Skip to main content
Log in

Minimum L accelerations in Riemannian manifolds

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Riemannian cubics are curves in Riemannian manifolds M that are critical points for the L 2 norm of covariant acceleration, and are already rather well studied as elementary curves for interpolation problems in engineering. In the present paper the L 2 norm is replaced by the L norm, which may be more appropriate for some applications. However it is more difficult to derive the analogue of the Euler-Lagrange equation for the L norm, requiring techniques from optimal control, and the resulting necessary conditions take a different form. These necessary conditions are examined when M is a sphere or a bi-invariant Lie group, and some examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athans, M., Falb, P.L.: Optimal Control and Introduction to the Theory and Its Applications. McGraw-Hill, New York (1966)

    Google Scholar 

  2. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint, Encyclopaedia of Math. Sciences, Control Theory and Optimization 11. Springer, Berlin Heidelberg New York (2004)

    Book  Google Scholar 

  3. Barbero-Linan, M., Munoz-Lecanda, M.C.: Geometric approach to Pontryagin’s maximum principle. Acta Appl. Math. 108, 429–485 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bloch, A.M., Baillieul, J., Crouch, P., Marsden, J.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathmatics. Springer (2003)

  5. Chang, D.E.: A simple proof of the Pontryagin maximum principle on manifolds. Automatica 47, 630–633 (2011)

    Article  MATH  Google Scholar 

  6. Clarke, F.H., Vinter, R.B.: Optimal multiprocesses. SIAMJ. Control. Optim. 27(5), 1072–1090 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Camarinha, M., Silva Leite, F., Crouch, P.: On the geometry of Riemannian cubic polynomials. Differ. Geom. Appl. 15(2), 107–135 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Crouch, P., Silva Leite, F.: The dynamic interpolation problem: on Riemannian manifolds, Lie groups, and symmetric spaces. J. Dynam. Control Systems 1(2), 177–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Boor, C.: A Practical Guide to Splines, Vol. 27. Springer (2001)

  10. de Boor, C.: A remark concerning perfect splines. Bull. Amer. Math. Soc. 80(4), 724–727 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fisher, S.D., Jerome, J.W.: The existence, characterization and essential uniqueness of solutions of L extremal problems. Trans. Amer. Math. Soc. 187, 391–404 (1974)

    MATH  MathSciNet  Google Scholar 

  12. Glaeser, G.: Prolongement Extremal De Fonctions Differentiables. Publ. Sect. Math. Faculté des Sciences Rennes. Rennes, France (1967)

  13. Giambo, R., Giannoni, F., Piccione, P.: An analytical theory for Riemannian cubic polynomials. IMA J. Math. Control. Inf. 19, 445–460 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaya, C.Y., Noakes, L.: Finding interpolating curves minimizing L acceleration in the Euclidean space via optimal control theory. SIAM J. Control. Optim. 1(51), 441–464 (2013)

    MathSciNet  Google Scholar 

  15. Gutiérrez, S., Rivas, J., Vega, L.: Formation of singularities and self-similar vortex motion under the localized induction approximation. Comm. Partial Diff. Equat. 28, 927–968 (2003)

    Article  MATH  Google Scholar 

  16. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambrdge Monographs on Mathematical Physics, Cambridge UP (1973)

  17. Micchelli, C.A.: Curves from variational principles. RAIRO Modélisation Mathématique et Analyse Numérique 26(1), 77–93 (1992)

    MATH  MathSciNet  Google Scholar 

  18. Milnor, J.: Morse theory. Ann. Math. Stud. 51, Princeton UP (1963)

  19. Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control. Inf. 6, 465–473 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Noakes, L.: Null cubics and Lie quadratics. J. Math. Phys. 44(3), 1436–1448 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Noakes, L.: Non-null Lie quadratics in E 3. J. Math. Phys. 45(11), 4334–4351 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Noakes, L.: Duality and Riemannian Cubics. Adv. Comput. Math. 25, 195–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Noakes, L.: Lax constraints in semisimple Lie groups. Quart. J. Math. 57, 527–538 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Noakes, L.: Asymptotics of null Lie quadratics in E 3. SIAMJ. Appl. Dyn. Syst. 7(2), 437–460 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Noakes, L., Popiel, T.: Geometry for robot path planning. Robotica 25, 691–701 (2007)

    Article  Google Scholar 

  26. Pauley, M.: Cubics, Curvature and Asymptotics. PhD Thesis, University of Western Australia (2011)

  27. Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, Wiley (1962). (translated by K.N. Trirogoff)

    MATH  Google Scholar 

  28. Popiel, T.: Geometrically-Defined Curves in Riemannian Manifolds. PhD Thesis, University of Western Australia (2007)

  29. Singer, D.A.: Lectures on elastic curves and rods. Curvature and variational modeling in physics and biophysics, AIP Conf. Proc. 1002, 3–32 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyle Noakes.

Additional information

Communicated by: Helmut Pottmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noakes, L. Minimum L accelerations in Riemannian manifolds. Adv Comput Math 40, 839–863 (2014). https://doi.org/10.1007/s10444-013-9329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9329-9

Keywords

Mathematics Subject Classifications (2010)

Navigation