Skip to main content
Log in

Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We introduce and analyze a sparse tensor product spectral Galerkin Boundary Element Method based on spherical harmonics for elliptic problems with random input data on a spheroid. Problems of this type appear in geophysical applications, in particular in data acquisition by satellites. Aiming at a deterministic computation of the k-th order statistical moments of the random solution, we establish convergence theorems showing that the sparse tensor product spectral Galerkin discretization is superior to the full tensor product spectral Galerkin discretization in the case of mixed regularity of the data’s k-th order moments, naturally implying mixed regularity of the k-th order moments of the random solution. We prove that analytic regularity of the data’s k-th order moments implies analytic regularity of the solution’s k-th order moments. We illustrate performance of the sparse and full tensor product discretization schemes on several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: National Bureau of Standards, Applied Mathematics Series, Washington DC (1970)

  2. Aubin, J.-P.: Applied functional analysis. Pure and Applied Mathematics (New York), 2nd edn.Wiley-Interscience, New York (2000). With exercises by Bernard Cornet and Jean-Michel Lasry. Translated from the French by Carole Labrousse

    Google Scholar 

  3. Chernov, A.: Sparse polynomial approximation in positive order sobolev spaces with bounded mixed derivatives and applications to elliptic problems with random loading. Appl. Numer. Math. 62(4), 360–377 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chernov, A., Schwab, C.: Sparse p-version BEM for first kind boundary integral equations with random loading. Appl. Numer. Math. 59(11), 2698–2712 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chernov, A., Schwab, C.: First order k-th moment finite element analysis of nonlinear operator equations with stochastic data. Accepted. Also available as HIM Preprint 2011b06 (2012)

  6. Claessens, S.J.: Solutions to Ellipsoidal Boundary Value Problems for Gravity Field Modelling. PhD. Thesis. Curtin University of Technology, Perth (2005). http://www.cage.curtin.edu.au/~will/StenThesis.pdf

  7. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costabel, M., Dauge, M., Nicaise, S.: Corner Singularities and Analytic Regularity for Linear Elliptic Systems (2004). http://perso.univ-rennes1.fr/monique.dauge/CV/PublisMD.html

  9. Dobrovol’skiĭ, N. M., Roshchenya, A.L.: On the number of points in a lattice in a hyperbolic cross. Mat. Zametki 63(3), 363–369 (1998)

    Article  MathSciNet  Google Scholar 

  10. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  11. Freeden, W., Windheuser, U.: Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination. Appl. Comput. Harmon. Anal. 4(1), 1–37 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds.): Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin (2003)

  13. Huang, H.-Y., Yu, D.-H.: Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary. J. Comput. Math. 24(2), 193–208 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Khoromskij, B.N., Oseledets, I.: Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math. 10, 376–394 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Khoromskij, B.N., Schwab., C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs.SIAM J. Sci. Comput. 33, 364–385 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Krantz, S.G., Parks, H.R.: A primer of real analytic functions. In: Basler Lehrbücher [Basel Textbooks], vol. 4. Basel, Birkhüuser Verlag (1992)

    Book  Google Scholar 

  17. Langel, R.A., Hinze, W.J.: The Magnetic Field of The Earth’s Lithosphere, the Satellite Perspective. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  18. Le Gia, Q.T., Stephan, E.P., Tran, T.: Solution to the Neumann problem exterior to a prolate spheroid by radial basis functions. Adv. Comput. Math. 34(1), 83–103 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972)

    Book  MATH  Google Scholar 

  20. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. CUP, Cambridge (2000)

    MATH  Google Scholar 

  21. Müller, C.: Spherical harmonics. In: Lecture Notes in Mathematics, vol. 17. Springer-Verlag, Berlin (1966)

    Google Scholar 

  22. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer-Verlag, New York (2000)

    Google Scholar 

  23. Nitsche, P.-A.: Best N term approximation spaces for tensor product wavelet bases. Constr. Approx. 24(1), 49–70 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pinchon, D., Hoggan, P.E.: Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes. J. Phys. A 40(7), 1597–1610 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sauter, S., Schwab, C.: Randelementmethoden.B. G. Teubner (2004)

  26. Schwab, C., Todor, R. A.: Sparse finite elements for stochastic elliptic problems—higher order moments. Comput. 71(1), 43–63 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schwab, C., Gittelson, C. J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schwab, C., Todor, R.-A.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95(4), 707–734 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schwab, C., Todor, R. A.: Karhunen-Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217(1), 100–122 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Temlyakov, V. N.: Approximations of functions with bounded mixed derivative. Tr. Mat. Inst. Steklov. 178, 113 (1986)

    MathSciNet  Google Scholar 

  31. Petersdorff, T. V., Schwab, C.: Sparse finite element methods for operator equations with stochastic data. Appl. Math. 51(2), 145–180 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Svensson, S.L.: Pseudodifferential operators – a new approach to the boundary problems of physical geodesy. Manuscr. Geod. 8, 1–40 (1983)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Chernov.

Additional information

Communicated by: Ian H. Sloan

Dedicated to Professor Ernst P. Stephan on the occasion of his 65th anniversary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, A., Pham, D. Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid. Adv Comput Math 41, 77–104 (2015). https://doi.org/10.1007/s10444-014-9350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9350-7

Keywords

Mathematics Subject Classifications (2010)

Navigation