Skip to main content
Log in

Evaluation of generalized Mittag–Leffler functions on the real line

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of the numerical computation of generalized Mittag–Leffler functions with two parameters, with applications in fractional calculus. The inversion of their Laplace transform is an effective tool in this direction; however, the choice of the integration contour is crucial. Here parabolic contours are investigated and combined with quadrature rules for the numerical integration. An in-depth error analysis is carried out to select suitable contour’s parameters, depending on the parameters of the Mittag–Leffler function, in order to achieve any fixed accuracy. We present numerical experiments to validate theoretical results and some computational issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi, M., Bertaccini, D.: Real-valued iterative algorithms for complex symmetric linear systems. IMA J. Numer. Anal. 28(3), 598–618 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertaccini, D.: Efficient preconditioning for sequences of parametric complex symmetric linear systems. Electron. Trans. Numer. Anal. 18, 49–64 (electronic) (2004)

    MathSciNet  MATH  Google Scholar 

  3. Diethelm, K.: The analysis of fractional differential equations. In: Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)

    Google Scholar 

  4. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194(6), 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garrappa, R., Popolizio, M.: Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62(3), 876–890 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garrappa, R., Popolizio, M.: On accurate product integration rules for linear fractional differential equations. J. Comput. Appl. Math. 235(5), 1085–1097 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garrappa, R., Popolizio, M.: On the use of matrix functions for fractional partial differential equations. Math. Comput. Simul. 81(5), 1045–1056 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garrappa, R.: Stability-Preserving High-Order Methods for Multiterm fractional differential equations. Int. J. Bifurc. Chaos 22(4), article no. 1250073 (2012). doi:10.1142/S0218127412500733

  9. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)

    Book  MATH  Google Scholar 

  10. Gorenflo, R., Mainardi, F.: Fractional oscillations and Mittag–Leffler functions. Tech. Rep. A-14/96, Freie Universitaet Berlin, Serie A Mathematik (1996)

  11. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag–Leffler function and its derivatives. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag–Leffler functions and their applications. J. Appl. Math. pp. Art. ID 298,628, 51 (2011)

    Google Scholar 

  13. Hilfer, R. Seybold, H.J.: Computation of the generalized Mittag–Leffler function and its inverse in the complex plane. Integral Transforms Spec. Funct. 17(9), 637–652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. in’t Hout, K.J., Weideman, J.A.C.: A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 33(2), 763–785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  16. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl. Numer. Math. 51(2–3), 289–303 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44(3), 1332–1350 (electronic) (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorenzo, C.F., Hartley, T.T.: Generalized functions for the fractional calculus. Crit. Rev. Biomed. Eng. 36(2), 39–55 (2008)

    Article  Google Scholar 

  19. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010). doi:10.1142/9781848163300

    Book  MATH  Google Scholar 

  20. Mainardi, F., Gorenflo, R.: On Mittag–Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 118(1–2), 283–299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication. Wiley, New York (1993)

    Google Scholar 

  22. Miller, K.S., Samko, S.G.: A note on the complete monotonicity of the generalized Mittag–Leffler function. Real Anal. Exch. 23(2), 753–755 (1997/98)

    MathSciNet  MATH  Google Scholar 

  23. Moret, I., Novati, P.: On the convergence of Krylov subspace methods for matrix Mittag–Leffler functions. SIAM J. Numer. Anal. 49(5), 2144–2164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic (1974)

  25. Podlubny, I.: Fractional differential equations. In: Mathematics in Science and Engineering, vol. 198. Academic, San Diego (1999)

    Google Scholar 

  26. Podlubny, I., Kacenak, M.: The Matlab mlf code. MATLAB Central File Exchange (2001–2009). File ID: 8738

  27. Saxena, R.K., Saigo, M.: Certain properties of fractional calculus operators associated with generalized Mittag–Leffler function. Fract. Calc. Appl. Anal. 8(2), 141–154 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Seybold, H., Hilfer, R.: Numerical algorithm for calculating the generalized Mittag–Leffler function. SIAM J. Numer. Anal. 47(1), 69–88 (2008/09)

    Article  MathSciNet  Google Scholar 

  29. Trefethen, L.N., Weideman, J.A.C., Schmelzer, T.: Talbot quadratures and rational approximations. BIT 46(3), 653–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tricomi, F.G.: Funzioni Ipergeometriche Confluenti. Edizione Cremonese, Roma (1954)

    MATH  Google Scholar 

  31. Verotta, D.: Fractional compartmental models and multi-term Mittag–Leffler response functions. J. Pharmacokinet Pharmacodyn. 37(2), 209–215 (2010)

    Article  Google Scholar 

  32. Weideman, J.A.C.: Computing special functions via inverse Laplace transforms. In: Simos, T., Psihoyios, G., Tsitouras, C. (eds.) International Conference on Numerical Analysis and Applied Mathematics 2005 (Rhodes), vol. 1, pp. 702–704. Wiley-VCH (2005)

  33. Weideman, J.A.C.: Improved contour integral methods for parabolic PDEs. IMA J. Numer. Anal. 30(1), 334–350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76(259), 1341–1356 (electronic) (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wolfram Research Inc.: Tricomi confluent hypergeometric function (1998–2010). URL: http://functions.wolfram.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Garrappa.

Additional information

Communicated by: J. M. Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrappa, R., Popolizio, M. Evaluation of generalized Mittag–Leffler functions on the real line. Adv Comput Math 39, 205–225 (2013). https://doi.org/10.1007/s10444-012-9274-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9274-z

Keywords

Mathematics Subject Classifications (2010)

Navigation