Skip to main content
Log in

A new class of non-linear monotone Hermite interpolants

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Monotonicity-preserving approximation methods are used in numerous applications. These methods are expected to reconstruct a function from a discrete set of data preserving Monotonicity properties (i.e., the reconstructed function has to be monotone wherever the discrete data are). Most Monotonicity-preserving methods sacrifice accuracy in order to obtain Monotonicity. In this work we propose and analyze a Monotonicity-preserving Hermite interpolant that does not fully sacrifice accuracy. A key ingredient in the proposed technique is the approximation of derivatives using ENO (Essentially Non Oscillatory) and WENO (Weighted Essentially Non Oscillatory) interpolatory techniques. Then, an appropriate filtering process ensures the preservation of Monotonicity while maintaining, at the same time, the order of accuracy as high as possible. We perform several numerical experiments which confirm the properties of the proposed algorithms and compare them to other standard interpolatory approximation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aràndiga, F., Baeza, A., Donat, R.: Discrete multiresolution based on Hermite interpolation: computing derivatives. Commun. Nonlinear Sci. Numer. Simul. 9(2), 263–273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aràndiga, F., Baeza A., Donat, R.: Vector cell-average multiresolution based on Hermite interpolation. Adv. Comput. Math. 28(1), 1–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aràndiga, F., Belda, A.M. , Mulet, P.: Point-value WENO multiresolution applications to stable image compression. J. Sci. Comput. 43(2), 158–182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aràndiga, F., Donat, R.: Nonlinear multiscale decompositions: the approach of A. Harten. Numer. Algorithms 23, 175–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belda, A.M.: Técnicas de interpolación WENO y su aplicación al procesamiento de imágenes. PhD thesis, University of Valencia (2010)

  6. Berzins, M.: Adaptive polynomial interpolation on evenly spaced meshes. SIAM Rev. 49(4), 604–627 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Boor, C.: A Practical Guide to Splines. Springer, New York (2001)

    MATH  Google Scholar 

  8. De Boor, C., B. Swartz, B.: Piecewise monotone interpolation. J. Approx. Theory 21, 411–416 (1977)

    Article  MATH  Google Scholar 

  9. Fritsch, F.N., Butland, J.: A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comput. 5(2), 300–304 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gal, S.G.: Shape-Preserving Approximation by Real and Complex Polynomials. Springer, Birkhäuser (2008)

    Book  MATH  Google Scholar 

  12. Harten, A., Engquist, B., Osher S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hyman, J.H.: Accurate Monotonicity preserving cubic interpolation. SIAM J. Numer. Anal. 4(4), 645–654 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Huynh, H.T.: Accurate monotone cubic interpolation. SIAM J. Numer. Anal. 30(1), 57–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  17. Kocić, L.M., Milovanović, G.V.: Shape preserving approximations by polynomials and splines. Comput. Math. Appl. 33(11), 59–97 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 202–212 (1994)

    Article  MathSciNet  Google Scholar 

  19. Moler, C.: Numerical Computing with MATLAB. SIAM, Philadelphia (2004)

  20. Steffen, M.: A simple method for monotonic interpolation in one dimension. Astron. Astrophys. 239, 443–450 (1990)

    Google Scholar 

  21. Wolberg, G., Alfy, I.: An energy-minimization framework for monotonic cubic spline interpolation. J. Comput. Appl. Math. 143, 145–188 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Aràndiga.

Additional information

Communicated by: J. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aràndiga, F., Baeza, A. & Yáñez, D.F. A new class of non-linear monotone Hermite interpolants. Adv Comput Math 39, 289–309 (2013). https://doi.org/10.1007/s10444-012-9280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9280-1

Keywords

Mathematics Subject Classifications (2000)

Navigation