisfies the conditions of Defini-
tion[3.8 such tha{hpk}ﬂil is an orthonormal subset with respect to B¥semi-inner product.

In this section, we will show that the Green kernels with @ithomogeneous or nonho-
mogeneous boundary conditions are reproducing kernelsremdheir reproducing-kernel
Hilbert spaces can be represented™hy and.</.

Definition 4.1 Suppose that the set := {F(-y) : y € @} ¢ &}*,L2(99Q). A kernel & :
0Qx Q — Ris called aGreen kernel of L with boundary conditions givenBwand % if for
each fixedy € Q, &(-,y) € H™(Q) is a solution of

L&(,y) = dy, in 0,
Bds(? y) = r(v Y), on 89

If % = {0}, then the kerneG : Q x Q — R is called aGreen kernel of L with homogeneous
boundary conditions given I, i.e., for each fixed € Q, G(-, y) € H™(Q) is a solution of

LG(.,y) =6y, inQ,
BG(,y) =0, o0naQ.

(We can also use Lemrha B.3 to show that the Green kernel igjaaisblution.)
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Next we will view the relationship between the eigenvalued aigenfunctions of the
Green kernels (reproducing kernels) and those of tieréntial operators with either ho-
mogeneous or nonhomogeneous boundary conditions.

Definition 4.2 Let @ € L,(2 x Q). {Ap}‘;j:l cR and{ep};’:l C L2(2)\{O} are calleceigen-
values and eigenfunctions &fif for each fixedp € N,

(Zocep)(y) = (DY) €)o = Apep(y), Y€,
where ;¢ is the integral operator defined [D(R.1).

Definition 4.3 Letthe sets = {qp};’)":l c ®T21L2(69). {,up}‘;;’:l - Rand{ep}‘;;’:l c H™(Q)\{0}
are calleceigenvalues and eigenfunctions of L with boundary condlitigiven byB and &
if for each fixedp € N we have

Lep = up€p, INQ,
Bep = N onog.

If & = {0}, then{yp}‘;:1 cR and{ep}‘;j:1 c H™(Q)\{0} are calledeigenvalues and eigen-
functions of L with homogeneous boundary conditions giyeB,b.e., for eactp € N

Lep = up€p, INQ,
Be, = 0, onaoQ.

The reader may be wondering about our use @edént names for Green kernels. In
the following we will use these fferent names to distinguish between a various types of
Green kernels. The kerne and K are defined in Theorenis 4.1 and]4.5, and they are
Green kernels with homogeneous and nonhomogeneous bguraatitions respectively.
Moreover, a kerneR determined by the set is introduced in Theorein 4.4. We will verify
below thatK, G andR are reproducing kernels. Finally, we use the symbab denote the
Green kernel corresponding to the general boundary condisitated in Definition4.1. The
Green kerne may not be a reproducing kernel. An example of such a typese ¢s given

in RemarkK4.11.

4.1 Green Kernels with Homogeneous Boundary Conditions

Theorem 4.1 Suppose that there is a Green kernel G of L with homogeneausdaoy con-
ditions given byB as in Definitio 4.1.. Then G is the reproducing kernel of th@weducing-
kernel Hilbert spacéi5(<2) (see Definitiofi 3]5) anti3(Q) = Hy(<2).

Proof According to Theoreri 311, HQ) = H'(Q). Fix anyy € Q. SinceG(.,y) € H™(Q)
andBG(-, y) = 0, we haveG(-, y) € H3(Q) by Lemme3.P.

We now verify the reproducing property @&. According to the Sobolev embedding
theorem|[1]H™(®Q) is embedded into &¥) whenm > d/2, i.e., there is a positive constant
Cn such that

Iflleg = supllf (¥l : x € @} < Callflime,  f € H™(@) € C(@).
For any fixedf € Hg(Q) there is a sequendey}, ; € 2(L2) such that

1) = 7 < I =7l < Callf — %lime = 0. whenk - 0. (4.1)
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Since
Np Np
(G(9 Y), yk)Hg(Q) = Z(P]G(9 Y), P]’)/k)Q = Z(PJG(9 Y), P]’Yk)Q
=1 =1

= > (PIPIGE. ) va = (LG Y). 700 = Gy vda = (), ke,
ji=1

we can determine that

GG Y). vy = YW = G Y): Drizgoy — (G V) Ydrego|

4.2)
< = Yl IGC Mgy < Cellf = ¥idimeallG( Y)lime — 0, whenk — oo,

where the positive consta@p is independent of the functiofi. Here — as before — the
two notations { -)o and(:, -)o denote the integral bilinear form and the dual bilinear form
respectively (see Section 8.1). Combining Equatibng @nt){4.2), we will get

(G Y): Doy = F(Y)
]
Corollary 4.1 G is a symmetric positive definite kernel @n

Proof Fix any set of distinct pointX = {xs, - - - , Xn} € £ and codicientsc = (cy,--- ,cn)" €
RN, N € N. SinceG is the reproducing kernel of the reproducing kernel Hillsgeice (),
G is symmetric and positive semi-definite, i.e.,
N N N N N

J Z CJ CkG(le Xk) = (Z; CJG(9 Xj)? ; CkG('v Xk))Hg(Q) = ”Z; CJG(v X])”ag(g) > 0
= j= = 1=

k=1

I

To get strict positive definiteness we assum\él ¢iG(-, xj) = 0. For anyy € 2(Q),

N N N N
Z ciy(xj) = Z Ci(0x;» Ve = Z Ci{LG(, X)), Ve = (Z CiG(-, Xj),7)po = 0.
=1 = =1 =

To show thatc; = 0, j = 1,---, N, we pick an arbitrary; € X and construcy; € 2(Q)
such thaty; vanishes oiX\{x;}, buty;(x;) # 0. Therefore

N
Z cjoG(xj, xk) > 0, whenc# 0.
k=1

N
=1

0

SinceG(-, y) € C(Q) for eachy € 2, G is uniformly continuous o® which implies that
G € L,(Q x Q). According to Mercer’s theorem[[9, Theorem 13.5], therarisorthonormal
basis{ep}‘;;’:1 of L,(£2) and a positive sequentey}y suchthaG(x, y) = Y51 1p€p(X)€p(Y)
and G(-, Y). ep)o = 4pep(y), X,y € Q, p € N. According to Proposition 211, we can use the
technology of the proof of [25, Proposition 10.29] to ver{fg(/Tpep}ﬁzl is an orthonormal
basis of Iig(Q). (We firstly show that \/Tpep};’;’:l is an orthonormal subset oigléD). Next
we can verify that it is complete.)
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Proposition 4.2 If {/lp};’;:l c R* and {ep}‘;;’:1 are the eigenvalues and eigenfunctions of G,
then{/l,‘)l}‘;j:1 and {eplp., are the eigenvalues and eigenfunctions of L with homogeneou

boundary conditions given bBg. Moreover,{ \//Tpep};":l is an orthonormal basis dfi3(<2)
Whenevel{ep}‘;;’:1 is an orthonormal basis df,(Q).

Proof According to Fubini’s theoreni [17, Theorem 12.41], for efighd p € N and any
Y € 2(Q),

(Lep Yo = (@ Lo = [ (L N0y
- [ ety = [ [ 1160 DestaL Ny
0 QJIQ
:f/lglep(x)(G(x,-), L*y)de:fﬂ;lep(x)(G(-,x), L*y)edx
0 Q
:fﬂ;lep(x)q_(;(.,x),y)gdx:fﬂ;lep(x)(éx,y)gdx
Q 0

_ fg 1lep(X)y(X)dX = (A:lep, )o.

This shows thate, = 1,'e;.

According to Proposition 211, the integral operaley, is a continuous map fromy(«)
to H3(2). Sincedpep(y) = (G(.Y). €)oo = (o)), Y € 2, we can conclude tha, €
Hg(Q). This implies thaBe, = 0, pe N. Therefore{/l,‘)l}"’;’:l and{ep}‘;;’:1 are the eigenvalues
and eigenfunctions df with homogeneous boundary conditions giverBoy

]

Proposition 4.3 If {,up}f;’:l c R* and {ep};":l are the eigenvalues and eigenfunctions of

L with homogeneous boundary conditions givenByythen {,u,;l}‘;j:l and {eplp., are the

eigenvalues and eigenfunctions of G. Moreove{edf;‘;l is an orthonormal basis af,(9Q),
then

G(X,y) = Zyglep(x)ep(y), X,y € Q.
p=1

Proof According to Theorefi 4lG is a reproducing kernel, i.e., we have
(GC.Y). e o = €p(y), yeQ, pel.
Applying the same method as in Equati@?), we obtain
Np
(G, ). epdnge) = Z(PjG('» Y), Piep)o = (G(-, ¥), up€p)o-
=1
Combining the above equations, we can easily verify tiEt, §), ;)0 = y;lep(y). The

second claim follows immediately.
]



19

4.2 Green Kernels with Nonhomogeneous Boundary Conditions

Theorem 4.4 The spacd—lgf(!?) of Definition[3.6 is a reproducing-kernel Hilbert space
with reproducing kernel

RGY) = D adOun(y), Xy eQ.
k=1

In particular, when g = 0 or & = {0; 0} then R:= 0.

Proof We fix anyy € Q. Itis obvious thaR(, y) = 3, (a(y)¥x € HZ (Q).
We now turn to the reproducing property. Let ahyt Zk fen € HW(Q) Then

a f a N
RV, Ny = D %(y” = ) = fo). yee
k=1 k=1

[}

Our main theorem now follows directly from Theorens] 8.2] @nt{Z4.%.

Theorem 4.5 Suppose that there is a Green kernel G of L with homogeneausdaoy con-
ditions given byB. Then the direct sum spab%(!?) (see Definitiol_317) is a reproducing-
kernel Hilbert space with reproducing kernel

KX, y) :==G(x.y) +R(X.Y), X yeQ.
MoreoverHZ,(2) can be embedded intf™(Q).

By Corollary[4.1 we know thaG is a symmetric positive definite kernel, and using
similar arguments we can check tHais symmetric positive semi-definite. Together, this
allows us to formulate the following corollary.

Corollary 4.2 K is a symmetric positive definite kernel @n

On the other hand§ may not be positive definite ai12 (see the min kernel in Exampleb.1).
According to Definitiod 4.1 we also have

Corollary 4.3 LetZ := {BR(,y) : ye Q}. Then K is a Green kernel of L with boundary
conditions given by and %.

Remark 4.1To see that not every Green kernel is a reproducing kernslinas thatd is
a Green kernel of the fierential operatot.. Then, according to Corollafy 3.2 can be
uniquely written in the form

®(X’ y) = ®P(X9 y) + ®B(X9 Y), (pp(', Y) € 7_{(;”(!2)’ (pB('a Y) € NUII(L)’ X, y € Q.
Therefore we have

L®p(-,y) =6y, InQ, and Log(-,y) =0, in Q,
B®p(-,y) =0, 0noQ, Bog(,y) = BO(,y), onaQ.

This means thatp is a Green kernel of with homogeneous boundary conditions given
by B. However, there may be no pair such thatR = &g even though# is extended to

a countable pair set. This shows tliamay not be a reproducing kernel of a reproducmg-
kernel Hilbert space. For examplé(x,y) := ——|x yl is the Green kernel of := - 5.
However,¢(x) := &(x,0) is only a Condltlonally positive definite function of ordene and
therefore cannot be a reproducing kernel.
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We are now ready to address nonhomogeneous boundary ocosdi@onsider a kernel
I' € Ly(092 x Q). Then we can define antegral operatorf o : Lo(Q2) — L2(9RQ) via the
form
Tref)(X) = (X,-), o, fela(Q)andx e Q.

Let T denote the vector functioRi(-,y) = (I'1(,Y), -+, T, (5 ¥))" := BK(., y) for any
yeQ,i.e.,I(y) =BK(y), j=1--,m. SinceB;G(-, y) = 0,y € Q, we have

Ti(,Y) = BiK(,Y) = BiG(.Y) + BR(,Y) = BiR(.Y) = ) aBjundyn(y).
k=1

As a consequence we halig e Lo(0Q2 x Q).

Proposition 4.6 If {15}, < R* and {e,};, are the eigenvalues and eigenfunctions of

K, then {/l,‘)l};’:l and {ep};’:l are the eigenvalues and eigenfunctions of L with boundary
conditions given by and

&= {l]p = (ﬂ;lfrlygep, ver ﬂBlIrnb!er)T };ozl,

e, mpi(X) = ,Mj(X. ). €p)e, X € HQ. Moreover,( \/Tpep};’;’:l is an orthonormal basis of
Hg5() whenevere,) , is an orthonormal basis df5(€).

Proof Using the same method as in the proof of Propositioh 4.2, weeafy that(Lep, y)o =
(A5'ep. v)o for eachy € 2(Q). This implies thate, = A,'ep, p e N.

Next we compute their boundary conditions. Fix any boundg@eratoB;, j = 1,--- ,ny
and any eigenfunctioe, and eigenvaluel, of K, p € N. Becaus& ¢ C(2 x Q) is pos-
itive definite. According to Mercer’s Theorem, there existathonormal basigpy}, , of
L>(2) and a positive sequende}y; such thatk(x,y) = X271 vikek(X)e(y), X,y € Q.
We can also check thdty/vewly, is an orthonormal basis oféﬂ(Q). Let Kn(x,y) :=
S kek(¥e(y), n € N. Thus|K(.,y) - Kn(',)’)llf{%(g) = Yiena vlek(IZ — 0 when
n — oo. According to Theoreni 32, #(€) is embedded intaH™(®2), which implies
that IK(,y) = Kn(, Ylime — 0 whenn — oco. So BjK(.,y) = X2 w(Bjei)ex(y) and
(BjxK (X, ), &p)e = 2req vk(Bjer) (X)(¢x, €p)e. It implies that

Ap(Bjep)(X) = Bjx(K(X, "), €p)a = (BjxK(X, "), €p)o = ([j(X,), €p)o, X € Q.

It follows that the boundary conditions have the fo®, = n, for all p € N.
]

Proposition 4.7 If {uplpy C R* and {eplpet of L,(Q) are the eigenvalues and eigenfunc-
tions of L with boundary conditions given Byand

& = Amp 1= (pl ry08p, -+ ipL 1y 080) s
i.e., mpj(X) = pp(lj(X, "), €p)a, X € 09, then{y,;l}‘;j:l and {ep}} ; are the eigenvalues and

eigenfunctions of K. Moreover, ﬁép}"’;’:l is an orthonormal basis df,(Q), then

K(x,Y) = > 1ptes(¥ep(y). X yeQ.
p=1
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Proof We fix any p € N. Letvy(y) = up(R(,Y), €p)o = ip 221 &(Wk. €p)adi(y), Y € 2.
ThenLvp = 0 andBv,, = 5, becaus@8K(., y) = BR(., y) for eachy € Q.

Defineup := €y —Vvp, so thatLup = Le, = upe, andBu, = Be, —Bu, = 0 which implies
thatup € H3(Q). As in Propositiofi.4]3, we can obtain that

(G(, Y) up€ple = (G( ¥), Lup)e = (G(» ), Up)ngio) = Up(Y), Y€ L.

It follows from the above discussion that

(K(,Y). €p)e = (G(. ). €p)a + (R(. Y). €p)o = tp Up(y) + 15 Vp(Y) = pptep(y), Y€ L.
]

Given a functionf € H™(Q), we also want to know whethdr belongs to the repro-
ducing kernel Hilbert spaceﬁﬂ(Q) as used in Theorefn 4.5. According to Corollary] 3.2,
f can be uniquely decomposed info= fp + fg, wherefp € Hg(.Q) and fg € ANull(L).
Theoren{:3R shows thdte HZ(Q) if and only if fg € H (Q). Moreover, fg € HY (@) if
and only if 3,2, a‘:1|fﬂk|2 < oo, wherefy := (f, yi)p.ao for eachk € N.

BecauseX,?, allyullz,, < oo. We can setj(x,y) = BjxBjyR(X.Y), X,y € 2 and
j =1 ,m Then¥j(x,y) = X2, a(Bj)(X)(Bjyi)(y) which implies that eacl¥; is
symmetric positive semi-definite @i2. So ¥; is the reproducing kernel of a reproducing-
kernel Hilbert space Ho<) by [4, Theorem 1.3.3]. According to [25, Theorem 10.29], we
havey, a t|f? < coif and only if B f € H;(09), j = 1,--- , np.

Theorem 4.8 Let ¥j(x,y) := BjxBjyR(X,y), X,y € 0Q and j = 1,---,ny. UseH;(0Q)
to denote the reproducing-kernel Hilbert space whose g kernel is¥;. Then a
function fe H™(Q) belongs td—|§fB(Q) if and only if B f € H;(0Q) for each j=1,--- , .

Remark 4.2In Remark3.B we mentioned that the nonhomogeneous bourdaditions
discussed in the present paper can be generalized to sudréhgenerated by a countable
sets/. One will also want to know which Green kernels associate sich nonhomoge-
neous boundary conditions are reproducing kernels. Inhibsig[[26] it is shown that, e.g.,

a Green kerne® € H™™(Q x Q) is a reproducing kernel if and only B;xB;,® is positive
semi-definite ordQ for eachj = 1,--- , ny. This Green kernel can then be expanded as the
sum of eigenvalues and eigenfunctions analogous to Ptapwsd.6 and 4]7. This allows
us to approximate the interpolasity by a truncated expansion of the Green kernel.

5 Examples

Example 5.1 (Modifications of the Min Kerné&t

Q:=(0,1) ped | pp o & B =1l =
= 1) = Ax =P =g = laa = lpy-

It is easy to check tha® € 22} andB € %5, whereO(P) = O(B) + 1 = 1 > 1/2. We can
calculate the Green kern€élof L with homogeneous boundary conditions givergy.e.,

G(xY) ;= min{x,y} — Xy, XYye€Q.
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This Green kerneG is also known to be the covariance kernel of the Browniandarid
According to Theoreri L 411G is the reproducing kernel of the reproducing-kernel Hilber
space

H3(Q) = {f e HY(Q): f(0)= f(1) = o} = HY(Q),

with the inner product

1
(f. Qo) = (. Qe = (.00 = fo P09 (9dx,  f.ge HY(@).

In order to obtain a second, related, kernel we considerdheediferential operator
with a different set ohonhomogeneousoundary conditions. One of the obvious orthonor-
mal subsets ofVull(L) = spary1,¥»} with respect to théB-semi-inner product is given

by
U1(X) =X YoX) i=1-X XeQ,

and we can further obtain that
fii=(f.ysse = (),  f2i=(f.y2)sse = f0), feHYQ).
We will choose the nonnegative d&eients
a:=1 a:=0,

to set up the pair7 := {iy; aZ_,. According to Theorenis 4.4 ahd#.5, the covariance kernel
of the standard Brownian motion

K(xy) =G(xy) + RXY) = G(xy) + a1 (Xyaly) = min{x,y}, xye®Q,
is the reproducing kernel of the reproducing-kernel Hillspace
HER(Q) = HY(2) @ H (Q) = H3(@) @ sparfy) = {f € HY(@) : 1(0) = 0,

with the inner product

fA P . 1
(. Dz = (F.Opo + ;—fl - i W v = fo (g (9dx,  f.g e HER(Q).
If we select another pai#, i.e.,

2 2
v1(X) = g Wa(X) = V2x— g =1 a:=0,

then we can deal witheriodicboundary conditions. Thus we obtain the reproducing-Kerne
Hilbert space

HZ(Q) = H3(Q) © Null(P) = H3(Q) @ spariy1) = {f € HY(Q) : f(0) = f(1))
equipped with the inner product
1
(f.Dnz @ = (f.9pe + (f.QBo0 = fo (g’ (x)dx + f(0)g(0) + f(1)g(1),

whose reproducing kernel has the form

. 1
K(X,Y) := G(X,Y) + arp1 (X (y) = min{x,y} — xy + > X,ye Q.
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Example 5.2 (Univariate Sobolev Spliné€X o- be a positive scaling parameter and

d 2 d?
Q:=(01), P:= (&,(TI)T, L, :ZZP]-(P]' :—w +a'2|, B = l|s0.
=1

ThenP € 32512 andB e %’}2 So the Green kernéb,. of L, with homogeneous boundary
conditions given byB has the form

—L__ sinhrx)sinhg —oy), 0<x<y<l1,

G(,—(X, y) = o sinh(r)
asinlhgf) sinh —oX)sinhy), O<y<x<Ll

Using the same approach as in Exampld 5.1 we can pick an oriah bases of
NUll(L) with respect to th&-semi-inner product as

() = expe —ox) expx)
V2(expe)-1)  V2(expE)-1)
Yal¥) = exp — oX) N expXx)

V2(expe) +1)  V2(expE)+1)

and then compute
o= (U)o = % (FO)= F(1). foi= (F.0Dpp0 = % (f(0) + F(1)).

We further choose the positive sequence

. expe) -1 % = expe) + 1

LT 20expe)” P 20exp)

According to Theorern 415,
2 1
K(%Y) = Go(x ) + R Y) = Go(XY) + . as(Xuly) = 25 EXP(=olx = y))
k=1

is the reproducing kernel of the reproducing-kernel Hillspace %(Q) = HY(Q) with the
inner-product

1 1
(f, Q)Hgg(g) = j; f/(x)g' (x)dx + o-zj; f(X)g(x)dx + 20-f(0)g(0) + 20T (1)g(1).

Remark 5.1Roughly speaking, the fierential operatot., = —dd—; + o2l converges to the

operatorL = —dd—xzz from Exampld 5.l whea- — 0. We also observe that the homogeneous
Green kerneG,, of L. converges uniformly to the homogeneous Green keenafl L when

o — 0. This matter is discussed in detail for radial kernels eresmoothness orders in the
paper([22]. One might hope to exploit this limiting behaviostabilize the positive definite
interpolation matrix corresponding ®, wheno is small by augmenting the matrix with
polynomial blocks that correspond to the better-condétbfimiting kernelG.
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Example 5.3 (Modifications of Thin Plate Splines} Q := (0, 1> c R? and

¢ PP

0
., V2 ,
%2 Ix10%2" X2

S G A TR L
(axllag aleag o)

which shows thaP € 22 andB € 2. Thus we can compute that

3
L= PP =42
=1

We know that the fundamental solutionlofs given by
. 1 2 2
#(x) = 8—I|XI|2|09||X||2, X €R%,
T

i.e.,L¢ = 6o inR2. Applying Green’s formulas, we can find a corrector functigre H2(Q)
for each fixedy € Q by solving

LY = A4%¢Y =0, inQ,
BgY =T(., ), onow,

wherel'y(x,y) = g (2logl|x — Yil2 + 1)(xa — y1), I2(X. Y) := g=(2loglIx — Yll2 + 1)(Xz — 2)
andr3(x,y) := glIx — yll3logllx — yilo. Sincel'(x,y) = Byg(x — y) for eachx € 42 and
y € Q, the kernelG(x, y) := ¢(x — y) — ¢¥(x) defined inQ x Q is a Green kernel df with
homogeneous boundary conditions giverBoy

Since Null(P) = m1(Q), the space of linear polynomials @, we can obtain an or-
thonormal basis ot (2) with respect to thé&-semi-inner product as

Ya(X) = %, Ya(X) = \/zzg(xl —-2), y3(x) = \/zgg(xz -2), x:=(X, %) €

We choose positive ciécients{a}3_, asa; = a, = ag := 1. ThusR(x, y) = T2 and(X)w(y)-
According to Theorems 3.2 ahd #.5, the Green kernel

K(x.y) =G y) +Rxy), xyeL,

is the reproducing kernel of the reproducing-kernel Hillspace %(Q) = H{'(Q) 1 (Q)
and its inner-product has the form

(f, Q)Hgg(g) =(f.9ro+(f.0Ba0, f.g€ H%(Q)-

[25, Chapters 10 and 11] state that the native spég2) of the thin plate spline
covers the Sobolev spadé?(Q). Therefore H4(Q) & H2(Q) € Ny(Q).

Remark 5.2We can also introduce otherdimensional examples that connect Green ker-
nels with, e.g., pdLg splines [12] or Sobolev spliries [10pdi g spline is given by a linear
combination of the homogeneous Green kernel centered dathesites fronX. Thus it pro-
vides theP-semi-norm-optimal solution of the scattered data intetan problem. Accord-
ing to Example 5.7 of [10], the Matérn function (or Sobol@lirse) ¢, of orderm > d/2
with shape parameter > 0 can be identified with the kern@m,(X,y) = ¢mo(X — Y)
which is afull-spaceGreen kernel of the élierential operatot. := (4 — o’1)™. If we add
nonhomogeneous boundary conditiond_tthen the finite set used in the present paper
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does not allow us to discuss the resulting Green kedng} and to check whether it is a
reproducing kernel in a regular bounded open donsairThis is done in the thesi§ [26]
where it is shown that for eachthe reproducing-kernel Hilbert space associated @it

is equivalent to the Sobolev spag€"(2). However, diferent shape parametersallow us

to choose a specific norm fé1™(2) that reflects the relative influence of various derivatives
in the data.
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