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Abstract

We propose a method to construct numerical solutions of parabolic

equations on the unit sphere. The time discretization uses Laplace

transforms and quadrature. The spatial approximation of the solution

employs radial basis functions restricted to the sphere. The method

allows us to construct high accuracy numerical solutions in parallel.

We establish L2 error estimates for smooth and nonsmooth initial data,

and describe some numerical experiments.
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1 Introduction

We consider the initial-value problem

∂tu+Au = f(t), for t > 0, with u(0) = u0, (1.1)
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where ∂t = ∂/∂t and A is a linear, self-adjoint, positive-semidefinite, second-
order elliptic partial differential operator on the unit sphere. In our standard
example, −A is the Laplace–Beltrami operator. The source term f(t) may
depend on the spatial variables but we suppress this dependence in our no-
tation, viewing f(t) as an element of a function space on the sphere.

Instead of using time stepping for the numerical solution, as was done
previously [4], our approach is to represent the solution of (1.1) as an inverse
Laplace transform, which is then approximated by quadrature. Developed
first for parabolic problems by Sheen, Sloan and Thomée [11], such an ap-
proach is also effective for some evolution equations with memory [5]. These
and related papers have discussed thoroughly the time discretization, but
for the space discretization have considered only piecewise linear finite el-
ements on a bounded domain in R

n. Here, we propose instead a space
discretization using spherical radial basis functions (SRBFs), which are con-
venient for parabolic problems on Riemannian surfaces such as the unit
sphere Sn = { x ∈ Rn+1 : |x| = 1 }.

Denoting the Laplace transform of u with respect to t by

û(z) = L{u(t)} :=

∫∞

0

e−ztu(t)dt, (1.2)

we find that the solution of (1.1) formally satisfies

(zI+A)û(z) = g(z) := u0 + f̂(z), (1.3)

where I denotes the identity operator. The spectrum of A is a subset of the
half-line [0,∞), so if z /∈ (−∞, 0] and if the Laplace transform f̂(z) exists,
then

û(z) = (zI+A)−1g(z). (1.4)

When f̂(z) is analytic and bounded for ℜz > 0, the solution u(t) can be
recovered via the Laplace inversion formula

u(t) =
1

2πi

∫

Γ0

eztû(z)dz, for t > 0, (1.5)

where Γ0 is the contour ℜz = ω, for any ω > 0, with ℑz increasing.
Section 2 summarizes some technical results and assumptions needed for

our subsequent analysis. In Section 3 we describe the time discretization
and quote a known error estimate (Theorem 3.1), after which we introduce
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the space discretization using SRBFs. The heart of the paper is Section 4,
where we prove two error bounds for the space discretization by adapting
the analysis of Thomée [13] for a finite element approximation of the heat
equation on a domain in Rn. The first bound (Theorem 4.5) requires some
spatial regularity of u0 and f, and is proved by estimating a contour integral.
The second bound is proved by an energy argument, and assumes f ≡ 0 but
allows nonsmooth initial data u0 ∈ L2(S

n). Both bounds include a factor
that blows up as t → 0. Finally, Section 5 describes the results of some
numerical experiments.

2 Preliminaries

2.1 Resolvent estimates

We now view A as an abstract, densely defined, self-adjoint and positive-
semidefinite linear operator on a complex Hilbert space H. Assume further
that (I+A)−1 : H → H is compact, so A has a discrete spectrum, and order
the eigenvalues 0 6 λ1 6 λ2 6 · · · . Note that λj → ∞ as j → ∞ if H is
infinite dimensional.

For any ϕ > 0, the spectrum of A is a subset of a closed sector in the
complex plane C,

Σϕ := { z 6= 0 : | arg z| 6 ϕ } ∪ {0}, with 0 < ϕ < π/2.

In addition, there is a constant C > 0 such that A satisfies the resolvent
estimate ‖(zI−A)−1‖ 6 C|z|−1 for z ∈ C \ Σϕ, or, equivalently,

‖(zI+A)−1‖ 6 C|z|−1, for z ∈ Σπ−ϕ, (2.1)

where ‖ · ‖ denotes the operator norm induced by the norm in H.

2.2 Sobolev spaces on the unit sphere

Denote the inner product in H = L2(S
n) by

〈v,w〉 :=
∫

Sn

vwdS,

where dS is the surface measure on the unit sphere, and denote the mea-
sure of the whole sphere by ωn (so, for example, ω2 = 4π). Recall [6]

3



that a spherical harmonic is the restriction to Sn of a homogeneous polyno-
mial Y(x) in Rn+1 satisfying △Y(x) = 0, where △ is the Laplacian operator
in Rn+1. The space of spherical harmonics of degree ℓ, denoted by Hℓ, has
dimension N(n, ℓ) := dimHℓ, given by

N(n, 0) = 1 and N(n, ℓ) =
(2ℓ+ n − 1)(ℓ+ n− 2)!

ℓ!(n− 1)!
for ℓ > 1.

In the usual way, we construct an orthonormal basis { Yℓk : 1 6 k 6 N(n, ℓ) }

for Hℓ, so that 〈Yℓk, Yℓ ′k ′〉 = δℓℓ ′δkk ′.
The Laplace–Beltrami operator △∗ on S

n may be defined in terms of the
Laplacian △ on Rn+1 by

△∗v = △v̌|Sn where v̌(x) = v(x/|x|). (2.2)

The spherical harmonics are eigenfunctions of △∗, satisfying

−△∗Yℓk = λℓYℓk where λℓ = ℓ(ℓ+ n − 1),

for 1 6 k 6 N(n, ℓ) and ℓ ∈ {0, 1, 2, . . .}. Every function v ∈ L2(Sn) can be
expanded in a generalized Fourier series

v =

∞∑

ℓ=0

N(n,ℓ)∑

k=1

v̂ℓkYℓk where v̂ℓk = 〈v, Yℓk〉,

and for σ ∈ R we can characterize the Sobolev space on the unit sphere,
Hσ = Hσ(Sn), in terms of the generalized Fourier coefficients: v ∈ Hσ if and
only if the norm defined by

‖v‖2Hσ :=
∥∥(I−△∗)σ/2v

∥∥2
=

∞∑

ℓ=0

(1+ λℓ)
σ

N(n,ℓ)∑

k=1

|v̂ℓk|
2 (2.3)

is finite. We also define the subspace of functions with mean zero,

Hσ
0 = Hσ

0 (S
n) :=

{
v ∈ Hσ(Sn) :

∫

Sn

v dS = 0
}
;

since Y01 = 1/
√
ωn is constant, we see that v ∈ Hσ belongs to Hσ

0 if and
only if v̂01 = 0.
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2.3 Positive definite kernels on the unit sphere

A continuous functionΦ : Sn×S
n → R is called a positive definite kernel [10,

17] on Sn if it satisfies the following two conditions:

(i) Φ(x,y) = Φ(y, x) for all x, y ∈ Sn;

(ii) for any set of distinct scattered points {y1,y2, . . . ,yK} ⊂ Sn, the sym-
metric K× K matrix [Φ(yi,yj)] is positive semi-definite.

We call Φ strictly positive definite if the matrix is strictly positive definite.
We will work with a kernel Φ defined in terms of a univariate function φ :

[−1, 1] → R by

Φ(x,y) = φ(x · y) for all x, y ∈ S
n, (2.4)

where x · y denotes the Euclidean inner product of x and y. Following
Müller [6], let Pℓ(t) denote the Legendre polynomial of degree ℓ for R

n+1,
and expand φ(t) in a Fourier–Legendre series

φ(t) =
1

ωn

∞∑

ℓ=0

N(n, ℓ)aℓPℓ(t). (2.5)

Due to the addition formula for spherical harmonics [6, Page 10],

N(n,ℓ)∑

k=1

Yℓk(x)Yℓk(y) =
N(n, ℓ)

ωn

Pℓ(x · y),

the kernel Φ can be represented as

Φ(x,y) =

∞∑

ℓ=0

N(n,ℓ)∑

k=1

aℓYℓk(x)Yℓk(y), (2.6)

and since Pℓ(1) = 1 we find that

‖Φ(x, ·)‖2Hτ =
1

ωn

∞∑

ℓ=0

(1+ λℓ)
τa2

ℓN(n, ℓ), for all x ∈ S
n. (2.7)

Chen et al. [2] proved that the kernel Φ is strictly positive definite if and
only if aℓ > 0 for all ℓ > 0 and aℓ > 0 for infinitely many even values of ℓ
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and infinitely many odd values of ℓ; see also Schoenberg [10] and Xu and
Cheney [17]. Here, we assume there is a τ > n/2 and positive constants
c and C such that

c(1+ λℓ)
−τ

6 aℓ 6 C(1+ λℓ)
−τ, for all ℓ > 0. (2.8)

Hence, Φ is strictly positive definite and, since N(n, ℓ) = O(ℓn−1) as ℓ→ ∞,
the sum (2.7) is finite so, for each fixed x ∈ Sn, the function y 7→ Φ(x,y)

belongs to Hτ(Sn). Moreover, this function is continuous by the Sobolev
imbedding theorem.

3 The discrete problem

Choose an angle β ∈ (π/2,π − ϕ) and let Γ be any curve in the interior
of the sector Σβ which is homotopic to the line Γ0 appearing in the Laplace
inversion formula (1.5). Deforming the contour of integration in (1.5), we
may then write

u(t) =
1

2πi

∫

Γ

eztû(z)dz, (3.1)

assuming that f̂(z) is analytic on and to the right of Γ .
By taking f ≡ 0 in (1.1), so that g(z) = u0 in (1.3), we see that the solu-

tion operator for the homogeneous problem has the integral representation

E(t)u0 =
1

2πi

∫

Γ

eztÊ(z)u0dz, where Ê(z) = (zI+A)−1. (3.2)

For the inhomogeneous case, the inverse Laplace transform of Ê(z)f̂(z) is the
convolution of E(t) and f(t), giving the Duhamel formula

u(t) = E(t)u0 +

∫ t

0

E(t− s)f(s)ds. (3.3)

A standard energy argument shows that ‖E(t)u0‖ 6 ‖u0‖ for all t > 0, so
the continuous problem (1.1) is stable in the sense that

‖u(t)‖ 6 ‖u0‖+
∫ t

0

‖f(s)‖ds, for t > 0.
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For our numerical methods we choose Γ to be the curve with parametric
representation

z(ξ) := ω+ λ
(
1− sin(δ− iξ)

)
, for ξ ∈ R, (3.4)

where the constants ω, λ and δ satisfy

ω > 0, λ > 0 and 0 < δ < β− π/2. (3.5)

Writing z = x+ iy, we find that Γ is the left branch of the hyperbola

(
x−ω− λ

λ sin δ

)2

−

(
y

λ cos δ

)2

= 1, (3.6)

which cuts the real axis at the point z = ω+λ(1− sinδ) and has asymptotes
y = ±(x −ω− λ) cot δ. Thus, the conditions (3.5) ensure that Γ lies in the
sector Σω

β := ω+ Σβ ⊂ Σβ, and crosses into the left half-plane.
We use (3.4) in (3.1) to represent u(t) as an integral with respect to ξ,

u(t) =
1

2πi

∫∞

−∞

ez(ξ)tw(z(ξ))z ′(ξ)dξ. (3.7)

Since |ez(ξ)t| = eℜz(ξ)t = eωteλt(1−sinδ coshξ), the integrand exhibits a double
exponential decay as |ξ| → ∞, for any fixed t > 0.

3.1 Time discretization

We choose a quadrature step k, put

ξj := jk, zj := z(ξj), z ′j := z
′(ξj),

and apply an equal weight rule to the integral (3.7) to obtain an approximate
solution

UN(t) :=
k

2πi

N∑

j=−N

ezjtû(zj)z
′
j. (3.8)

In view of (3.1), to compute UN(t) we must solve the 2N+ 1 equations

(zjI +A)û(zj) = g(zj), for |j| 6 N. (3.9)

These equations are independent and hence may be solved in parallel. Notice
that the û(zj) determine the approximate solution (3.8) for all t > 0 and that
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the numerical solution (3.8) depends on the choice of the curve Γ , even though
the representation (3.1) does not. However, we will see that a given Γ and
k yield an accurate approximation UN(t) ≈ u(t) only for t at a particular
time scale.

The parametric representation (3.4) of Γ extends to a conformal mapping

z = Ψ(ζ) = ω+ λ
(
1− sin(δ− iζ)

)
, (3.10)

which, for r > 0, transforms the strip Yr := {ζ : |ℑζ| 6 r} onto the set Sr :=

{Ψ(ζ) : ζ ∈ Yr} ⊃ Γ . In fact, Ψ maps the line ℑζ = η to the left branch of a
hyperbola given by (3.6) with δ replaced by δ + η. Thus, Sr is bounded by
the left branches of the hyperbolas corresponding to ℑζ = r and ℑζ = −r.
To ensure that Sr ⊂ Σω

β and that ℜz → −∞ if |z| → ∞ with z ∈ Sr, we
require 0 < δ− r < δ+ r < β − π/2, or equivalently that

0 < r < min(δ,β− π/2− δ). (3.11)

We introduce the notation

‖g‖X,Z := sup
z∈Z

‖g(z)‖X, for X ⊆ H and Z ⊆ C,

abbreviated by ‖g‖Z if X = H, and put lg(s) = max
(
1, log(1/s)

)
.

Theorem 3.1. Let u be the solution of (1.1), with f̂ bounded and analytic

in Σω
β , and fix a time scale T > 0. Let 0 < θ < 1 and define b > 0

by cosh b = 4/(θ sin δ), let r satisfy (3.11) so that Γ ⊂ Sr ⊂ Σω
β , and put

λ = πrθN/(bT). Then the approximate solution UN(t) defined by (3.8)
with k = b/N 6 2πr log 2 satisfies

‖UN(t) − u(t)‖ 6 Ceωt lg(ρrN)e−µN
(
‖u0‖+ ‖f̂‖Σω

β

)
, for T/2 6 t 6 2T ,

where µ = 2πr(1− θ)/b, ρr = πrθ sin(δ− r)/(2b) and C = Cδ,r,β.

Proof. See McLean and Thomée [5, Theorem 3.1].

3.2 Galerkin approximation by SRBFs

Given a suitable set of points X = {x1, x2, . . . , xK} ⊆ Sn and a strictly positive
definite kernelΦ(x,y), we define the spherical radial basis functionsΦp(x) :=
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Φ(xp, x) for 1 6 p 6 K. Recall that our assumption (2.8) ensures Φp ∈ Hτ

with τ > n/2 > 1; thus

Sh := span{Φp : 1 6 p 6 K } ⊆ H1.

The uniformity of the set X is measured by its mesh norm hX and its sepa-
ration radius qX, defined by

h = hX := sup
y∈Sn

min
x∈X

cos−1(y · x) and q = qX :=
1

2
min
x 6=y
x,y∈X

cos−1(y · x).

In words, hX is the maximum geodesic distance from a point on Sn to the
nearest point of X. For our convergence analysis, we require that the family
of point sets {X} has a bounded mesh ratio:

hX 6 CqX. (3.12)

Associated with the second-order, partial differential differential opera-
tor A is a bounded sesquilinear form a : H1 ×H1 → C defined by

a(u, v) = 〈Au, v〉 for u, v ∈ H1.

For example, if A = −△∗ then a(u, v) = 〈gradu, grad v〉 where grad is the
surface gradient. The mild solution u : [0,∞) → L2(S

n) of (1.1) satisfies

〈∂tu, v〉+ a(u, v) = 〈f(t), v〉 for t > 0 and all v ∈ H1,

with u(0) = u0, and we define a semidiscrete solution uh : [0,∞) → Sh
of (1.1) by

〈∂tuh,χ〉+ a(uh,χ) = 〈f(t),χ〉 for all χ ∈ Sh, (3.13)

with uh(0) = u0h ≈ u0 for a suitable u0h ∈ Sh.
The Laplace transform of u at zj is the weak solution û(zj) ∈ H1 of (3.9),

that is,

zj〈û(zj), v〉+ a
(
û(zj), v

)
= 〈g(zj), v〉 for all v ∈ H1,

and the Laplace transform of the semidiscrete solution, ûh(zj) ∈ Sh, satisfies

zj〈ûh(zj),χ〉+ a
(
ûh(zj),χ

)
= 〈gh(zj),χ〉 for all χ ∈ Sh, (3.14)
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where gh(z) = u0h + Phf̂(z) ∈ Sh and Ph denotes the orthogonal projector
from L2(S

n) onto Sh. Thus, we can view ûh(zj) as a Galerkin approximation

to û(zj). Concretely, to compute ûh(z) =
∑K

p=1 Ûp(z)Φp we form the K×K
matrices B and S, with entries

Bpq = 〈Φp,Φq〉 and Spq = a(Φp,Φq), (3.15)

form the load vector G(z) ∈ CK with components Gp(z) = 〈gh(z),Φp〉, and
then solve the K× K complex linear system

(zjB + S)Û(zj) = G(zj), (3.16)

to obtain the solution vector Û(z) ∈ C
K with components Ûp(z). In contrast

to finite element mass and stiffness matrices, B and S are not sparse because
the SRBFs have large supports.

3.3 Fully-discrete solution

Combining the time and space discretizations, we arrive at a fully-discrete
solution

UN,h(t) =
k

2πi

N∑

j=−N

ezjtûh(zj)z
′
j, (3.17)

whose evaluation requires that we solve the linear system (3.16) at each of
the 2N+1 quadrature points zj. (In practice, we also use quadratures for the
integrations over Sn that are needed to compute Bpq, Spq and Gp(z), but
for our analysis we assume that these quantities are computed exactly.) The
elliptic differential operator A induces a discrete operator Ah : Sh → Sh,
defined by

〈Ahψ,χ〉 = a(ψ,χ), for ψ, χ ∈ Sh, (3.18)

and the Galerkin equations (3.14) are equivalent to

(zjI+Ah)ûh(zj) = gh(zj). (3.19)

If we choose u0h = Phu0 then gh(zj) = Phg(zj) and by taking H = Sh
equipped with the L2-norm, we can apply Theorem 3.1 to Ah and deduce
that

‖UN,h(t)−uh(t)‖ 6 Ceωt lg(ρrN)e−µN
(
‖u0‖+‖f̂‖Σω

β

)
, for T/2 6 t 6 2T .

(3.20)
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Since the triangle inequality gives

‖UN,h(t) − u(t)‖ 6 ‖UN,h(t) − uh(t)‖+ ‖uh(t) − u(t)‖, (3.21)

to estimate the error in UN,h it now suffices to estimate the error in the
semidiscrete approximation uh(t).

4 Error analysis of the spatial discretization

We assume now that A = −△∗. Since λ0 = 0 but λℓ > λ1 = n for all ℓ > 1,
we see that 1+λℓ 6 (1+n−1)λℓ for all ℓ > 1. Hence, the sesquilinear form a

is coercive on H1
0, that is,

a(v, v) >
‖v‖2H1

1+ n−1
if v ∈ H1 and v̂10 =

∫

Sn

v dS = 0. (4.1)

Our analysis follows Thomée [13, Chapter 3], with △∗ in place of the Lapla-
cian (with homogeneous Dirichlet boundary conditions). Some technical
modifications are needed, however, because △∗ has a zero eigenvalue.

4.1 Approximation by SRBFs

We will use the following estimate for the best approximation by SRBFs.

Theorem 4.1. Assume that the Fourier–Legendre coefficients in the expan-

sion (2.5) satisfy (2.8) with τ > n/2, so that Sh ⊆ Hτ(Sn). For any real

q and ν satisfying q 6 ν 6 2τ and q 6 τ, if v ∈ Hν then there exists χ ∈ Sh
such that

‖χ − v‖Hq 6 Chν−q
X ‖v‖Hν .

Proof. See Tran et al. [15, Theorem 3.2] or [14, Theorem 3.7 and Remark 5.1],
and note our assumption (3.12).

In the special case q = 0, the estimate must hold for χ = Phv, giving the
following result.

Corollary 4.2. The L2-projection of v onto Sh has the approximation prop-

erty

‖v − Phv‖ 6 Chν
X‖v‖Hν for 0 6 ν 6 2τ.
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For our error analysis, we also use the Ritz projector Rh : H1(Sn) → Sh
determined by the sesquilinear form

a1(u, v) = a(u, v) + 〈u, v〉 for u, v ∈ H1.

We see from (4.1) that a1 is coercive on H1; in fact, a1(v, v) = ‖v‖2H1. Thus,
Rhv ∈ Sh is well-defined by

a1(Rhv,χ) = a1(v,χ) for all χ ∈ Sh, (4.2)

and the following error estimates hold using standard arguments.

Theorem 4.3. If v ∈ Hν and 1 6 ν 6 2τ, then

‖v− Rhv‖H1 = inf
χ∈Sh

‖v− χ‖H1 6 Chν−1
X ‖v‖Hν

and

‖v− Rhv‖ 6 Chν
X‖v‖Hν .

Proof. The definition (4.2) immediately implies the orthogonality property

a1(v − Rhv,χ) = 0 for all χ ∈ Sh, (4.3)

so, because a1(v, v) = ‖v‖2H1 ,

‖v− Rhv‖2H1 = a1(v− Rhv, v − Rhv) = a1(v− Rhv, v − χ)

6 ‖v− Rhv‖H1‖v− χ‖H1 ,

and thus ‖v−Rhv‖H1 6 ‖v−χ‖H1 for all χ ∈ Sh. The first claim now follows
by Theorem 4.1.

A duality argument [8] yields the second claim. Given v there is a
unique u ∈ H1 satisfying (I + A)u = v − Rhv, or equivalently (since A
is self-adjoint)

a1(w,u) = 〈w, v− Rhv〉 for all w ∈ H1,

Taking w = v − Rhv and applying (4.3), we have for every χ ∈ Sh,

〈v − Rhv, v− Rhv〉 = a1(v − Rhv,u) = a1(v − Rhv,u− χ)

6 ‖v − Rhv‖H1‖u− χ‖H1 6 Chν−1‖v‖Hν‖u− χ‖H1 .

By Theorem 4.1 with q = 1 and ν = 2 6 2τ, there is a χ ∈ Sh such that
‖u− χ‖H1 6 Ch‖u‖H2, so

‖v− Rhv‖2 6 Chν‖v‖Hν‖u‖H2,

and the result follows because ‖u‖H2 = ‖(I+A)u‖ = ‖v − Rhv‖.
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4.2 Contour integral estimate

We see from (1.3) and (3.19) that, assuming u0h = Phu0,

û(z) = (zI+A)−1g(z) and ûh(z) = (zI+Ah)
−1Phg(z),

so

ûh(z) − û(z) = Gh(z)g(z) where Gh(z) := (zI +Ah)
−1Ph − (zI+A)−1.

Deforming the integration contour in the Laplace inversion formula to Γ =

∂Σω
β , we can represent the error in the semidiscrete solution as follows:

uh(t) − u(t) =
1

2πi

∫

Γ

eztGh(z)g(z)dz. (4.4)

The next lemma allows us to estimate this integral.

Lemma 4.4. If 0 6 ν 6 2τ, then

‖Gh(z)v‖ 6 Chν
X‖v‖Hν−2, for z ∈ Σω

β and v ∈ Hν−2.

Proof. Recall that Ê(z) := (zI + A)−1, and let Êh(z) := (zI + Ah)
−1. We

split Gh(z) into two terms,

Gh(z) = (Ph − I)Ê(z) +
[
Êh(z)Ph − PhÊ(z)

]
. (4.5)

Since AÊ(z) = (zI + A − zI)(zI + A)−1 = I − z(zI + A)−1, the resolvent
estimate (2.1) shows that

‖AÊ(z)v‖ 6 C‖v‖ for z ∈ Σω
β .

Moreover, since (I+A)Ê(z) = I+(1− z)Ê(z) and since (I+A)1/2 commutes

with (I + A)Ê(z), we have ‖(I + A)Ê(z)v‖Hq 6 C|1 − z||z|−1‖v‖Hq for any
q ∈ R, and thus by Corollary 4.2,

‖(Ph− I)Ê(z)v‖ 6 Chν‖Ê(z)v‖Hν = Chν‖(I+A)Ê(z)v‖Hν−2 6 Chν‖v‖Hν−2,

noting that |1− z||z|−1 6 Cω,β for z ∈ Σω
β .

To estimate the second term in (4.5), we write

Êh(z)Ph − PhÊ(z) = Êh(z)Ph(zI+A)Ê(z) − Êh(z)(zI+Ah)PhÊ(z)

= Êh(z)[PhA−AhPh]Ê(z).
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For all u, w ∈ H1,

〈Ph(I+A)u,w〉 = 〈(I+A)u,Phw〉 = a1(u,Phw) = a1(Rhu,Phw)

= 〈(I+Ah)Rhu,Phw〉 = 〈(I+Ah)Rhu,w〉,

so Ph(I+A) = (I+Ah)Rh and thus

Êh(z)Ph − PhÊ(z) = Êh(z)(I+Ah)Ph(Rh − I)Ê(z).

Since Êh(z)(I + Ah) = I + (1 − z)Êh(z) the resolvent estimate (2.1) and
Theorem 4.3 imply that

∥∥[Êh(z)Ph − PhÊ(z)
]
v
∥∥ 6

(
1+ C|1− z||z|−1

)
‖(Rh − I)Ê(z)v‖

6 Chν‖Ê(z)v‖Hν = Chν‖(I+A)Ê(z)v‖Hν−2 6 Chν‖v‖Hν−2,

noting again that |1− z||z|−1 6 Cω,β for z ∈ Σω
β .

Theorem 4.5. Let u be the solution of (1.1) and let uh be the semidiscrete

approximation given by (3.13). If 0 6 ν 6 2τ, then

‖uh(t) − u(t)‖ 6 Chν
Xt

−1eωt
(
‖u0‖Hν−2 + ‖f̂‖Hν−2,∂Σω

β

)
, for t > 0.

Proof. Let Γ± be the half-line z = ω + se±iβ for 0 < s < ∞, so that
Γ = Γ+ − Γ−. Since ℜz = ω − cs where c = − cosβ > 0, by applying
Lemma 4.4 we have

∥∥∥∥
∫

Γ±

eztGh(z)g(z)dz

∥∥∥∥ 6

∫∞

0

e(ω−cs)t‖Gh(z)g(z)‖ds

6 Ceωthν‖g‖Hν−2,Γ

∫∞

0

e−cst ds,

and the error bound follows at once from the integral representation (4.4).

Combining Theorems 3.1 and 4.5, we conclude that provided u0 and f
have the appropriate spatial regularity,

‖UN,h(t) − u(t)‖ = O
(
lg(ρrN)e−µN + h2τ

X

)
for T/2 6 t 6 2T , (4.6)

where the constant includes a factor (1+T−1)e2ωT . Moreover, in the next sec-
tion (Theorem 4.8, Part 2) we will see that when f ≡ 0 the error bound (4.6)
remains valid even if the initial data is not regular.
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4.3 Nonsmooth initial data

Consider the case f ≡ 0, that is,

∂tu−△∗u = 0 on S
n for t > 0, with u = u0 when t = 0, (4.7)

and the corresponding semidiscrete problem in which uh : [0,∞) → Sh
satisfies

∂tuh −△∗
huh = 0 on S

n for t > 0, with u = u0h when t = 0, (4.8)

where △∗
h : Sh → Sh is defined by

〈−△∗
hψ,χ〉 = a(ψ,χ) = 〈gradψ, gradχ〉 for all ψ, χ ∈ Sh;

compare with (3.18). In contrast to the forgoing analysis, we now permit the
initial data u0 to be an arbitrary function in L2(S

n).
By separating variables, we obtain an expansion in spherical harmonics,

u(t) = E(t)u0 =

∞∑

ℓ=0

N(n,ℓ)∑

k=1

e−λℓt(̂u0)ℓ,kYℓk, (4.9)

that implies the smoothing property in the next theorem.

Theorem 4.6. Let 0 6 q 6 ν and m ∈ {0, 1, 2, . . .}. If u0 ∈ Hs then

E(t)u0 ∈ Hν and

‖∂mt E(t)v‖Hν 6 CT t
−(ν−q)/2−m‖v‖Hq, for 0 < t 6 T .

Proof. Adapting the argument of Thomée [13, Lemma 3.2], we see from (4.9)
that the generalized Fourier coefficients of ∂mt E(t)u0 are

〈∂mt E(t)u0, Yℓk〉 = (−λℓ)
me−λℓt(̂u0)ℓk,

so by (2.3),

‖∂mt E(t)u0‖2Hν =

∞∑

ℓ=0

(1+ λℓ)
νλ2mℓ e−2λℓt

N(ℓ,n)∑

k=1

∣∣(̂u0)ℓk
∣∣2.

The result follows because, with s = λℓt,

tν−q+2m(1+ λℓ)
ν−qλ2mℓ e−2λℓt 6 (T + s)ν−qs2me−2s

6 CT for 0 6 t 6 T .
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Let T : L2 → H2 be the solution operator for the elliptic problem

u−△∗u = f on S
n,

that is, Tf := u. Thus,

a1(Tf, v) = 〈f, v〉 for all v ∈ H1,

and we can define Th : L2 → Sh by

a1(Thf,χ) = 〈f,χ〉 for all χ ∈ Sh.

It follows that Thf = Rhu = RhTf and Rh = Th(I−△∗). Since

〈f,Thw〉 = a1(Thf,Thw) for all f, v ∈ L2,

we see that Th is self-adjoint and (taking w = f) strictly positive-definite.
Rewriting the homogeneous equation (4.7) as ∂tu + (I −△∗)u = u, we

see that
T∂tu+ u = Tu for t > 0, with u(0) = u0,

and similarly the corresponding semidiscrete problem (4.8) is equivalent to

Th∂tuh + uh = Thuh for t > 0, with uh(0) = u0h.

Thus, the error e = uh − u satisfies

Th∂te+ e = The + ρ where ρ = (Rh − I)u. (4.10)

Lemma 4.7. With the notation above, if u0h = Phu0 then

‖e(t)‖2 6 CT

(
‖ρ(t)‖2 + 1

t

∫ t

0

(
s2‖∂sρ‖2 + ‖ρ(s)‖2

)
ds

)
for 0 < t 6 T .

Proof. We modify the argument of Thomée [13, Lemma 3.3]. Taking the
inner product of (4.10) with ∂te gives

〈Th∂te, ∂te〉+ 〈e, ∂te〉 = 〈The+ ρ, ∂te〉,

and since 〈Th∂te, ∂te〉 > 0 and 〈e, ∂te〉 = (1/2)∂t‖e‖2, it follows that

∂t‖e‖2 6 2〈The+ ρ, ∂te〉,
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implying that

∂t
(
t‖e‖2

)
= ‖e‖2 + t∂t‖e‖2 6 ‖e‖2 + 2t〈The+ ρ, ∂te〉.

Since
2t〈The, ∂te〉 = t∂t〈The, e〉 6 ∂t

(
t〈The, e〉

)

and
t〈ρ, ∂te〉 = ∂t

(
t〈ρ, e〉

)
− t〈∂tρ, e〉− 〈ρ, e〉,

we have

∂t
(
t‖e‖2

)
6 ‖e‖2 + ∂t

(
t〈The + 2ρ, e〉

)
− 2t〈∂tρ, e〉− 2〈ρ, e〉,

so integration gives

t‖e‖2 6
∫ t

0

‖e(s)‖2 ds + t〈The+ 2ρ, e〉+ 2

∫t

0

∣∣〈s∂sρ+ ρ(s), e(s)〉
∣∣ds,

and using 2〈ρ, e〉 6 4‖ρ‖2 + (1/2)‖e‖2,

t‖e‖2 6 2t〈The, e〉+8t‖ρ‖2+2

∫ t

0

(
s2‖∂sρ‖2+‖ρ(s)‖2+2‖e(s)‖2

)
ds. (4.11)

To deal with the terms in e on the right-hand side, take the inner product
of (4.10) with e, obtaining

(1/2)∂t〈The, e〉+ ‖e‖2 = 〈The+ ρ, e〉,

or equivalently, ∂t〈The, e〉− 2〈The, e〉+ 2‖e‖2 = 2〈ρ, e〉. After multiplying by
the integrating factor e−2t,

∂t
(
e−2t〈The, e〉

)
+ 2e−2t‖e‖2 = 2e−2t〈ρ, e〉, (4.12)

and the choice u0h = Phu0 means that The(0) = 0 because

〈The(0),w〉 = 〈Th(Ph − I)u0,w〉 = 〈(Ph − I)u0,Thw〉 = 0

for every w ∈ L2. Thus,

e−2t〈The, e〉+ 2

∫ t

0

e−2s‖e(s)‖2 ds = 2

∫ t

0

e−2s〈ρ(s), e(s)〉ds

6

∫ t

0

e−2s
(
‖ρ(s)‖2 + ‖e(s)‖2

)
ds,
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implying that

〈The, e〉 +
∫ t

0

e2(t−s)‖e(s)‖2 ds 6
∫ t

0

e2(t−s)‖ρ(s)‖2 ds.

Hence,

2t〈The, e〉+ 4

∫ t

0

‖e(s)‖2 ds 6 2max(t, 2)

∫t

0

e2(t−s)‖ρ(s)‖2 ds,

and inserting this bound in (4.11) gives

‖e(t)‖2 6 8‖ρ(t)‖2 + 2

t

∫ t

0

s2‖∂sρ‖2 ds + 3max(1, 2t−1)

∫ t

0

e2(t−s)‖ρ(s)‖2 ds.

Theorem 4.8. Let u be the solution of the homogeneous problem (4.7)
with initial data u0, let uh be the semidiscrete approximation given by (4.8)
with u0h = Phu0. For 1 6 ν 6 2τ:

1. if u0 ∈ Hν(Sn), then

‖uh(t) − u(t)‖ 6 CTh
ν
X‖u0‖Hν for 0 6 t 6 T ;

2. if u0 ∈ L2(Sn) and 2τ is an integer, then

‖uh(t) − u(t)‖ 6 CTt
−ν/2hν

X‖u0‖ for 0 < t 6 T .

Proof. We see at once from Lemma 4.7 that

‖e(t)‖ 6 Ct sup
06s6t

(
‖ρ(s)‖+ s‖∂sρ‖

)
,

and if u0 ∈ Hν then, by Theorems 4.3 and 4.6,

‖ρ(s)‖+ s‖∂sρ(s)‖ 6 Chν
(
‖u(s)‖Hν + s‖∂su(s)‖Hν

)
6 Chν‖u0‖Hν,

which proves Part 1.
Assume now that u0 ∈ L2. By Theorems 4.3 and 4.6,

‖ρ(t)‖ = ‖u(t) − Rhu(t)‖ 6 Ch‖u(t)‖H1 6 Cht−1/2‖u0‖,
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and the expansion (4.9) in spherical harmonics implies that

∫ t

0

‖ρ(s)‖2 ds 6 Ch2

∫ t

0

‖u(s)‖2H1 ds

= Ch2

∞∑

ℓ=0

(1+ λℓ)

N(n,ℓ)∑

k=1

∣∣(̂u0)ℓk
∣∣2
∫ t

0

e−2λℓs ds.

If ℓ > 1 then λℓ > λ1 = n so the substitution s = σ/λℓ gives

(1+ λℓ)

∫t

0

e−2λℓs ds =
1+ λℓ

λℓ

∫λℓt

0

e−2σ dσ 6 (1+ n−1)

∫∞

0

e−2σ dσ 6 1,

and thus

∫ t

0

‖ρ(s)‖2 ds 6 Ch2

(
t|(̂u0)01|

2 +

∞∑

ℓ=1

N(n,ℓ)∑

k=1

|(̂u0)ℓk|
2

)
6 Cth

2‖u0‖2.

Similarly,

∫ t

0

s2‖∂sρ‖2 ds 6 Ch2

∫ t

0

s2‖∂su(s)‖2H1 ds

= Ch2

∞∑

ℓ=1

(1+ λℓ)λ
2
ℓ

∫ t

0

s2e−2λℓs ds

N(n,ℓ)∑

k=1

|(̂u0)ℓk|
2

and for all ℓ > 1,

(1+ λℓ)λ
2
ℓ

∫ t

0

s2e−2λℓs ds =
1+ λℓ

λℓ

∫λℓt

0

σ2e−2σ dσ 6 C,

so
∫t

0
s2‖∂sρ‖2 ds 6 Ch2‖u0‖2. Applying Lemma 4.7, Part 2 follows in the

special case ν = 1.
To deal with case ν = 2τ, we introduce the solution operator for the

semidiscrete problem, Eh(t)u0 := uh(t), and use the semigroup property:
E(s + t) = E(s)E(t) and Eh(s + t) = Eh(s)Eh(t) for all s and t. The error
operator Fh(t) = Eh(t) − E(t) satisfies the identity

Fh(t) − Fh(t/2)
2 = Eh(t/2)

2 − E(t/2)2 −
[
Eh(t/2) − E(t/2)

]2

= Fh(t/2)E(t/2) + E(t/2)Fh(t/2),
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and by Part 1 and Theorem 4.6,

‖Fh(t/2)E(t/2)u0‖ 6 Chν‖E(t/2)u0‖Hν 6 Chν(t/2)−ν/2‖u0‖.

Since E(t/2) and Fh(t/2) are self-adjoint in L2, the same estimate holds for
the reversed product E(t/2)Fh(t/2), and therefore

‖Fh(t)u0‖ 6 Ct−ν/2hν‖u0‖+ Ct−1/2h‖Fh(t/2)u0‖. (4.13)

The stability estimates ‖E(t)u0‖ 6 ‖u0‖ and ‖Eh(t)u0‖ 6 C‖u0‖ mean that
it suffices to consider the case t−1/2h 6 1, when repeated application of the
estimate (4.13) gives

‖Fh(t)u0‖ 6 Ct−ν/2hν‖u0‖+ C(t−1/2h)j‖Fh(t/2
j)u0‖

for j = 0, 1, 2, . . . , ν = 2τ, and thus ‖Fh(t)u0‖ 6 Ct−τh2τ‖u0‖. For the
remaining case 1 < ν < 2τ, let θ = ν/(2τ) and observe that

‖Fh(t)u0‖ = ‖Fh(t)u0‖1−θ‖Fh(t)u0‖θ

6 C‖u0‖1−θ
[
(t−1/2h)2τ‖u0‖

]θ
= Ct−ν/2hν‖u0‖.

5 Numerical experiments

We present the results of some numerical experiments with two model prob-
lems. In both cases, the integration contour (3.4) and quadrature step k are
chosen as in Theorem 3.1, with

T = 1, ω = 1, θ = 1/2, δ = π/4, r = π/4;

Figure 1 shows the case N = 20. Our conference paper [3] presents some
earlier numerical examples.

5.1 A scalar problem

Consider the ODE u ′ + u = f(t) for t > 0, with u(0) = 1. We choose the
source term f so that the exact solution is

u(t) = 1+
4t3/2

3
√
π
,
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Figure 1: The integration contour Γ and quadrature points zj when N = 20.

which has the Laplace transform û(z) = z−1 + z−5/2. In this case, no spatial
discretization is required, and the numerical solution UN is given by (3.8).
Table 1 shows the error at t = 2 for different values of N. The rapid conver-
gence is consistent with the error bound of Theorem 3.1, but as N increases
the quadrature eventually becomes unstable.

N 10 20 30 35 40

|UN(2) − u(2)| 1.71E-04 6.44E-08 3.75E-11 7.52E-13 1.16E-12

Table 1: Errors for a scalar problem.

5.2 Heat equation on the unit sphere

Fix 0 < a < 1 and define u0 : S
2 → C for x = (x1, x2, x3) ∈ S2 by

u0(x) =

{
1, if a 6 x3 6 1,

0, if −1 6 x3 < a.
(5.1)
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m ρm(r) Smoothness τ

2 (1− r)6+(3+ 18r+ 35r2) C4 7/2

3 (1− r)8+(1+ 8r+ 25r2 + 32r3) C6 9/2

Table 2: The compactly supported SRBFs of Wendland [16].

This axially symmetric function has the Fourier–Legendre expansion

u0(x) =

∞∑

ℓ=0

(̂u0)ℓPℓ(x3), where (̂u0)ℓ =
2ℓ+ 1

2

∫ 1

a

Pℓ(t)dt.

The zeroth coefficient is (̂u0)0 = (1−a)/2, and the remaining coefficients are
expressible in terms of Jacobi polynomials [1, page 172], [7, Formula 18.9.15],

(̂u0)ℓ =
1− a2

2

2ℓ+ 1

ℓ(ℓ+ 1)
P ′
ℓ(a) = (1− a2)

(2ℓ+ 1)

4ℓ
P
(1,1)

ℓ−1 (a) for ℓ > 1;

consequently (̂u0)ℓ = O(ℓ
−1/2) as ℓ→ ∞ [12, Theorem 7.32.2].

The PDE ut − △∗u = 0 with initial data (5.1) describes heat diffu-
sion from a spherical cap about the north pole onto the surface of the unit
sphere S2. By separating variables, we find that the exact solution is

u(x, t) =

∞∑

ℓ=0

e−ℓ(ℓ+1)t(̂u0)ℓPℓ(x3), for x = (x1, x2, x3) ∈ S
2.

For the spatial discretization, we use the compactly supported radial basis
functions introduced by Wendland [16], for which the strictly positive-definite
kernel has the form

Φ(x,y) = ρm
(√

2− 2x · y
)
.

In Table 2, we show ρ2 and ρ3 explicitly, along with the values of the expo-
nent τ in (2.8). We generate the set of points X using an equal area parti-
tioning algorithm of Saff and Kuijlaars [9]. To compute the inner products
arising in the matrix entries (3.15) and the load vector components Gp(z),
we use a quadrature approximation of the form

∫

S2

v dS ≈ 2π

R

R∑

q=1

R/2∑

p=1

wpv
(
sin θp cosφq, sin θp sinφq, cosθp

)
, (5.2)
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K 200 400 600 801 1001
hX 0.1796 0.1281 0.1039 0.0888 0.0794
R 200 200 200 500 500

N = 10 emax 5.67E-05 5.06E-06 1.67E-06 9.89E-07 8.24E-07
e2 4.63E-05 3.60E-06 1.10E-06 8.23E-07 7.81E-07

EOC(e2) 7.56E+00 5.66E+00 1.84E+00 4.66E-01
N = 20 emax 5.61E-05 4.47E-06 1.03E-06 3.26E-07 1.48E-07

e2 4.61E-05 3.53E-06 8.07E-07 2.64E-07 1.20E-07
EOC(e2) 7.60E+00 7.05E+00 7.11E+00 7.06E+00

N = 30 emax 5.61E-05 4.47E-06 1.03E-06 3.26E-07 1.48E-07
e2 4.61E-05 3.53E-06 8.07E-07 2.64E-07 1.20E-07

EOC(e2) 7.60E+00 7.05E+00 7.11E+00 7.06E+00
N = 35 emax 5.61E-05 4.47E-06 1.03E-06 3.26E-07 1.48E-07

e2 4.61E-05 3.53E-06 8.07E-07 2.64E-07 1.20E-07
EOC(e2) 7.60E+00 7.05E+00 7.11E+00 7.06E+00

Table 3: Numerical results with SRBFs constructed using ρ2.

for an even number R > 2, where
∫1

−1
f(z)dz ≈

∑R/2
p=1wpf(cosθp) is a Gauss–

Legendre rule and φq = 2πq/R. The error in the approximation (5.2) is zero
if the integrand v is a polynomial of total degree R− 1 or less.

In the numerical experiments, we let a = 0.9 in the definition (5.1) of u0.
Tables 3 and 4 show values of the quantities

emax = max
x∈Q

∣∣UN,h(x, 1) − u(x, 1)
∣∣

and

e2 =

(
∑

x∈Q

wx

∣∣UN,h(x, 1) − u(x, 1)
∣∣2
)1/2

,

for different choices of K and R. Here, Q is the set of quadrature points.
Since u0 ∈ L2(S2), we expect from Theorem 4.8 and the triangle inequal-

ity (3.21) that if N is sufficiently large then e2 = O(h2τ) — that is, O(h7)

using ρ2, and O(h9) using ρ3. The observed convergence rates are close to
these predicted values. We remark that when K = 1001, the condition num-
ber of the linear system (3.19) is around 107 using ρ2, and around 109 using
ρ3, so we cannot expect to reduce the error much below the smallest values
shown in the tables.

23



K 200 400 600 801 1001
hX 0.1796 0.1281 0.1039 0.0888 0.0794
R 200 200 200 500 500

N = 10 emax 6.86E-05 3.84E-06 1.17E-06 8.35E-07 7.79E-07
e2 3.93E-05 1.63E-06 7.85E-07 7.74E-07 7.71E-07

EOC(e2) 9.41E+00 3.50E+00 9.13E-02 3.37E-02
N = 20 emax 6.78E-05 3.11E-06 4.54E-07 8.98E-08 3.24E-08

e2 3.91E-05 1.45E-06 2.12E-07 4.83E-08 1.73E-08
EOC(e2) 9.75E+00 9.17E+00 9.41E+00 9.18E+00

N = 30 emax 6.78E-05 3.11E-06 4.54E-07 8.98E-08 3.24E-08
e2 3.91E-05 1.45E-06 2.12E-07 4.83E-08 1.73E-08

EOC(e2) 9.75E+00 9.17E+00 9.41E+00 9.18E+00
N = 35 emax 6.78E-05 3.11E-06 4.54E-07 8.98E-08 3.24E-08

e2 3.91E-05 1.45E-06 2.12E-07 4.83E-08 1.73E-08
EOC(e2) 9.75E+00 9.17E+00 9.41E+00 9.18E+00

Table 4: Numerical results with SRBFs constructed using ρ3.
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