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Abstract

In this paper, we show that efficient separated sum-of-exponentials ap-
proximations can be constructed for the heat kernel in any dimension. In
one space dimension, the heat kernel admits an approximation involving
a number of terms that is of the order O(log(T

δ
)(log( 1

ε
) + log log(T

δ
))) for

any x ∈ R and δ ≤ t ≤ T , where ε is the desired precision. In all higher
dimensions, the corresponding heat kernel admits an approximation in-
volving only O(log2(T

δ
)) terms for fixed accuracy ε. These approximations

can be used to accelerate integral equation-based methods for boundary
value problems governed by the heat equation in complex geometry. The
resulting algorithms are nearly optimal. For NS points in the spatial dis-
cretization and NT time steps, the cost is O(NSNT log2 T

δ
) in terms of

both memory and CPU time for fixed accuracy ε. The algorithms can be
parallelized in a straightforward manner. Several numerical examples are
presented to illustrate the accuracy and stability of these approximations.

1 Introduction

Our study of the heat kernel and its approximation is motivated by an interest
in developing efficient methods for the solution of the heat equation

Ut = ∆U, U(x, 0) = U0(x) , (1)

subject, for example, to Dirichlet boundary conditions

U(x, t) = f(x, t)
∣∣
Γ(t)

(2)
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in a moving space-time domain ΩT =
∏T
t=0 Ω(t), where Γ(t) is the boundary of

Ω(t). More precisely, we are interested in accelerating methods based on heat
potentials [16, 40], which seek to represent U in terms of a single or double layer
potential,

S(σ)(x, t) =

∫ t

0

∫
Γ(t)

∂

∂ny
G(x− y, t− τ)σ(y, τ)dsydτ (3)

and

D(σ)(x, t) =

∫ t

0

∫
Γ(t)

∂

∂ny
G(x− y, t− τ)σ(y, τ)dsydτ , (4)

respectively, where G(x, t) is the heat kernel

G(x, t) =
1

(4πt)d/2
e−
|x|2
4t ,

ny denotes the unit outward normal to Γ(τ) at the point y = y(τ), and σ is an
unknown surface density.

For the Dirichlet problem (1), it is standard to represent U using the double
layer heat potential:

U(x, t) = D(σ)(x, t) + V (x, t) (5)

where V (x, t) denotes the initial potential

V (x, t) =

∫
Ω(0)

G(x− y, t)U0(y)dsy .

Imposing the boundary condition and using standard jump relations [16, 40]
leads to the Volterra integral equation of the second kind

−1

2
σ(x, t) +D∗(σ)(x, t) = f(x, t)− V (x, t) (6)

on the space-time boundary ΓT =
∏T
t=0 Γ(t). Here, D∗(σ)(x, t) denotes the

principal value of the double layer potential.
It is convenient both analytically and numerically to decompose the double

layer potential into two pieces: a history part DH and a local part DL. Letting
δ be a small positive parameter, we write

D(σ)(x, t) = DH(σ)(x, t, δ) +DL(σ)(x, t, δ),

where

DH(σ)(x, t, δ) =

∫ t−δ

0

∫
Γ(t)

∂

∂ny
G(x− y, t− τ)σ(y, τ)dsydτ (7)
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and

DL(σ)(x, t, δ) =

∫ t

t−δ

∫
Γ(t)

∂

∂ny
G(x− y, t− τ)σ(y, τ)dsydτ . (8)

A major advantage of the integral equation formulation is that high order
accuracy can be achieved through the use of suitable quadratures, even when
the boundary is in motion (see, for example, [31]). A second advantage is that
the equation (6) can be written in the form

−1

2
σ(x, t) +D∗L(σ)(x, t) = f(x, t)− V (x, t)−D∗H(σ)(x, t) (9)

Since the history part is already known and the norm of DL can be shown to
be of the order ‖DL‖ = O(

√
δ) [20], the equation (9) can be solved by 2k steps

of fixed point iteration to an accuracy of δk.
There is a substantial engineering literature on boundary integral eqautions

for heat flow (see, for example, [10, 36]). In the mathematical literature, it is
worth noting the work of McIntyre [38], Noon [39], Chapko and Kress [13], and
the survey article of Costabel [15].

The major disadvantage of numerical methods based on heat potentials,
however, is their history-dependence. Simply evaluating Dσ at a sequence of
time steps tn = n∆t, for n = 0, . . . , NT , clearly requires an amount of work of
the order O(N2

TN
2
S), where NS denotes the number of points in the discretiza-

tion of the boundary. While direct discretization methods have been used for
(9), in the absence of fast algorithms it is difficult to argue that integral equation
methods would be methods of choice for large-scale simulation. In the last two
decades, however, a variety of schemes have been developed to overcome this
obstacle. The scheme of [19] used discrete Fourier methods to represent the his-
tory part, while [9] replaced the Fourier representation with a regular (physical
space) grid on which to update DH . In [18], the problem of exterior heat flow
was considered using the continuous Fourier transform in the spatial variables.
Sethian and Strain [42] and Ibanez and Power [24] developed variants of the fast
algorithm of [19] in the analysis of solidification, melting and crystal growth.
More recently, Tausch [45] developed an interesting space-time “fast-multipole-
like” method that also overcomes the cost of history-dependence (although it
involves a hierarchical decomposition of the entire space-time domain).

A somewhat different approach to overcoming history dependence is based on
using the Laplace transform in the time variable, leading to what are sometimes
called ”Laplace transform boundary element methods” [15, 22, 34, 41]. That is
the approach we consider here, for the following reasons:

1. The Fourier methods of [18, 19] assume that the spatial domain of interest
is finite (even when considering exterior problems). Both the computation
of the Fourier modes and the evaluation of the solution at large distances
can involve highly oscillatory integrals.
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2. The required number of Fourier modes in [18, 19] is O

((
a√
δ

)d)
, where

a is a bound on the extent of the domain in each spatial direction. This
makes the method inefficient for small δ.

Using the Laplace transform avoids both of these difficulties and leads to a sum-
of-exponentials approximation of the heat kernel that is asymptotically optimal
(although in the end, hybrid schemes may yield better constants).

Sum-of-exponentials approximations of convolution kernels have many ap-
plications in scientific computing. They permit, for example, the construction
of diagonal forms for translation operators. We refer the reader to [14, 49] for
their use in the elliptic case in accelerating fast multipole methods. They also
permit the development of highly efficient nonreflecting boundary conditions for
the wave and the Schrödinger equations [2, 3, 22, 25, 26, 35].

Function approximation using sums of exponentials is a highly nonlinear
problem, so that the numerical construction of such approximations is nontriv-
ial. In a series of papers, Beylkin and Monzón [4, 5, 6] carried out a detailed
investigation and developed efficient and robust algorithms when given func-
tion values on a fixed interval. In some cases, the function of interest can be
represented as a parametrized integral with exponential functions in the inte-
grand, in which case generalized Gaussian quadrature methods [11, 37] can also
be used. In other cases, however, the function being approximated, say f(t)
is only accessible as the inverse Laplace transform of an explicitly computable
function, say f̂(s). If f̂(s) is sectorial (i.e., holomorphic on the complement of
some acute sector containing the negative real axis for s ∈ C), then the trun-
cated trapezoidal or midpoint rule can be used in conjunction with carefully
chosen contour integrals, leading to efficient and accurate sum-of-exponentials
approximations. López-Fernández, Palencia, and Schädle, for example, have
made effective use of various hyperbolic contours [32, 33]. On the other hand, if

the Laplace transform f̂(s) does not have such well-defined properties, one may
instead try to find a sum-of-poles approximation in the s-domain, from which
a sum-of-exponentials approximation for f(t) can be obtained by inverting the
sum-of-poles approximation analytically (see, for example, [48]).

In this paper, we construct efficient separated sum-of-exponentials approx-
imations for the free-space heat kernel. In particular, We show that the one-
dimensional heat kernel 1√

4πt
e−|x|

2/(4t) admits an approximation of the form

1√
4πt

e−|x|
2/(4t) ≈

N1∑
i=1

wie
−site

√
si|x|

for any t ∈ [δ, T ] and x ∈ R, where N1 = O(log(Tδ )(log( 1
ε ) + log log(Tδ ))) where

ε is the desired precision. In the d-dimensional case (d > 1), the heat kernel
1

(4πt)d/2
e−|x|

2/(4t) admits an approximation of the form

1

(4πt)d/2
e−|x|

2/(4t) ≈
N2∑
j=1

w̃je
−λjt

N1∑
i=1

wie
−site

√
si|x| (10)
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for all t ∈ [δ, T ] and x ∈ Rd, where N1 = O(log(Tδ )(log( 1
ε ) + log log(Tδ ))) and

N2 = O
(
log
(

1
ε

)
·
(
log T

δ + log 1
ε

))
. Both our construction and proof draw on

earlier work, especially [6, 33].
The paper is organized as follows. In Section 2, we collect some useful

results mainly from [6, 33]. After developing the sum-of-exponentials repre-
sentations in Section 3, we then discuss their application to boundary value
problems governed by the heat equation in Section 4. The basic idea is to use
the sum-of-exponentials approximation for the computation of the history part
(such as DH(σ) above), since the parameter δ separates the time integration
variable τ from the current time t so that t − τ ∈ [δ, T ]. Since the temporal
dependence for each term in (10) involves a simple exponential, the convolu-
tion in time can be easily computed using standard recurrence relations, as in
[18, 19]. Furthermore, the convolutions in space can be evaluated by a variety
of fast algorithms, such as variants of the fast multipole method. These issues
are discussed in section 4. With δ = ∆t, where ∆t is a fixed time step, the
total computational cost for evaluating DH(σ) is easily seen to be of the order
O
(
NSNT log(NS) log2(NT )

)
, and the memory requirements are of the order

O
(
NS log2(NT )

)
for fixed accuracy ε.

2 Analytical preliminaries

In this section, we collect some results from [6, 33] which will be used in subse-
quent sections.

The following lemma provides an error estimate for the sum-of-exponentials
approximation obtained by the truncated trapezoidal rule discretization of a
certain contour integral in the Laplace domain.

Lemma 1. [Adapted from [33].] Suppose that U(z) is holomorphic on W =
C \ (−∞, 0] and satisfies the estimate

‖U(z)‖ ≤ 1

2|z|1/2
(11)

for z ∈ W . Suppose that u(t) = 1
2πi

∫
Γ
etzU(z)dz is the inverse Laplace trans-

form of U . Suppose further that α and β satisfy the condition 0 < α − β <
α+β < π

2 , 0 < θ < 1, and that Γ is chosen to be the left branch of the hyperbola

Γ = {λT (x) : x ∈ R}, (12)

where T (x) = (1−sin(α+ ix)). Finally, suppose that un(t) is the approximation
to u(t) given by the formula

un(t) = − hλ
2πi

n∑
k=−n

U(λT (kh))T ′(kh)eλT (kh)t. (13)

5



Then the choice of parameters

h =
a(θ)

n
, (14)

λ =
2πβn(1− θ)

Ta(θ)
, (15)

a(θ) = arccosh

(
2T

δ(1− θ) sinα

)
(16)

leads to the uniform estimate on δ ≤ t ≤ T ,

‖u(t)− un(t)‖ ≤ 1√
t
φ(α, β) · L(λδ sin(α− β)/2) · e−

2πθβn
a(θ) , (17)

where

φ(α, β) =
2

π

√
1 + sin(α+ β)

1− sin(α+ β)
(e sin(α− β))1/2, (18)

L(x) = 1 + | ln(1− e−x)|. (19)

Proof. Choosing s = 1
2 , µ = 1

2 in the first equation of Remark 2 of [33], we have
the estimate

‖u(t)− un(t)‖ ≤
φ(α, β)eλt

2
√
t

L(λt sin(α− β)/2)

(
1

e2πβ/h − 1
+

1

eλt sinα cosh(nh)/2

)
. (20)

With the choice of parameters given by (14)-(16), it is easy to see that

eλt = e
2πβn(1−θ)t

Ta(θ) ≤ e
2πβn(1−θ)

a(θ) , δ ≤ t ≤ T, (21)

1

e2πβh− 1
u e−2πβ/h = e−

2πβn
a(θ) , (22)

1

eλt sinα cosh(nh)/2
= e−

2πβnt
a(θ)δ ≤ e−

2πβn
a(θ) , δ ≤ t ≤ T, (23)

Finally, it is easy to see that L(x) is decreasing in x and thus

L(λt sin(α− β)/2) ≤ L(λδ sin(α− β)/2), δ ≤ t ≤ T. (24)

Substituting (21)-(24) into (20), we obtain (17).

Remark 1. The parameters α, β, and θ are available for optimization. For
our problem, i.e., the sum-of-exponentials approximation of the 1D heat kernel,
we choose α = 0.8, β = 0.7 in (18). We have also tested various values of θ in
(0, 1). Numerical experiments indicate that the number of nodes needed for a
prescribed accuracy is relatively insensitive when θ is in the range [0.85, 0.95].
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Combining Lemma 1 and Remark 1, we have the following Corollary.

Corollary 1. Suppose that 0 < ε < 0.1 is the prescribed relative error and that
T ≥ 1000δ > 0. Then under the conditions of Lemma 1, the following estimate
holds

‖u(t)− un(t)‖ ≤ 1√
t
· ε, δ ≤ t ≤ T, (25)

if the number of exponentials n satisfies the following estimate:

n = O

((
log

(
1

ε

)
+ log log

(
T

δ

))
log

(
T

δ

))
. (26)

Proof. We choose the parameters α, β, and θ as in Remark 1. The factor φ(α, β)
in (17) is just a fixed constant independent of n, T , and δ. For T ≥ 1000δ > 0,
the parameter a(θ) defined in (16) satisfies the estimate

a(θ) = O(log
T

δ
). (27)

Moreover, the function L defined in (19) is decreasing for x > 0, L(x) ≈ | lnx|
as x → 0+, and L(x) → 1 as x → +∞. Combining this observation with the
assumption (26), we observe that the factor L(λδ sin(α−β)) in (17) satifies the
estimate

L(λδ sin(α− β)) ≤ C log

(
T

δ

)
. (28)

Substituting (27) and (28) into (17), we obtain

‖u(t)− un(t)‖ ≤ C1√
t
· log

(
T

δ

)
· e−C2n/ log(Tδ ). (29)

It is then easy to see that (25) follows if n satisfies (26).

Remark 2. For most practical cases, the log log
(
T
δ

)
factor is much smaller

than the log
(

1
ε

)
factor. Thus for a fixed precision ε, we will simply say that

n = O
(
log
(
T
δ

))
.

Remark 3. The hyperbolic contour is chosen in such a way that the horizontal
strip Dβ = {z ∈ C : |Imz| ≤ β} is transformed into a region bounded by the left
branches of two hyperbolas defined as in (12), but with x replaced by x±iβ. The
reason that such contour is chosen is the (well-known) fact that the trapezoidal
rule converges exponentially fast for functions holomorphic on a horizontal strip
containing the real axis (see, for example, [43, 44]). We have actually used the
midpoint rule to eliminate the occurence of a node directly on the real axis.
There is almost no difference in terms of accuracy, but this allows us to assume
that all nodes lie in the upper half plane in actual computation.
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Remark 4. It is likely that other contours would yield similar results. Trefethen
et al. [47] have analyzed this issue with great care and presented a detailed
comparison of various contours (hyperbolic, parabolic, and Talbot contours [46])
for inverting sectorial Laplace transforms, though they are mainly concerned
with the efficiency of various contours for a fixed time t.

We will also need the following lemma, adapted from Theorem 5 in [6], which
is concerned with the efficient sum-of-exponentials approximation for the power
function 1

tβ
.

Lemma 2. [Adapted from Theorem 5 in [6].] For any β ≥ 1
2 , 1/e ≥ ε > 0, and

T > 3δ > 0, there exist a positive integer

N = O

(
log

(
1

ε

)
·
(

log
T

δ
+ log

1

ε

))
, (30)

and positive real numbers w̃i, λi (i = 1, · · · , N) such that∣∣∣∣∣ 1

tβ
−

N∑
i=1

w̃ie
−λit

∣∣∣∣∣ ≤ 1

tβ
· ε, δ ≤ t ≤ T. (31)

Furthermore, for fixed accuracy ε, N = O
(
log T

δ

)
.

Remark 5. It is pointed out in the caption of Table 1 of [6] that the dependence
of the number of terms on accuracy appears to be almost linear in log 1

ε rather
than O

(
(log 1

ε )2
)
, as stated in (30). Indeed, Remark 8 in [25] states that the

number of exponentials needed to approximate 1
t1/2

for a given relative accuracy

ε is O
(
log 1

ε

(
log log 1

ε + log T
δ

))
. It is straightforward, but tedious, to extend

the proof of [25] to show that the number of exponentials to achieve a relative
accuracy of ε for 1

tn/2
when n = 2, 3, 4 is of the same order. This is sufficient for

the heat kernel in one, two, and three dimensions. While this leads to a formal
improvement in estimating the required number of exponentials, the numerical
results from the method of [6] are actually more efficient than those obtained
via the explicit construction of [25]. Thus, we have left the statement of Lemma
2 as is.

Remark 6. In [7], the error of the approximation of 1/x by exponential sums
is studied in detailed on both finite and infinite intervals. In [8], Braess and
Hackbusch extend their analysis to the general power function 1/xα, α > 0,
obtaining sharp error estimates for the absolute error.

3 Sum-of-exponentials approximation of the heat
kernel

In this section, we first develop a separated sum-of-exponentials approximation
for the one-dimensional heat kernel. We then extend the approximation to
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arbitrary space dimensions, and to directional derivatives of the heat kernel,
such as the kernel of the double layer potential D(σ).

The one-dimensional result is summarized by the following theorem.

Theorem 1. Let G(x, t) = 1√
4πt

e−
|x|2
4t denote the one-dimensional heat kernel

and let its Laplace transform be denoted by Ĝ(x, s) =
∫∞

0
e−stG(x, t)dt. Then,

for s > 0 and x ∈ R,

Ĝ(x, s) =
1

2
√
s
e−
√
s|x|. (32)

Furthermore, let 0.1 > ε > 0 be fixed accuracy and T ≥ 1000δ > 0 . Then there
exists a sum-of-exponentials approximation

GA(x, t) =

n∑
k=−n

wke
skte−

√
sk|x| (33)

such that

|G(x, t)−GA(x, t)| < 1√
t
· ε (34)

for x ∈ R and t ∈ [δ, T ], with

n = O
(

log(
T

δ
)

(
log(

1

ε
) + log log

(
T

δ

)))
. (35)

Proof. The formula (32) is well-known and can be derived from standard Laplace
transform tables. The natural extension of Ĝ(x, s) to the complex s-plane has
an obvious branch point at s = 0, and a branch cut along the negative real
axis assuming the restriction −π < s ≤ π. Thus, Ĝ(x, s) is holomorphic on
W = C \ (−∞, 0] and satisfies the estimate

‖Ĝ(x, s)‖ ≤ 1

2|s|1/2
(36)

for s ∈W and all x ∈ R. As a result, G(x, t) can be represented by the inverse
Laplace transform:

G(x, t) =
1

2πi

∫
Γ

estĜ(x, s)ds

=
1

4πi

∫
Γ

1√
s
est−

√
s|x|ds,

(37)

where Γ is a simple contour lying in W = C \ (−∞, 0], and parametrizable by a
regular mapping S : (−∞,+∞)→ C such that

lim
x→±∞

ImS(x) = ±∞ and lim
x→±∞

Re (S(x))

|x|
< 0.

9



The last condition implies that

Re(z) ≤ −b|z|, as z →∞, z ∈ Γ,

for some b > 0. This forces the integral (37) to be absolutely convergent. It is
easy to see that the integral is independent of the choice of Γ.

The main result (33) is now a direct consequence of Lemma 1 and Corollary
1 in Section 2 since Ĝ satisfies the condition (36). In particular, we have

GA(x, t) =

n∑
k=−n

wke
skte−

√
sk|x|, (38)

where

sk = λ(1− sin(α+ ikh)), (39)

wk = − h

4πi
√
sk
s′k, (40)

with s′k = −λi cos(α+ ikh), and the parameters h, λ specified in (14) and (15),
respectively.

In Table 1, we list the number of exponentials needed to approximate the
1D heat kernel for x ∈ R over three different time intervals [δ, T ]: I1 = [10−3, 1],
I2 = [10−3, 103], I3 = [10−5, 104], which correspond roughly to 103, 106, and
109 time steps, respectively. The first column lists the maximum error of the
approximation computed over a 50×1000 grid (xj , tk) where x0 = 0, xj = 2−16+j

for j = 1, · · · , 49, and the tk are 1000 samples on [δ, T ] chosen to be equispaced
on a logarithmic scale. The node locations are plotted in Fig. 1.

Table 1: Number of exponentials needed to approximate the 1D heat
kernel for x ∈ R over different time intervals: I1 = [10−3, 1], I2 =
[10−3, 103], I3 = [10−5, 104].
ε I1 I2 I3
10−3 15 23 32
10−6 31 50 68
10−9 47 77 105

Remark 7. To obtain Table 1, we set α = 0.8, β = 0.7, θ = 0.9 for I1 and
θ = 0.95 for I2 and I3.

Remark 8. The coefficients wi are not positive (but complex) and thus stability
is an issue. It is difficult to bound the expression∑

|wi exp(sit)|
|
∑
wi exp(sit)|

10
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Figure 1: The location of the exponential nodes sk (k = ±1, · · · ,±n for n = 77)
used in (38) to approximate the 1D heat kernel for t ∈ [10−3, 103] with 9-digit
accuracy. The left figure shows all nodes, while the right figure is a close-up
of the nodes near the origin. All nodes lie on the left branch of the hyperbola
specified in (12).

analytically for all time. However, we have checked the value of the expression
numerically for all cases presented in Table 1, and found that it is roughly
1.08. This suggests that the sum-of-exponentials approximation is, indeed, well-
conditioned.

Remark 9. If we make a further change of variable z =
√
s in (37), we obtain

G(x, t) =
1

2πi

∫
Γ′
ez

2t−z|x|dz, (41)

where Γ′ is any contour lying in the sector {π4 < | arg z| ≤ π
2 } of the complex

plane. In particular, if Γ′ is chosen to be the imaginary axis, then we essentially
recover the Fourier integral representation of the heat kernel (see, for example,
[19]).

Finally, it is worth repeating that the number of terms required in the sum-
of-exponentials approximation does not depend on the spatial extent of the
problem.

3.1 Heat kernels in higher dimensions

Suppose now that we are interested in heat flow in Rd, for d ≥ 2, where the
heat kernel is

Gd(x, t) =
1

(4πt)d/2
e−
|x|2
4t .

11



The following theorem describes an efficient sum-of-exponentials representation.

Theorem 2. For any 0.1 > ε > 0 and T ≥ 1000δ > 0, the heat kernel Gd(x, t)
admits the following approximation:

G̃d(x, t) =

N2∑
j=1

w̃je
−λjt

N1∑
k=−N1

wke
skte−

√
sk|x| (42)

such that

|Gd(x, t)− G̃d(x, t)| <
1

td/2
· ε (43)

for any x ∈ Rd, t ∈ [δ, T ] with N1 specified in (35) and N2 specified in (30).

Proof. We first rewrite the d dimensional heat kernel as a product of two func-
tions:

Gd(x, t) = G1(x, t) · F (t), (44)

where

G1(x, t) =
1

(4πt)1/2
e−
|x|2
4t , F (t) =

1

(4πt)(d−1)/2
. (45)

Similarly, we rewrite G̃d as follows:

G̃d(x, t) = S1(x, t) · S2(t), (46)

where

S1(x, t) =

N1∑
k=−N1

wke
skte−

√
sk|x|, S2(t) =

N2∑
j=1

w̃je
−λjt. (47)

Using the triangle inequality, we have

|Gd(x, t)− G̃d(x, t)| ≤ |G1 · F −G1 · S2|+ |G1 · S2 − S1 · S2|
≤ |G1| · |F − S2|+ (1 + ε)|F | · |G1 − S1|

≤ 3

td/2
· ε,

(48)

and the result follows.

3.2 The double layer heat potential

Since we often rely on the double layer potential in integral equation methods,
it is worth writing down a sum-of-exponentials approximation for this case as
well. We denote the kernel of the double layer heat potential by

D(x, y; t) =
∂G(x− y, t)

∂ny
=

(x− y) · ny
(4πt)d/22t

e−
|x−y|2

4t .
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Theorem 3. Let 0.1 > ε > 0 be fixed accuracy, R > 1 and T ≥ 1000δ > 0.
Then there exists a sum-of-exponentials approximation

DA(x, y; t) =

N2∑
j=1

w̃je
−λjt

N1∑
k=−N1

wke
skte−

√
sk|x−y|(x− y) · ny (49)

such that

|D(x, y; t)−DA(x, y; t)| < 1

t(d+2)/2
· ε (50)

for |x− y| ≤ R and t ∈ [δ, T ]. Here N1 and N2 are as follows:

N1 = O
(

log(
T

δ
)

(
log(

1

ε
) + log log

(
T

δ

)
+ logR

))
(51)

and

N2 = O

(
(log

(
1

ε

)
+ logR) ·

(
log

T

δ
+ log

1

ε
+ logR

))
. (52)

Proof. We first introduce ε̂ = ε/R. Then by Theorem 1, there exist N1 =
O
(
log(Tδ ) log(1

ε̂ )
)

= O
(
log(Tδ )

(
log( 1

ε ) + log log
(
T
δ

)
+ logR

))
, coefficients wk,

and nodes sk (k = 1, · · · , N1) such that

|G1(x, t)−
N1∑

k=−N1

wke
skte−

√
sk|x|| < 1√

t
· ε̂, (53)

for x ∈ R and t ∈ [δ, T ].
Changing x to x − y and multiplying both sides of (53) by (x − y) · ny, we

obtain∣∣∣∣∣ (x− y) · ny
(4πt)1/2

e−
|x−y|2

4t −
N1∑

k=−N1

wke
skte−

√
sk|x−y| · ((x− y) · ny)

∣∣∣∣∣
≤ |(x− y) · ny|

(4πt)1/2
· ε̂

≤ R

(4πt)1/2
· ε
R

≤ 1

(4πt)1/2
· ε

(54)

for all |x− y| ≤ R and t ∈ [δ, T ].
Similarly, by Lemma 2, we have∣∣∣∣∣ 1

t(d+1)/2
−

N2∑
i=1

w̃ie
−λit

∣∣∣∣∣ ≤ 1

t(d+1)/2
· ε/R, δ ≤ t ≤ T, (55)

where N2 is given by (52).
The result is then obtained by an argument almost identical to that in the

proof of Theorem 2.
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Remark 10. As discussed in Remark 5, more involved analysis could replace
the order estimate O((log 1

ε + logR)2) for N2 in (52) with O(log 1
ε + logR).

Remark 11. It is worth noting that Theorems 1–3 provide what are, in essence,
relative error estimates. Our numerical experiments also indicate that the logR
dependence in N1 and N2 and the restriction on x − y are somewhat artificial
since D(x, y; t) and DA(x, y; t) are exponentially small for large (x− y).

4 Applications

We return now to a consideration of the exterior Dirichlet problem governed by
the heat equation in eqs. (1) and (2). We let δ = (k − 1)∆t in order to obtain
a kth order scheme and consider the calculation of DL and DH separately.
To simplify the notation, we fix the relative accuracy ε, the computational
domain size R, and suppress the dependence of the complexity on ε and R in
the following discussion.

4.1 Evaluation of the local part DL

The discretization of the local part of the double layer potential DL is discussed
in [31] for both stationary and moving boundaries. We limit our attention here
to the case of a stationary boundary, Γ(t) = Γ(0), for the sake of simplicity.
The basic idea is to expand the density σ(y, t) on [t− δ, t] for each y in the form

σ(y, τ) = σ0(y) + (t− τ)σ1(y) + · · ·+ (t− τ)k−1

(k − 1)!
σk−1(y) +O((t− τ)k).

The functions σ0(y), . . . , σk−1(y) are obtained from the function values σ(y, t−
j∆t) for j = 0, · · · , k − 1.

Substituting the above expression into (8) and changing the order of inte-
gration in time and space, we obtain

DL(σ)(x, t, δ) =

[ ∫
Γ

DL,0(x, y)σ0(y) dsy +

∫
Γ

DL,1(x, y)σ1(y) dsy + . . .

(56)

+
1

(k − 1)!

∫
Γ

DL,k−1(x, y)σk−1(y) dsy

]
+O((t− τ)k+1/2.

where DL,k(x, y) is given by

DL,k(x, y) =

∫ t

t−δ

∂

∂ny
Gd(x− y, t− τ)(t− τ)k−2 dτ. (57)

For an analgous treatment of unsteady Stokes potentials, see [27].

Remark 12. The above procedure provides a robust, high-order marching
scheme that is insensitive to the complexity of the geometry. Simpler time-
marching schemes are subject to geometrically induced stiffness, discussed at
some length in [27, 31].
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The kernels DL,k can be computed in closed form in terms of the exponential
integral function Ei(1, x) in two dimensions and the error function erf(x) in three
dimensions. Each of these kernels is singular (or weakly singular), but smooth
away from the diagonal (x = y). The discretization of the spatial integrals,
therefore, requires techniques much like those needed for elliptic layer potentials.
We refer the reader to [1] and [28] for a discussion of high order accurate rules.

When computing DL,k at each boundary point, we would also like to avoid
the O(N2

S) work that would be required by naive evaluation of the integral.
A large number of fast algorithms are now available to reduce the cost of this
step to O(NS) or O(NS logNS). These include fast multipole methods, kernel-
independent fast multipole methods [50], HSS and H-matrix methods [12, 21],
and HBS or recursive skeletonization methods [23, 17]. We propose to use
the approach developed in [23]. That is, each of the operators DL,j(xm, yn)
(j = 1, · · · , k − 1) will be compressed once, with subsequent applications of
the operator computed in near optimal complexity time with smaller constant
prefactors than analytically-based fast multipole methods. It is also possible, of
course, to store a compressed version of the full operator DL or (− 1

2I +D∗L)−1.
While the storage costs are large, they scale nearly linearly with NS . This
is ideal for long-time simulation in stationary domains, where the same linear
system is solved at each time step with a different right-hand side.

4.2 Evaluation of the history part DH

For the history part, approximating the kernel byDA(x, y; t−τ) and substituting
(49) into (7), we obtain

DH(σ)(x, t) ≈
∫ t−δ

0

∫
Γ

N2∑
j=1

w̃je
−λj(t−τ)

N1∑
k=−N1

wke
sk(t−τ)e−

√
sk|x−y|[(x− y) · ny]σ(y, τ)dsydτ

=

N2∑
j=1

w̃j

N1∑
k=−N1

wkHj,k(x, t),

(58)

where each history mode Hj,k is given by the formula

Hj,k(x, t) =

∫ t−δ

0

e(−λj+sk)(t−τ)Vk(x, τ)dτ, (59)

with Vk given by the formula

Vk(x, τ) =

∫
Γ

e−
√
sk|x−y|[(x− y) · ny]σ(y, τ)dsy. (60)

Here, we have interchanged the order of summation and integration.
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For each fixed τ , Vk(x, τ) can be discretized using the trapezoidal rule and
the resulting summation can again be computed using the fast algorithms in
[23] for all x ∈ Γ. The computational cost for this step is O(NS logNS) for each
k. Once the Vk have been evaluated, each history mode Hj,k can be computed
recursively, as in [19, 27]:

Hj,k(x, t+∆t) = e(−λj+sk)∆tHj,k(x, t)+

∫ t+∆t−δ

t−δ
e(−λj+sk)(t+∆t−τ)Vk(x, τ)dτ.

(Equivalently, each history mode Hj,k can be seen to satisfy a simple linear
ODE.) The point is that each history mode can be computed in O(1) operations
at each time step for each x. Since both N1 and N2 are O(log(T/δ)) = O(NT )
with NT the total number of time steps, the net computational cost for the eval-
uation of the history part at each time step is O(NS logNS logNT+NS log2NT ),
with storage requirements of the order O(NS log2NT ). The computational cost
for the entire simulation is

O(NSNT logNS logNT +NSNT log2NT ) .

The algorithm of the present paper is embarrassingly parallel in that the
computation of each history mode is independent. Furthermore, the hierarchical
fast algorithms used for each Vk(x, τ) are themselves amenable to parallelization,
and there is already a substantial body of research and software devoted to that
task for large-scale problems in three dimensions.

5 Numerical examples

In this section, we illustrate the accuracy and stability of the sum-of-exponential
approximations for the heat kernels. More precisely, we have implemented the
algorithm outlined in the previous section to solve the exterior Dirichlet problem
governed by the heat equation in two dimensions. The spatial integral in the
local parts is discretized using the 16th order hybrid Gauss-trapezoidal rule
of [1], while the spatial integral in the history part is discretized using the
trapezoidal rule. We have implemented 2nd, 3rd, and 4th order schemes in
time (defined by the number of terms taken in the local Taylor expansion of σ
in section 4.1), with numerical experiments carried out using the fourth order
version. We consider four simple boundary curves: a circle, an ellipse with
aspect ratio 2:1, a crescent, and a smooth hexagram, shown in Figures 1–4,
respectively. The final time is set to T = 1 and the boundary curves are roughly
of size R = 5. We generate boundary data by placing heat sources inside the
boundary curve and test the accuracy of our numerical solution by comparing
it with the analytical solution at 20 target points outside the boundary curves.
We use 350 spatial discretization points for the circle, 256 points for the ellipse,
512 points for the crescent, and 350 points for the hexagram. Since our spatial
integration rules are very high order and the geometry is well-resolved, the
accuracy is dominated by the discretization error in time.
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In each of the tables below, ∆t is the time step, NT is the total number of
time steps, K is the condition number of the linear system that needs to be
solved at each time step, E is the relative L2 error of the numerical solution at
the final time, and r is the ratio of relative L2 errors for successive time step
refinements: r(j) = E(j − 1)/E(j).

Remark 13. Since our examples are intended to demonstrate the accuracy
and stability of the sum-of-exponential approximations for the heat kernels, we
have limited our attention to modest size problems. With larger-scale boundary
discretizations, fast solvers will be used to invert the linear systems at each time
step and to speed up the computation of the spatial integrals in the history part.
We are currently building such codes, including parallelization.

∆t NT K E r
1.00e-1 10 1.02 4.33e-5
5.00e-2 20 1.01 3.00e-6 14.4
2.50e-2 40 1.01 2.01e-7 14.9
1.25e-2 80 1.01 7.57e-9 26.5
6.25e-3 160 1.00 3.81e-10 19.9

Figure 2: Numerical results for the circle. NT is the total number of time steps,
K is the condition number of the linear system to be solved at each time step,
E is the relative error at the final time in L2, and r is the ratio of relative L2

errors for successive time step refinements: r(j) = E(j − 1)/E(j).

∆t NT K E r
1.00e-1 10 1.07 1.85e-4
5.00e-2 20 1.05 1.55e-5 11.9
2.50e-2 40 1.04 1.11e-6 13.9
1.25e-2 80 1.03 1.84e-8 60.3
6.25e-3 160 1.02 6.76e-10 27.3

Figure 3: Numerical results for a 2:1 ellipse. See text or Fig. 2 for explanation.

Several observations concerning our results are in order. First, note that
there is no stability issue for large time steps (as expected). Second, the lin-
ear systems which need to be solved at each time step are extremely well-
conditioned, since the compact operator in the Volterra integral equation has
small norm. Third, the convergence rates are roughly consistent with fourth
order accuracy (slightly better because of the smoothing behavior of the heat
equation).

Finally, in order for the reader to be able to easily implement the scheme,
we list the sum-of-exponential approximations for the power function 1

t3/2
and

the 1D heat kernel in Tables 2 and 3, respectively.
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∆t NT K E r
1.00e-1 10 1.15 8.76e-5
5.00e-2 20 1.11 3.13e-6 28.0
2.50e-2 40 1.08 1.89e-7 16.5
1.25e-2 80 1.06 3.16e-9 59.8
6.25e-3 160 1.04 1.28e-10 24.6

Figure 4: Numerical results for a smooth crescent. See text or Fig. 2 for
explanation.

∆t NT K E r
1.00e-1 10 1.03 6.05e-5
5.00e-2 20 1.02 3.06e-6 19.8
2.50e-2 40 1.02 1.94e-7 15.7
1.25e-2 80 1.01 7.80e-9 24.5
6.25e-3 160 1.01 2.80e-10 27.8

Figure 5: Numerical results for a smooth hexagram. See text or Fig. 2 for
explanation.

Table 2: Sum-of-exponential approximation for the power function 1
t3/2

≈∑N
k=1 wke

skt. Here N = 22. The relative error is 10−9 for t ∈ [10−3, 1]. The
first column lists the values of sk and the second column lists the values of wk.

sk wk
-7.2906159549928551D-001 1.4185610815528382D+000
-3.0048118783719833D+000 6.1168393596966855D+000
-7.1264765899586058D+000 1.5711472927135111D+001
-1.3711947176886415D+001 3.4005632951162106D+001
-2.3888158541731844D+001 6.9073954353680932D+001
-3.9552395196025927D+001 1.3693587825572760D+002
-6.3705812577837150D+001 2.6803903557553036D+002
-1.0092380540293159D+002 5.1918775664556608D+002
-1.5806801843263241D+002 9.9539106627427793D+002
-2.4535153453758187D+002 1.8891680379043360D+003
-3.7789560121839855D+002 3.5504717885763807D+003
-5.7797736857567725D+002 6.6101535364473611D+003
-8.7825970527795960D+002 1.2196709015044245D+004
-1.3264302774624159D+003 2.2315687874782194D+004
-1.9919031777954062D+003 4.0515943857625483D+004
-2.9756729573498451D+003 7.3077757126301352D+004
-4.4253961362173968D+003 1.3121449467706907D+005
-6.5602925574528726D+003 2.3547202449444451D+005
-9.7174072351500563D+003 4.2563843229579012D+005
-1.4450262425240786D+004 7.8639206472664094D+005
-2.1750443538417538D+004 1.5127774335123657D+006
-3.3020803685636522D+004 2.6486986425576657D+006
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Table 3: Sum-of-exponential approximation for the 1D heat kernel G1 =
e−x

2/4t/
√

4πt. G1 ≈
∑N1

k=−N1
wke

skte−
√
skx. Here N1 = 47 and only the expo-

nentials in the lower half of the complex plane are listed. The relative error is
10−9 for t ∈ [10−3, 1]. The first column lists the values of sk and the second
column lists the values of wk.

sk wk
+5.2543538566883130D-001 -1.5355921434143971D-001i 3.3406450069243053D-002 + 7.8694879334856565D-004i
+4.5124072851051300D-001 -4.6901795847816991D-001i 3.3858524697168449D-002 + 2.3714958079918535D-003i
+2.9882165376338349D-001 -8.0995063945421741D-001i 3.4768791677853524D-002 + 3.9881352204446229D-003i
+5.9899770775166200D-002 -1.1948744535190035D+000i 3.6149569249415578D-002 + 5.6587442927134319D-003i
-2.7850156846250274D-001 -1.6446959027588257D+000i 3.8019542860491549D-002 + 7.4059306342027370D-003i
-7.3476207454759612D-001 -2.1838462972755117D+000i 4.0404018032102237D-002 + 9.2533381404359474D-003i
-1.3336627843342230D+000 -2.8416087014987785D+000i 4.3335262806011098D-002 + 1.1225966955375540D-002i
-2.1077320020767232D+000 -3.6537083955326728D+000i 4.6852944413778977D-002 + 1.3350511787250059D-002i
-3.0990120206246341D+000 -4.6642532348208814D+000i 5.1004666075762921D-002 + 1.5655723156165313D-002i
-4.3613425792163030D+000 -5.9281292955658031D+000i 5.5846611194320855D-002 + 1.8172796462103385D-002i
-5.9632850801149733D+000 -7.5139819214310553D+000i 6.1444303658802629D-002 + 2.0935794138393353D-002i
-7.9918463880908517D+000 -9.5079440821622647D+000i 6.7873494551196165D-002 + 2.3982106603468702D-002i
-1.0557204464776218D+001 -1.2018314543775274D+001i 7.5221187251822183D-002 + 2.7352958248766927D-002i
-1.3798692502929331D+001 -1.5181439937409575D+001i 8.3586814817376690D-002 + 3.1093965310080390D-002i
-1.7892366578989638D+001 -1.9169120201715121D+001i 9.3083585564254306D-002 + 3.5255753171782450D-002i
-2.3060567848491313D+001 -2.4197939613161662D+001i 1.0384001506633338D-001 + 3.9894641457634002D-002i
-2.9583998639207351D+001 -3.0541030203791603D+001i 1.1600166529906714D-001 + 4.5073406179197625D-002i
-3.7816968335105827D+001 -3.8542906477049684D+001i 1.2973311446494412D-001 + 5.0862129255676444D-002i
-4.8206637106159420D+001 -4.8638177144812161D+001i 1.4522018415709023D-001 + 5.7339146901350516D-002i
-6.1317302675453163D+001 -6.1375150182749685D+001i 1.6267245400022495D-001 + 6.4592109714717016D-002i
-7.7861049219288773D+001 -7.7445613273673700D+001i 1.8232609779849215D-001 + 7.2719168815048321D-002i
-9.8736423044743205D+001 -9.7722407114526959D+001i 2.0444707957048894D-001 + 8.1830304077826238D-002i
-1.2507723565031891D+002 -1.2330683231921709D+002i 2.2933475272201531D-001 + 9.2048812443472808D-002i
-1.5831414482743193D+002 -1.5558846474502963D+002i 2.5732591106254793D-001 + 1.0351297643999625D-001i
-2.0025235847869459D+002 -1.9632062801341692D+002i 2.8879934648604044D-001 + 1.1637793549892739D-001i
-2.5316968150772374D+002 -2.4771562239065099D+002i 3.2418097499311860D-001 + 1.3081778538823258D-001i
-3.1994023103558078D+002 -3.1256488222792592D+002i 3.6394960042284941D-001 + 1.4702793417289575D-001i
-4.0419053933177224D+002 -3.9439058811408586D+002i 4.0864339389209720D-001 + 1.6522774658533385D-001i
-5.1049652293304160D+002 -4.9763696830499521D+002i 4.5886717662584403D-001 + 1.8566351259073638D-001i
-6.4463201600277023D+002 -6.2791167965116256D+002i 5.1530060473377282D-001 + 2.0861178031960287D-001i
-8.1388236661047688D+002 -7.9229037823057672D+002i 5.7870736669405309D-001 + 2.3438309847056926D-001i
-1.0274401283961181D+003 -9.9970102193834418D+002i 6.4994551800979161D-001 + 2.6332621882780033D-001i
-1.2969043389592882D+003 -1.2614087777944171D+003i 7.2997909289244700D-001 + 2.9583281576374076D-001i
-1.6369105024555524D+003 -1.5916278709100643D+003i 8.1989115010796476D-001 + 3.3234278659416305D-001i
-2.0659254928655710D+003 -2.0082936066805410D+003i 9.2089842952925771D-001 + 3.7335020451285178D-001i
-2.6072505517969930D+003 -2.5340364973160094D+003i 1.0343678177356390D+000 + 4.1941000466434852D-001i
-3.2902868569904354D+003 -3.1974114007865637D+003i 1.1618348454808407D+000 + 4.7114549383439813D-001i
-4.1521323987955984D+003 -4.0344484308358847D+003i 1.3050244673476217D+000 + 5.2925678538340226D-001i
-5.2395968963294799D+003 -5.0906098731829061D+003i 1.4658744047907917D+000 + 5.9453027356908161D-001i
-6.6117441901645352D+003 -6.4232593945873459D+003i 1.6465613684596623D+000 + 6.6784927547013706D-001i
-8.3431001974123810D+003 -8.1047776557969619D+003i 1.8495305146549577D+000 + 7.5020598452333265D-001i
-1.0527700663992231D+004 -1.0226493547754852D+004i 2.0775285345412993D+000 + 8.4271489743589800D-001i
-1.3284198561072539D+004 -1.2903644569677639D+004i 2.3336408238968738D+000 + 9.4662789617368170D-001i
-1.6762308525499571D+004 -1.6281635763758291D+004i 2.6213332364019597D+000 + 1.0633511891228977D+000i
-2.1150938363365654D+004 -2.0543937150208803D+004i 2.9444989854949983D+000 + 1.1944643406826623D+000i
-2.6688449265921696D+004 -2.5922048598801452D+004i 3.3075113294981566D+000 + 1.3417416468073389D+000i
-3.3675602004538763D+004 -3.2708073362471001D+004i 3.7152827529767691D+000 + 1.5071761457643933D+000i
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6 Conclusions

We have developed an efficient separated sum-of-exponentials approximation
for the heat kernel in any dimension. The number of exponentials needed is
O(log2(Tδ )) to obtain an approximation that is valid for t ∈ [δ, T ] and x ∈ Rd for

any prescribed precision ε, but only O(log(Tδ )) of these modes involve the spatial
variables. Such approximations can be combined with the local quadratures of
[31] and the fast algorithms of [18, 19, 23] to create efficient, accurate and
robust methods for the solution of boundary value problems governed by the
heat equation in complex geometry.

We have assumed here that the time step ∆t is fixed throughout the simula-
tion, but note that in many applications, adaptive time-stepping will be needed.
We are currently developing heat solvers in both two and three dimensions that
make use of the sum-of-exponentials representation, permit adaptive time-steps,
and incorporate fast algorithms for the spatial integrals. We will report on their
performance at a later date.
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