Skip to main content
Log in

On the optimization of Gegenbauer operational matrix of integration

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The theory of Gegenbauer (ultraspherical) polynomial approximation has received considerable attention in recent decades. In particular, the Gegenbauer polynomials have been applied extensively in the resolution of the Gibbs phenomenon, construction of numerical quadratures, solution of ordinary and partial differential equations, integral and integro-differential equations, optimal control problems, etc. To achieve better solution approximations, some methods presented in the literature apply the Gegenbauer operational matrix of integration for approximating the integral operations, and recast many of the aforementioned problems into unconstrained/constrained optimization problems. The Gegenbauer parameter α associated with the Gegenbauer polynomials is then added as an extra unknown variable to be optimized in the resulting optimization problem as an attempt to optimize its value rather than choosing a random value. This issue is addressed in this article as we prove theoretically that it is invalid. In particular, we provide a solid mathematical proof demonstrating that optimizing the Gegenbauer operational matrix of integration for the solution of various mathematical problems by recasting them into equivalent optimization problems with α added as an extra optimization variable violates the discrete Gegenbauer orthonormality relation, and may in turn produce false solution approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, V.: Handbook of Mathematical Functions. Dover (1965)

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  3. Area, I., Dimitrov, D.K., Godoy, E., Ronveaux, A.: Zeros of Gegenbauer and Hermite polynomials and connection coefficients. Math. Comput. 73, 1937–1951 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayin, S.S.: Mathematical Methods in Science and Engineering. Wiley-Interscience (2006)

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, NY (2000)

    Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin (1988)

    Book  MATH  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains, Scientific Computation. Springer, Berlin, NY (2006)

    Google Scholar 

  8. Doha, E.H.: An accurate solution of parabolic equations by expansion in ultraspherical polynomials. Comput. Math. Appl. 19, 75–88 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. El-Gendi, S.E.: Chebyshev solution of differential, integral, and integro-differential equations. Comput. J. 12, 282–287 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. El-Hawary, H.M., Salim, M.S., Hussien, H.S.: An optimal ultraspherical approximation of integrals. Int. J. Comput Math. 76, 219–237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. El-Hawary, H.M., Salim, M.S., Hussien, H.S.: Ultraspherical integral method for optimal control problems governed by ordinary differential equations. J. Glob. Optim. 25, 283–303 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Kady, M.M., Hussien, H.S., Ibrahim, M.A.: Ultraspherical spectral integration method for solving linear integro-differential equations. World Acad. Sci. Eng. Technol. 33, 880–887 (2009)

    Google Scholar 

  13. Elbarbary, E.M.E.: Integration preconditioning matrix for ultraspherical pseudospectral operators. SIAM J. Sci. Comput. 28, 1186–1201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elbarbary, E.M.E.: Pseudospectral integration matrix and the boundary value problems. Int. J. Comput. Math. 84, 1851–1861 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elgindy, K.T.: Generation of higher order pseudospectral integration matrices. Appl. Math. Comput. 209, 153–161 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elgindy, K.T., Smith-Miles, K.A.: Optimal Gegenbauer quadrature over arbitrary integration nodes. J. Comput. Appl. Math. 242, 82–106 (2013). ISSN 0377-0427. doi:10.1016/j.cam.2012.10.020

    Article  MathSciNet  MATH  Google Scholar 

  17. Elgindy, K.T., Smith-Miles, K.A.: Solving boundary value problems, integral, and integrodifferential equations using Gegenbauer integration matrices. J. Comput. Appl. Math. 237(1), 307–325 (2013). ISSN 0377-0427. doi:10.1016/j.cam.2012.05.024

    Article  MathSciNet  Google Scholar 

  18. Elgindy, K.T., Smith-Miles, K.A.: Fast, accurate, and small-scale direct trajectory optimization using a Gegenbauer transcription method. Submitted (2012)

  19. Elgindy, K.T., Smith-Miles, K.A., Miller, B.: Solving optimal control problems using a Gegenbauer transcription method. In: Proceedings of 2012 Australian Control Conference, AUCC 2012. University of New South Wales, Sydney, Australia, 15–16 November 2012

    Google Scholar 

  20. Fornberg, B.: A practical guide to pseudospectral methods. In: Cambridge Monographs on Applied and Computational Mathematic, vol. 1. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  21. Funaro, D.: A preconditioning matrix for the Chebyshev differencing operator. SIAM J. Numer. Anal. 24, 1024–1031 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghoreishi, F., Hosseini, S.M.: Integration matrix based on arbitrary grids with a preconditioner for pseudospectral method. J. Comput. Appl. Math. 214, 274–287 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM-CBMS, Philadelphia (1977)

    Book  MATH  Google Scholar 

  24. Greengard, L.: Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal. 28, 1071–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, B.Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  26. Hendriksen, E., van Rossum, H.: Electrostatic interpretation of zeros. In: Alfaro, M., Dehesa, J., Marcellan, F., de Francia, J.R., Vinuesa, J. (eds.) Orthogonal Polynomials and their Applications. Lecture Notes in Mathematics, vol. 1329, pp. 241–250. Springer Berlin / Heidelberg (1988). doi:10.1007/BFb0083363

    Chapter  Google Scholar 

  27. Hesthaven, J.S.: Integration preconditioning of pseudospectral operators. I. Basic linear operators. SIAM J. Numer. Anal. 35, 1571–1593 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral methods for time-dependent problems. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press (2007)

  29. Lundbladh, A., Henningson, D.S., Johansson, A.V.. An efficient spectral integration method for the solution of the Navier Stokes equations, Technical Report FFA TN 1992-28. Aeronautical Research Institute of Sweden, Bromma (1992)

  30. Mai-Duy, N., Tanner, R.I.: A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems. J. Comput. Appl. Math. 201, 30–47 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mercier, B.: An Introduction to the Numerical Analysis of Spectral Methods, vol. 318. Lecture Notes in Physics, Springer-Verlag, Berlin, NY (1989)

    Google Scholar 

  32. Mihaila, B., Mihaila, I.: Numerical approximations using Chebyshev polynomial expansions: El-gendi’s method revisited, J. Phys. A: Math. Gen. 35, 731 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Szeg\(\ddot{\rm o}\), G.: Orthogonal Polynomials, 4th edn. AMS Coll. Publ. (1975)

  34. Tang, T., Trummer, M.R.: Boundary layer resolving pseudospectral methods for singular perturbation problems, SIAM J. Sci. Comput. 17, 430–438 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tian, H.: Spectral Methods for volterra integral equations, M.Sc. thesis. Harbin Institute of Technology, Harbin, P.R. China (1989)

  36. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kareem T. Elgindy.

Additional information

Communicated by: Leslie Greengard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elgindy, K.T., Smith-Miles, K.A. On the optimization of Gegenbauer operational matrix of integration. Adv Comput Math 39, 511–524 (2013). https://doi.org/10.1007/s10444-012-9289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-012-9289-5

Keywords

Navigation