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Abstract We present stable mixed finite elements for planar linear elasticity on
general quadrilateral meshes. The symmetry of the stress tensor is imposed weakly
and so there are three primary variables, the stress tensor, the displacement vector
field, and the scalar rotation. We develop and analyze a stable family of methods,
indexed by an integer r ≥ 2 and with rate of convergence in the L2 norm of order r

for all the variables. The methods use Raviart–Thomas elements for the stress, piece-
wise tensor product polynomials for the displacement, and piecewise polynomials
for the rotation. We also present a simple first order element, not belonging to this
family. It uses the lowest order BDM elements for the stress, and piecewise constants
for the displacement and rotation, and achieves first order convergence for all three
variables.
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1 Introduction

In this paper we present mixed finite elements for planar linear elasticity which are
stable for general quadrilateral meshes. The mixed methods we consider are of the
equilibrium type in which the approximate stress tensor σh belongs to H(div) and
satisfies the equilibrium condition div σh = f exactly, at least for loads f which
are piecewise polynomial of low degree. However, the methods are based on the
mixed formulation of elasticity with weakly imposed symmetry, so that the condition
of balance of angular momentum, that is the symmetry of the stress tensor, will be
imposed only approximately, via a Lagrange multiplier, which may be interpreted
as the rotation. Thus, we consider a formulation in which there are three primary
variables, the stress tensor, the displacement vector field, and the scalar rotation. See
Eq. 1 below.

For this formulation, we propose a family of stable triples of elements, one for
each order r ≥ 2. The lowest order elements, r = 2, are illustrated in Fig. 2. For these
we use the second lowest order quadrilateral Raviart-Thomas elements for each row
of the stress tensor, discontinuous piecewise bilinear functions for each component of
the displacement, and discontinuous piecewise linear functions for the rotation. This
method converges with second order in the L2 norm for all the variables. We also
propose a simpler choice of elements, illustrated in Fig. 3. It uses the lowest order
rectangular BDM elements for each row of the stress field and piecewise constants
for both the displacement and the rotation, and converges with first order in the L2

norm for all the variables.
An important aspect of our approach is the way we transform the finite element

shape functions from a reference element to an actual quadrilateral element in the
mesh. In order to achieve a stable discretization we use three different transforma-
tions for the stress, the displacement, and the rotation. The displacement field is
simply transformed by composition with the inverse of the bilinear map from the
reference element to the quadrilateral, while the stress is mapped by the Piola trans-
form (applied row-by-row). The shape functions for the rotation, in contrast, are
not obtained by a transformation from the reference element, but are simply the
restriction of polynomials to the actual element.

To put this work in context, we recall that mixed finite elements for elasticity have
many well-known advantages: robustness with respect to material parameters, appli-
cability to more general constitutive laws such as viscoelasticity, etc. Consequently,
there is an extensive literature on them. For a survey of mixed finite elements for elas-
ticity through 2008, we refer to [15], but here we recall some of the main approaches
that relate to the present work. Recently many mixed finite elements have been devel-
oped, especially for the formulation in which the symmetry of the stress tensor is
imposed weakly (see the next section for a fuller discussion). Stable elements have
been developed for both triangles and rectangles. The latter apply easily to parallel-
ograms as well. However, up until now, for the formulation with weakly imposed
symmetry condition on the stress field, there have been no stable mixed finite ele-
ments available for meshes including general convex quadrilateral elements, even
though such meshes are preferred by many practitioners and implemented in many
finite element software systems.
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Stable pairs of stress and displacement elements for equilibrium mixed formu-
lations of elasticity with strong symmetry have been sought since the 1960s. The
first elements which were shown to be stable were proposed in [26] and analyzed in
[20]. These elements impose symmetry strongly, but they are composite elements, in
which the stress elements are piecewise linear with respect to a subdivision into three
triangles of each element of the triangular mesh used for the piecewise linear dis-
placements. In [20] a quadrilateral version was analysed as well, in which the stress
used a division into four triangular microelements for each quadrilateral mesh ele-
ment. The first stable elements with polynomial shape functions were not found for
triangular meshes until 2002 [9], and then developed for rectangular meshes in [2].
As far as we know, stable mixed finite elements with strong symmetry and polyno-
mial reference shape functions have not yet been discovered for general quadrilateral
meshes.

Because of the difficulty in developing stable mixed methods with strong symme-
try, the idea of imposing symmetry weakly was proposed already in 1965 [25]. The
first stable elements for this formulation were given in [1] and [5]. Since then numer-
ous stable finite elements with weak symmetry have been developed for simplicial
meshes [16, 22–24], especially since the connection with the de Rham complex and
finite element exterior calculus was made in [6, 7]; besides these papers, see [11,
14, 19]. Stable elements for the mixed formulation with weak symmetry have been
devised for rectangular meshes as well [10, 21]. The element which we develop in
the next section of this paper are, to the best of our knowledge, the first stable mixed
finite elements with weak symmetry for general quadrilateral meshes.

In the following section we discuss mixed methods based on weakly imposed
symmetry in more detail, and recall the conditions required for stable discretization
and quasioptimal estimates. In Section 3, we present a framework for the construction
of stable elements, based on two main ingredients: the connection between elasticity
elements and stable mixed finite elements for the Stokes equation and for the Poisson
equation, and the properties of various transformations of scalar, vector, and matrix
fields. Based on this framework, in Section 4 we define the finite elements described
above and verify their stability. In Section 5, we use the usual tools of mixed methods
to obtain improved rates of convergence in L2. Finally, in Section 6, we illustrate the
performance of the proposed elements with numerical computations.

2 Elasticity with weakly imposed symmetry and its discretization

In this section we recall the weak formulation of the elasticity system based on weak
imposition of the symmetry of the stress tensor, and its discretization by Galerkin’s
method. We then summarize the basic stability conditions and resulting error esti-
mate for such a method, and present a framework in which stable subspaces can be
constructed.

We writeM and S for the spaces of 2×2 matrices and symmetric matrices, respec-
tively. Let � be a bounded domain in R

2 occupied by an elastic body. The material
properties are described, at each point x ∈ �, by the compliance tensor A = A(x),
a linear operator S → S which is symmetric (with respect to the Frobenius inner
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product) and positive definite. We shall assume that the compliance tensor is bounded
and uniformly positive definite on �. We shall also require an extension of A to
an operator M → M which is still symmetric and positive definite. This can be
obtained, for example, by defining A to act as a positive multiple of the identity on
skew-symmetric matrix fields. In the case of a homogeneous and isotropic elastic
body,

Aσ = 1

2μ

(
σ − λ

2μ + 2λ
tr (σ )I

)
, σ ∈ M,

where I is the identity matrix and μ > 0 and λ ≥ 0 are the Lamé constants.
Given a vector field f on � encoding the body forces, the equations of static

elasticity determine the stress σ : � → S, and the displacement u : � → R
2,

satisfying the constitutive equation Aσ = ε(u), the equilibrium equation div σ = f ,
and boundary conditions, which, for simplicity, we take to be u = 0 on ∂�. Here
ε(u) is the symmetric part of the gradient of u and the divergence operator div applies
to the matrix field σ row-by-row. Similarly below we shall define curlw for a vector
field w as the matrix field whose first row is curlw1 and second row is curlw2, where
curl q = (∂2q, −∂1q) for a scalar function q.

To derive the weak formulation of elasticity which we shall use, we write
asym τ = τ12 − τ21 for the asymmetry of a matrix τ ∈ M and introduce the rotation
p = asym(grad u)/2. The constitutive equation then becomes

Aσ = grad u −
(
0 p

−p 0

)
.

This equation, together with the equilibrium equation and the equation asym σ = 0
explicitly stating the symmetry of σ , form the system of differential equations which
we shall discretize. For this we shall use the weak formulation, which is to find
(σ, u, p) ∈ H(div, �,M) × L2(�,R2) × L2(�) such that

(Aσ, τ) + (u, div τ) + (p, asym τ) = 0, τ ∈ H(div, �,M),

(div σ, v) = (f, v), v ∈ L2(�,R2),

(asym σ, q) = 0, q ∈ L2(�,R). (1)

It is convenient to define the space

Y = H(div, �,M) × L2(�,R2) × L2(�)

with the norms

‖(τ, v, q)‖Y = ‖τ‖H(div)+‖v‖L2+‖q‖L2, ‖(τ, v, q)‖L2 = ‖τ‖L2+‖v‖L2+‖q‖L2,

and to define B : Y × Y → R, F : Y → R by

B(σ, u, p; τ, v, q) = (Aσ, τ) + (u, div τ) + (p, asym τ) + (div σ, v)

+(asym σ, q), (2)

F(τ, v, p) = (f, v). (3)

Note that the bilinear form B is bounded with respect to the Y norm, with the bound
depending only on the upper bound for the compliance tensor A. In this notation, the
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weak formulation (1) takes the generic form: find y = (σ, u, p) ∈ Y such that

B(y, z) = F(z), z ∈ Y.

We approximate this by Galerkin’s method using finite element spaces �h ⊂
H(div, �,M), Vh ⊂ L2(�,R2), and Qh ⊂ L2(�). Setting Yh = �h × Vh × Qh,
the discrete solution yh = (σh, uh, ph) ∈ Yh is then defined by

B(yh, z) = F(z), z ∈ Yh.

We now recall some basic stability and convergence results from the theory of
mixed methods. For our problem, Brezzi’s stability conditions [13] are:

(S1) There exists a positive constant c1 such that ‖τ‖H(div) ≤ c1(Aτ, τ )1/2 when-
ever τ ∈ �h satisfies (div τ, v) = 0 for all v ∈ Vh and (asym τ, q) = 0 for all
q ∈ Qh.

(S2) There exists a positive constant c2 such that for each v ∈ Vh and q ∈ Qh,
there is a nonzero τ ∈ �h with

(div τ, v) + (asym τ, q) ≥ c2‖τ‖H(div)(‖v‖L2 + ‖q‖L2).

These conditions imply the inf-sup condition for the form B:

(S0) There exists a positive constant c0 (depending on c1 and c2) such that for each
y ∈ Yh there is a nonzero z ∈ Yh with B(y, z) ≥ c0‖y‖Y ‖z‖Y .

This in turn implies that the Galerkin solution (σh, uh, ph) exists and is unique, and
that it satisfies a quasioptimal estimate with respect to the norm in Y :

‖σ − σh‖H(div) + ‖u − uh‖L2 +‖p − ph‖L2 ≤ C inf(σ,v,q)∈Yh
(‖σ − τ‖H(div)

+‖u − v‖L2 + ‖p − q‖L2), (4)

withC depending only on c1, c2, and an upper bound forA. In particular, the constant
C is independent of the Lamé parameter λ if c1 and c2 are.

In the next section we study the construction of finite element spaces �h, Vh, and
Qh satisfying (S1) and (S2). First, however, we show that these conditions hold at
the continuous level, i.e., when �h is replaced by H(div, �,M), Vh by L2(�,R2),
and Qh by L2(�).

Lemma 1 The weak problem (1) is well-posed.

Proof To prove the continuous analogue of (S2), we use the fact that for any q ∈
L2(�) there exists w ∈ H 1(�,R2) with divw = q and ‖w‖H 1 ≤ C‖q‖L2 . For
example, we may extend q by zero to a smoothly bounded domain and solve the
Dirichlet problem for the Poisson equation 	u = q on that domain. Then w =
grad u|� has divergence q and satisfies the desired bound.

Now let v ∈ L2(�,R2) and q ∈ L2(�,R). Then we can choose η ∈ H 1(�,M)

such that
div η = v, ‖η‖H 1 ≤ C‖v‖L2 .

Similarly, we can choose w ∈ H 1(�,R2) such that

divw = q − asym η, ‖w‖H 1 ≤ C‖q − asym η‖L2 .
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If we then set τ = η − curlw, We have

div τ = div η = v, asym τ = asym η + divw = q.

Moreover

‖τ‖H(div) ≤ ‖η‖H(div) + ‖w‖H 1 ≤ C(‖v‖L2 + ‖q‖L2),

for a constant C > 0. This suffices to establish (S2) at the continuous level.
The proof of (S1) at the continuous level is simple: the condition (div τ, v) = 0 for

all v ∈ L2(�,R2) means that div τ = 0, so ‖τ‖H(div) = ‖τ‖L2 , which is bounded
by a constant multiple of (Aτ, τ )1/2, since the tensor A is positive definite for all
μ > 0, λ ≥ 0. However, this argument leads to a constant c1 which is dependent
not only on μ, but also on λ, and which tends to zero as λ tends to infinity, since
A loses definiteness in that limit. The standard way to rectify this is to use, instead
of the positive definiteness of A, the estimate (Aτ, τ ) ≥ (2μ)−1‖τD‖2

L2 where τD

is the deviatoric or trace-free part τ , and to invoke the bound ‖τ‖L2 ≤ c‖τD‖L2

for all τ ∈ H(div, �,M) which are divergence-free and which satisfy the additional
constraint

∫
�
tr τ dx = 0. This argument requires that the solution σ satisfies the con-

straint, for which it suffices to take the test function τ in (1) to be the constant matrix
field everywhere equal to the identity. In this way we may obtain well-posedness
uniformly in λ ≥ 0. For details, see, for instance, [5], [11], or [12, Prop. 9.1.1].

3 Construction of stable elements

In view of the preceding section, our goal is to construct finite element spaces
�h ⊂ H(div, �,M), Vh ⊂ L2(�,R2), and Qh ⊂ L2(�), satisfying the stabil-
ity conditions (S1) and (S2). We shall present such spaces in the next section. In
Section 3.1, we consider constructions that insure condition (S2), and in Section 3.2,
ones that insure (S1).

3.1 The stability condition (S2)

In order to attain (S2), we exploit a connection between stable mixed finite elements
for elasticity with weak symmetry and stable mixed finite elements for the Stokes
and Poisson equations. This connection, which we recall in Theorem 1, was first
observed in [16] and has been elaborated and employed in, for example, [11, 15, 19].
We note that it does not easily generalize to three dimensions.

A pair of spaces Wh ⊂ H 1(�,R2), Qh ⊂ L2(�), is stable for the Stokes
equations if it satisfies the appropriate inf-sup condition:

(S3) There exists a positive constant c3 such that for each q ∈ Qh there is a nonzero
w ∈ Wh with (divw, q) ≥ c3‖w‖H 1‖q‖L2 .

Numerous stable Stokes pairs are known, and in Section 4 we shall choose from
among them in order to fulfill (S3).

It is also useful to recall an equivalent form of (S3).
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Lemma 2 The inf-sup condition (S3) holds for some positive constant c3 if and only
if for all q ∈ Qh there exists w ∈ Wh such that PQh

divw = q and ‖w‖H 1 ≤
c−1
3 ‖q‖L2 , where PQh

: L2(�) → Qh is the L2-projection.

Proof Let Lh = PQh
div |Wh

: Wh → Qh, and let L∗
h : Qh → Wh be its

Hilbert space adjoint, where, as norms on Wh and Qh we use the H 1 and L2 norms,
respectively. Note that

sup
w∈Wh

(divw, q)

‖w‖H 1
= sup

w∈Wh

(Lhw, q)Qh

‖w‖Wh

= sup
w∈Wh

(w, L∗
hq)Wh

‖w‖Wh

= ‖L∗
hq‖Wh

,

so condition (S3) states that

‖L∗
hq‖Wh

≥ c3‖q‖Qh
, q ∈ Qh,

which is equivalent to stating that L∗
h is an injective map of Qh onto a subspace of

Wh with inverse bounded by c−1
3 . This in turn is equivalent to the statement that Lh

is a surjective map of Wh onto Qh and admits a right-inverse bounded by c−1
3 , which

is the desired condition.

For the mixed Poisson equation, the inf-sup condition uses the H(div) norm rather
than the H 1 norm. That is, a pair of spaces Sh ⊂ H(div, �,R2), Uh ⊂ L2(�) are
required to satisfy the condition:

(S4) There exists a positive constant c4 such that for each q ∈ Uh there is a nonzero
w ∈ Sh with (divw, q) ≥ c4‖w‖H(div)‖q‖L2 .

Again, there are numerous pairs of spaces known to satisfy (S4). The next theorem
gives the connection to mixed elasticity elements. It states that, if we choose a pair of
spaces satisfying (S3) and another satisfying (S4), and if the two choices satisfy the
compatibility condition (5) below, then we obtain spaces satisfying (S2).

Theorem 1 Suppose that Wh ⊂ H 1(�,R2) and Qh ⊂ L2(�) satisfy (S3) and that
Sh ⊂ H(div, �,R2) and Uh ⊂ L2(�) satisfy (S4). Suppose further that

curlWh ⊂ Sh × Sh. (5)

Then �h := Sh × Sh ⊂ H(div, �,M) and Vh := Uh × Uh ⊂ L2(�,R2) and
Qh ⊂ L2(�) satisfy (S2).

Proof Let v ∈ Vh, q ∈ Qh be given. Since �h = Sh × Sh and Vh = Uh × Uh, (S4)
implies that there exists η ∈ �h such that

(div η, v) = ‖v‖2
L2 , ‖η‖H(div) ≤ c−1

4 ‖v‖L2 .

Next we invoke (S3) with q replaced by q − PQh
(asym η). By Lemma 2, there exists

w ∈ Wh such that

PQh
(divw) = q − PQh

(asym η), ‖w‖H 1 ≤ c−1
3 (‖q‖L2 + ‖η‖L2).
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Set
τ = η − curlw ∈ �h.

Then
(div τ, v) = (div η, v) = ‖v‖2

L2 .

Also, since asym(curlw) = − divw,

(asym τ, q) = (asym η, q) + (divw, q)

= (PQh
(asym η), q) + (q − PQh

(asym η), q) = ‖q‖2
L2 ,

and
‖τ‖H(div) ≤ ‖η‖H(div) + ‖w‖H 1 ≤ C(‖v‖L2 + ‖q‖L2),

where C depends only on c3 and c4. This completes the verification of (S2).

3.2 The stability condition (S1)

The key to obtaining (S1) will be the construction of the finite element spaces �h

and Vh from shape function spaces �̂ ⊂ H(div, K̂,M) and V̂ ⊂ L2(K̂,R2) on a
reference element K̂ , which are transformed to a general element using appropri-
ate transformations. We define these transformations now and summarize their main
properties in Lemma 8 below. Based on these we establish (S1) in Theorem 2.

Suppose that FK : K̂ → K is a diffeomorphism of bounded domains in the plane.
(In the applications in the next section, K̂ will be the unit square and FK will be
an invertible bilinear map onto a convex quadrilateral K .) A scalar- or vector-valued
function q̂ on K̂ transforms to a function P 0

Kq̂ on K by composition:

P 0
Kq̂(x) = q̂(X̂),

where x = FK(X̂). A different way to transform a scalar- or vector-valued function
brings in the Jacobian determinant JK = det gradFK :

P 2
Kq̂(x) = 1

JK(X̂)
q̂(X̂).

The notation refers to exterior calculus: P 0
K corresponds to pull back by F−1

K if we
think of q̂ as a differential 0-form on K̂ , and P 2

K corresponds to pull back as a 2-
form. A third way to transform a vector-valued function is to treat it as a 1-form, i.e.,
to use the Piola transform:

P 1
Kv̂(x) = 1

JK(X̂)
[gradFK(X̂)]v̂(X̂). (6)

We can also transform a matrix-valued function on K̂ to one on K by applying the
Piola transform to each row. This transformation will also be denoted by P 1

K . We
have the following fundamental identities.

Lemma 3
curlP 0

Kv̂ = P 1
K(curl v̂), divP 1

Kτ̂ = P 2
K(div τ̂ ), (7)
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and

(P 2
Kq̂, P0v̂)L2(K) = (q̂, v̂)

L2(K̂)
, (divP 1

Kτ̂ , P 0
Kv̂)L2(K) = (div τ̂ , v̂)

L2(K̂)
. (8)

Proof The above relationships follow naturally in exterior calculus, or can be
verified by elementary vector calculus.

Now, let K̂ ⊂ R
2 be a fixed reference element (e.g., the unit square), and suppose

that Th is a partition of � into finite elements such that for each K ∈ Th there is given
a diffeomorphism FK of K̂ onto K . Suppose we are given a reference shape function
space V̂ ⊂ L2(K̂,R2) and that the finite element space Vh is defined by

Vh = { v ∈ L2(�,R2) : v|K ∈ P 0
KV̂ , ∀K ∈ Th }. (9)

Further assume given a reference shape function space �̂ ⊂ H(div, K̂,M) and
suppose that the finite element space �h satisfies

�h = { τ ∈ H(div, �,M) : τ |K ∈ P 1
K�̂, ∀K ∈ Th }. (10)

Finally, assume that the shape function spaces are related by the inclusion

div �̂ ⊂ V̂ . (11)

These conditions imply (S1).

Theorem 2 If the shape function spaces V̂ and �̂ satisfy (11), and the finite element
spaces Vh and �h are defined by Eqs. 9 and 10, then (S1) holds.

Proof It is certainly sufficient to prove that if τ ∈ �h and (div τ, v) = 0 for all
v ∈ Vh, then div τ = 0. Indeed, this property implies (S1).

Pick K ∈ Th and set τ̂ = (P 1
K)−1(τ |K), v̂ = div τ̂ . By Eq. 10, τ̂ ∈ �̂, and by Eq.

11, v̂ ∈ V̂ . Define v ∈ L2(�,R2) by v|K = (P 0
K)−1v̂, and v ≡ 0 on � \ K . By Eq.

9, v ∈ Vh, and so, by assumption, (div τ, v) = 0. Using Eq. 8,

(div τ, v) = (div τ |K, v|K)L2(K) = (div τ̂ , v̂)
L2(K̂)

= ‖div τ̂‖2
L2(K̂)

.

Thus div τ̂ = 0, and so, with Eq. 7 div τ |K = P 2
K(div τ̂ ) = 0. Since K was arbitrary,

this shows that div τ vanishes, as desired.

Remark 1 This argument leads to the constant c1 in (S1) depending on both λ and
μ. Just as for the continuous case discussed at the end of Section 2, a slightly more
elaborate argument shows that c1 can be taken independent of λ. For this we need to
choose the test function τ equal to the constant identity matrix in order to show that
the σh satisfies the constraint

∫
tr σh dx = 0. Thus we have to check that the constant

identity matrix field belongs to �h. From the definition (10) this means checking that
(P 1

K)−1I ∈ �̂, i.e., that JK(X̂)[gradFK(X̂)]−1 ∈ �̂. Now JK(X̂)[gradFK(X̂)]−1

is the transposed matrix of cofactors of the Jacobian matrix gradFK(X̂). Since the
components of FK(X̂) are bilinear, the cofactors are linear polynomials. Thus, as
long as the reference space function space �̂ contains the space P1(K̂,M), then
Theorem 2 results in (S1) holding with constant c1 independent of λ, and the resulting
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mixed method will not exhibit locking for nearly incompressible materials. This is
the case for all of the choices of �̂ we make below.

4 Stable elements for elasticity

Theorems 1 and 2 give strong guidance on the construction of stable spaces �h, Vh,
and Qh for elasticity. First, we require spaces Wh, Qh, Sh, Uh which satisfy the
hypotheses of Theorem 1, i.e., the first two form a stable pair for the Stokes equations
and the latter two a stable pair for the mixed Poisson equation, and the compatibility
condition (5) is satisfied. In order that the hypothesis of Theorem 2 are also met, we
will construct these four spaces starting with shape functions on a reference element
using appropriate transformations. Finally, we take �h = Sh × Sh, Vh = Uh × Uh,
and Qh as our elements for the stress, displacement, and rotation. Note that the space
Wh (the Stokes velocity space) is only used for the analysis, and does not enter the
mixed method for elasticity.

We henceforth denote by K̂ the unit square, and we assume that the partition Th

of � consists of convex quadrilaterals K , and that each FK is a bilinear isomorphism
of K̂ onto K . We assume that Th is shape regular in the sense of [18, p. 105]. To
define this, we consider for each convex quadrilateral the four triangles obtained by
connecting three of its vertices and let ρK be the smallest of the diameters of the
corresponding inscribed circles. A sequence of quadrilateral meshes is shape regular
if there is a constant σ such that diam(K)/ρK ≤ σ for all the elements in the meshes.

4.1 A first choice of elements

Let Pr denote the space of polynomials of degree at most r , and Pr,s the space
of polynomials of degree at most r in x1 and s in x2. We write Qr for Pr,r , and
RT r = Pr,r−1 × Pr−1,r . The last space consists of the shape functions for the
Raviart–Thomas space on a square. For K ⊂ R

2 we write Pr (K) for functions on K

obtained by restriction of polynomials in Pr , and use a similar notation for the other
spaces.

For our first choice of elements, the vector-valued finite element spaces Wh and
Sh will be constructed starting from reference shape function spaces:

Ŵ = Q2(K̂) × Q2(K̂), Ŝ = RT 2(K̂).

These satisfy
curl Ŵ ⊂ Ŝ × Ŝ. (12)

We then set

Wh = {w ∈ H 1(�,R2) : w|K ∈ P 0
KŴ, ∀K ∈ Th }, (13)

Sh = { s ∈ H(div, �,R2) : s|K ∈ P 1
KŜ, ∀K ∈ Th }. (14)

Note that the transform P 0
K is used to define Wh, but the Piola transform P 1

K is
used in the definition of Sh. Using Eq. 12 and the first property in Eq. 7 of the
transformations, we see that the crucial compatibility condition (5) is satisfied.
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The scalar-valued space Uh is also defined starting with reference shape functions.
We choose Û = Q1 and define

Uh = { u ∈ L2(�) : u|K ∈ P 0
KÛ, ∀K ∈ Th }. (15)

In contrast, the scalar-valued space Qh is defined directly using polynomials on the
elements of Th with no interelement continuity:

Qh = { q ∈ L2(�) : q|K ∈ P1(K), ∀K ∈ Th }.
Each of the spaces Wh, Qh, Sh, Uh has a standard set of degrees of freedom which

enforce the desired degree of continuity for the assembled spaces Wh, Qh, Sh, and
Uh. For Ŵ the degrees of freedom are the values of both components at the vertices
of the square, the integral of both components on the edges, and the integral of both
components over the square. For Ŝ they are the averages and first moments of the
normal component on each edge and the interior moments weighted by P0,1 × P1,0.
For Q̂ and Û all the degrees of freedom are interior. Figure 1 illustrates the degrees
of freedom for the four spaces, and also includes an indication of how the shape
functions transform to the reference element for each space. Note that the functions
in Wh are vector fields, so each of the dots in the corresponding diagram represent
two degrees of freedom.

The Stokes pair Wh, Qh is a standard Stokes element, the Q2–P1 element, for
which the inf-sup condition (S3) is well known. See [18, Chapter II, Section 3.2].
The mixed Poisson pair Sh, Uh is a standard choice as well, the quadrilateral Raviart–
Thomas elements of second lowest order. A proof of the inf-sup condition (S4) for
general quadrilateral meshes is given, e.g., in [4]. We have thus verified the hypothe-
ses of Theorem 1. Therefore if we define �h = Sh ×Sh and Vh = Uh ×Uh, the triple
�h, Vh, Qh satisfies (S2).

From the definitions of Sh and Uh, it follows that Eq. 9 holds with V̂ = Û × Û

and Eq. 10 holds with �̂ = Ŝ × Ŝ. Since div Ŝ ⊂ Û , (11) holds. Theorem 2 thus
applies, showing that the spaces�h, Vh,Qh satisfy (S1) as well. Thus we have indeed
constructed a stable triple of spaces for the elasticity problem, satisfying the stability
condition (S0) and therefore the quasioptimality estimate Eq. 4. The diagram for the
elements are shown in Fig. 2.

Fig. 1 Degrees of freedom and transformations used to construct the first elements
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Fig. 2 The first choice of elasticity elements

4.2 Higher order elements

The above elements generalize directly to arbitrary order r ≥ 2. For the Stokes
element we use Qr -Pr−1, and for the mixed Poisson element we useRT r -Qr−1.

4.3 A simpler element

In this section we derive a simpler element. The stress is approximated by the lowest
order quadrilateral BDM elements, which is constructed from an 8-dimensional space
BDM1 of reference shape functions, spanned by P1 vector fields together with the

two vector fields curl x̂2
1x2 curl X̂1x

2
2 . The displacement and rotation spaces simply

consist of piecewise constants. This element is thus a quadrilateral analogue of the
simple triangular finite element for elasticity with weak symmetry introduced in [6]
and [8]. The elasticity element is summarized in Fig. 3.

Note that the mixed Poisson gradient space is based on BDM1 rather than RT 2
as in the first element. For analysis, we define the Stokes velocity space using the
serendipity space S2 instead of Q2. The space of serendipity polynomials Sr is
defined to be the span of Pr and the two polynomials xr

1x2 and x2x
r
2, and the space

BDMr is the span of Pr ×Pr and the two vector fields curl x
r+1
1 x2 and curl x1x

r+1
2 .

Thus, for this element, the reference shape functions are

Ŵ = S2(K̂) × S2(K̂), Ŝ = BDM1(K̂), Û = P0(K̂),

Fig. 3 A simple stable choice of elasticity elements
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and the spaces Wh, Sh and Uh are then defined by Eqs. 13, 14, 15. Note that the
crucial compatibility condition curl Ŵ ⊂ Ŝ × Ŝ again holds. The remaining space is

Qh = { q ∈ L2(�) : q|K ∈ P0(K), ∀K ∈ Th }.

Since constants on the reference element map by P 0
K to constants on the element K ,

for this element Qh and Uh coincide, and are simply the space of piecewise constant
functions. The element diagrams for these auxiliary spaces are given in Fig. 4. This
Stokes element is the one referred to as Q

(8)
2 –P0 in [17], for which it is easy to prove

stability using the edge degrees of freedom. This is discussed in [17], where it is
shown the inf-sup condition (S3) holds (on general quadrilateral meshes) for a variant
of the element (R(8)

2 –P0) which uses the same pressure space and a smaller velocity
space. This of course implies the inf–sup condition with the larger velocity space. The
BDM1–P0 element is a standard stable mixed finite element for the Poisson equation.
Its stability on general quadrilateral meshes is shown, for instance, in [4]. Thus all
the hypotheses of Theorems 1 and 2 are again met, and the choice �h = Sh × Sh,
Vh = Uh × Uh, and Qh give a stable element for elasticity.

5 L2 estimates and rates of convergence

The rate of convergence that can be deduced from the quasioptimal error estimate
Eq. 4 is limited by the approximation properties of the finite element space �h in
the H(div) norm. We can demonstrate higher rates of convergence by establishing a
bound in the L2 norm, as we do in this section.

In order to obtain an estimate in L2(�,M) × L2(�,R2) × L2(�), we impose a
further condition:

(S5) There exists a projection �h from H 1(�,M) onto �h such that

PVh
div�hσ = PVh

div σ.

Here PVh
: L2(�,R2) → Vh is the L2-projection.

Fig. 4 Degrees of freedom used to construct the second elements
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Theorem 3 Suppose that conditions (S0) and (S5) are satified. Then

‖σ − σh‖L2 + ‖u − uh‖L2 + ‖p − ph‖L2

≤ C(‖σ − �hσ‖L2 + ‖u − PVh
u‖L2 + ‖p − PQh

p‖L2).

Proof We decompose the error into the projected error

ηh = (�hσ − σh, PVh
u − uh, PQh

p − ph) ∈ Yh,

and the projection error

η̄h = (σ − �hσ, u − PVh
u, p − PQh

p).

Making use of the triangle inequality, it suffices to show that ‖ηh‖L2 ≤ C‖η̄h‖.
By the inf-sup condition (S0), there exists a non-zero z = (τ, v, q) ∈ Yh such that

B(ηh, z) ≥ c0‖ηh‖Y ‖z‖Y ≥ c0‖ηh‖L2‖z‖Y . (16)

Now, by Galerkin orthogonality,

B(ηh, z) = −B(η̄h, z). (17)

The quantity B(η̄h, z) is a sum of five terms according to the definition (2) of the
bilinear form, but the fourth term, (div(σ − �hσ), v), vanishes, because of the
assumption (S5). We then have

B(η̄h, z) ≤ C‖η̄h‖L2‖z‖Y , (18)

where C depends only on an upper bound for A. Combining Eqs. 16, 17, and 18, we
conclude that ‖ηh‖L2 ≤ c−1

0 C‖η̄h‖L2 .

We now give a simple criteria which makes it easy to verify that all finite element
spaces introduced in Section 4 satisfy assumption (S5). See [4] for details on the
verification.

Lemma 4 Let �̂ be a bounded projection operator fromH 1(K̂,M) onto �̂ such that

div �̂σ̂ = P
V̂
div σ̂ , ∀σ̂ ∈ H 1(K̂,M), (19)

where P
V̂
is the L2-projection onto V̂ . Define �h : H 1(�,M) → Vh by

�hσ |K = P 1
K�̂(P 1

K)−1(σ |K), ∀K ∈ Th.

Then, we have that

PVh
div�hσ = PVh

div σ, ∀σ ∈ H 1(�,M).

Proof Given σ ∈ H 1(�,M), we have σ̂ := (P 1
K)−1 (σ |K) ∈ H 1(K̂,M) for any

K ∈ Th. For v ∈ Vh, we have v̂ := (
P 0

K

)−1
(v|K) ∈ V̂ and by Eqs. 7, 8 and 19, we
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have

(div�hσ, v)L2(K) = (divP 1
K�̂σ̂ , P 0

Kv̂)L2(K) = (P 2
K div �̂σ̂ , P 0

Kv̂)L2(K)

= (div �̂σ̂ , v̂)
L2(K̂)

= (P
V̂
div σ̂ , v̂)

L2(K̂)
= (div σ̂ , v̂)

L2(K̂)

= (div σ, v)L2(K).

5.1 Approximation properties on quadrilateral meshes

We now recall some results on the approximation rates achieved by finite element
spaces on shape regular meshes of convex quadrilaterals. In [3] it is shown that if Xh

is a finite element space of scalar functions derived from shape function spaces XK

which are themselves obtained from a reference shape function space X̂ via the trans-
formation P 0

K , then Xh achieves approximation order r+1 in the L2 norm if and only
ifQr ⊂ X̂. In [4], it shown that if Xh is a finite element space of vector fields derived
from shape function spaces XK defined from a reference space X̂ via the Piola trans-
form P 1

K , then a necessary and sufficient condition for order r + 1 approximation in
the L2 norm is that Ur ⊂ X̂ while the condition for order r + 1 approximation of
div u in the L2 is Rr ⊂ div X̂. Here Ur is the subspace of codimension 1 of RT r+1
defined as the span of the vector fields

(x̂i
1x̂

j

2 , 0), (0, x̂j

1 x̂i
2), 0 ≤ i ≤ r + 1, 0 ≤ j ≤ r,

except that the two vector fields (x̂r+1
1 x̂r

2, 0) and (0, x̂r
1 x̂

r+1
2 ) are replaced by the

single vector field (x̂r+1
1 x̂r

1, −x̂r
1 x̂

r+1
1 ). The spaceRr is the subspace of codimension

1 of Qr+1 spanned by all its monomials except x̂r+1
1 x̂r+1

2 .

5.2 Rates of convergence of the proposed elements

Our first choice of finite element spaces is built from the reference spaceRT 2 trans-
formed by P 1

K , the space Q1 transformed by P0
K , and the space P1, not subject to

a transformation, as depicted in Fig. 2. It follows that each of these spaces achieves
quadratic convergence in L2. To verify the assumption (S5), we use Lemma 4 and
take as �̂ the canonical interpolation operator associated with the degrees of freedom
of �̂. In light of Theorem 3, the finite element solution converges quadratically in
L2 for all variables if the solution is smooth. Concerning approximation of the diver-
gence, we have R0 ⊂ Q1 = divRT 2, but R1 � divRT 2, so the approximation
error in H(div) is only first order (and so the finite element method converges with
first order in H(div) by Eq. 4)). Similarly, the higher order methods of this family,
described in Section 4.2, achieve order r convergence in L2 for all variables, but in
H(div) the convergence order for the stress is reduced to r − 1. Of course on meshes
in which all the elements are square, or, more generally, parallelograms, the rate of
convergence in H(div) is r .

Similar reasoning, applied to the simple choice of elements described in
Section 4.3 and illustrated in Fig. 3, establishes linear convergence for all variables
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in L2. However, sinceR0 � P1 = divBDM1, we do not expect any convergence in
H(div) on general quadrilateral meshes.

6 Numerical results

In this section, we present simple numerical results which illustrates the error esti-
mates just obtained. We take the domain to be the unit square and consider two
sequences of meshes, the first using uniform meshes into subsquares, and the sec-
ond consisting of meshes in which every element is congruent to a fixed trapezoid,
as illustrated in Fig. 5. The trapezoidal mesh sequence was introduced in [3] to study
finite element approximation on quadrilateral meshes. For the test problem we take
the elasticity system with homogeneous Dirichlet boundary conditions and the exact
solution

u1 = cos(πx) sin(2πy), u2 = sin(πx) cos(πy).

The body force f is then determined using the values λ = 123 and μ = 79.3 for the
Lamé coefficients.

In Table 1, we show errors and convergence rates in the L2 norm for σ , div σ , u

and p, using the elements of Section 4.1. As expected all three variables converge
quadratically in L2, while div σ converges only linearly with trapezoidal meshes,
and quadratically for square meshes. Table 2 illustrates the same quantities for the
simple stable choice of elasticity elements of Section 4.3, showing the expected linear
convergence, which reduces to no convergence for the divergence computed with
trapezoidal meshes.

In Fig. 6, we show numerical evidence of the locking-free property of the BDM
type elements of Section 4.3 (illustrated in Fig. 3) on trapezoidal meshes. The exact
solution is the same as above and the Young’s modulus E is taken as 1000. The two
figures show the convergence history of the stress and displacement as a function
of the total number of degrees of freedom for the stress, the displacement and the
rotation. We used various values of the Poisson ratio ν close to the limiting value of
0.5. Recall that

λ = Eν

(1 + ν)(1 − 2ν)
.

Fig. 5 Square and trapezoidal meshes
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Table 1 Convergence results for the elements of Section 4.1 (illustrated in Fig. 2)

Square meshes

‖σ − σh‖L2(�) ‖ div(σ − σh)‖L2(�)

h error % order error % order

1/2 3.06e+2 31.8 1.83e+3 35.9

1/4 6.64e+1 6.91 2.2 4.19e+2 8.21 2.1

1/8 1.59e+1 1.65 2.1 1.07e+2 2.10 2.0

1/16 3.88e+0 0.403 2.0 2.70e+1 0.529 2.0

1/32 9.61e−1 0.0998 2.0 6.77e+0 0.132 2.0

1/64 2.39e−1 0.0248 2.0 1.69e+0 0.0331 2.0

1/128 5.98e−2 0.00621 2.0 4.23e−1 0.00828 2.0

‖u − uh‖L2(�) ‖p − ph‖L2(�)

h error % order error % order

1/2 2.33e−1 33.0 7.28e−1 41.5

1/4 4.87e−2 6.89 2.3 2.17e−1 12.4 1.7

1/8 1.24e−2 1.76 2.0 5.60e−2 3.19 2.0

1/16 3.12e−3 0.442 2.0 1.40e−2 0.800 2.0

1/32 7.82e−4 0.110 2.0 3.51e−3 0.200 2.0

1/64 1.95e−4 0.0276 2.0 8.78e−4 0.0500 2.0

1/128 4.89e−5 0.00691 2.0 2.19e−4 0.0125 2.0

Trapezoidal meshes

‖σ − σh‖L2(�) ‖ div(σ − σh)‖L2(�)

h error % order error % order

1/2 3.35e+2 34.8 2.06e+3 40.4

1/4 8.93e+1 9.29 1.9 5.95e+2 11.6 1.8

1/8 2.11e+1 2.19 2.0 1.84e+2 3.60 1.6

1/16 5.24e+0 0.560 2.0 7.14e+1 1.40 1.3

1/32 1.30e+0 0.135 2.0 3.25e+1 0.636 1.1

1/64 3.26e−1 0.0339 2.0 1.58e+1 0.310 1.0

1/128 8.16e−2 0.00847 2.0 7.87e+0 0.154 1.0

‖u − uh‖L2(�) ‖p − ph‖L2(�)

h error % order error % order

1/2 2.59e−1 36.7 7.34e−1 41.8

1/4 6.57e−2 9.30 1.9 2.61e−1 14.9 1.4

1/8 1.57e−2 2.23 2.0 7.12e−2 4.06 1.8

1/16 3.96e−3 0.560 1.9 1.79e−2 1.02 1.9

1/32 9.93e−4 0.140 2.0 4.49e−3 0.256 2.0

1/64 2.48e−4 0.0351 2.0 1.12e−3 0.064 2.0

1/128 6.20e−5 0.00878 2.0 2.81e−4 0.0160 2.0
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Table 2 Convergence results for the elements of Section 4.3 (illustrated in Fig. 3)

Square meshes

‖σ − σh‖L2(�) ‖ div(σ − σh)‖L2(�)

h error % order error % order

1/2 6.20e+2 64.5 3.40e+3 66.5

1/4 2.51e+2 26.2 1.3 2.28e+3 44.8 0.5

1/8 1.09e+2 11.4 1.2 1.18e+3 23.3 0.9

1/16 5.23e+1 5.43 1.1 6.00e+2 11.7 1.0

1/32 2.58e+1 2.68 1.0 3.01e+2 5.89 1.0

1/64 1.28e+1 1.34 1.0 1.50e+2 2.95 1.0

1/128 6.42e+0 0.667 1.0 7.53e+1 1.47 1.0

‖u − uh‖L2(�) ‖p − ph‖L2(�)

h error % order error % order

1/2 4.29e−1 60.7 1.63e+0 93.4

1/4 2.90e−1 41.1 0.5 7.97e−1 45.4 1.0

1/8 1.49e−1 21.1 1.0 4.13e−1 23.6 0.9

1/16 7.48e−2 10.6 1.0 2.08e−1 11.9 1.0

1/32 3.74e−2 5.30 1.0 1.04e−1 5.94 1.0

1/64 1.87e−2 2.65 1.0 5.21e−2 2.97 1.0

1/128 9.37e−3 1.32 1.0 2.61e−2 1.49 1.0

Trapezoidal meshes

‖σ − σh‖L2(�) ‖ div(σ − σh)‖L2(�)

h error % order error % order

1/2 6.67e+2 69.3 3.70e+3 72.4

1/4 2.90e+2 30.2 1.1 2.58e+3 50.6 0.52

1/8 1.22e+2 12.7 1.2 1.59e+3 31.3 0.69

1/16 5.77e+1 6.00 1.0 1.19e+3 23.4 0.42

1/32 2.84e+1 2.95 1.0 1.06e+3 20.8 0.16

1/64 1.41e+1 1.46 1.0 1.03e+3 20.2 0.05

1/128 7.03e+0 0.731 1.0 1.02e+3 20.0 0.01

‖u − uh‖L2(�) ‖p − ph‖L2(�)

h error % order error % order

1/2 4.72e−1 66.8 1.70e+0 97.0

1/4 2.97e−1 42.1 0.6 9.05e−1 51.6 0.9

1/8 1.60e−1 22.6 0.8 4.46e−1 25.4 1.0

1/16 8.05e−2 11.4 1.0 2.25e−1 12.8 0.9

1/32 4.03e−2 5.70 1.0 1.12e−1 6.42 1.0

1/64 2.01e−2 2.85 1.0 5.64e−2 3.21 1.0

1/128 1.00e−2 1.43 1.0 2.82e−2 1.61 1.0
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Fig. 6 Error of the first order method for several values of the Poisson ratio, displacement on left, stress
on the right. The curves nearly coincide, illustrating the absence of locking

Acknowledgements The work of the first author was partially supported by NSF grant DMS-1115291
and the Leverhulme Foundation. The work of the second author was partially supported by NSF grant
DMS-0811052 and a 2009-2011 Sloan Foundation Fellowship. This work was begun when the authors
were visitors of the Institute for Mathematics and its Applications in 2010–2011 and completed while the
first author was visiting the University of Cambridge. The authors would like to thank the anonymous
referees for their suggestions.

References

1. Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math.
33, 367–383 (1979)

2. Arnold, D.N., Awanou, G.: Rectangular mixed finite elements for elasticity. Math. Models Methods
Appl. Sci. 15(9), 1417–1429 (2005)

3. Arnold, D.N., Boffi, D., Falk, R.S.: Approximation by quadrilateral finite elements. Math. Comp.
71(239), 909–922 (2002). electronic

4. Arnold, D.N., Boffi, D., Falk, R.S.: QuadrilateralH (div) finite elements. SIAM J. Numer. Anal. 42(6),
2429–2451 (2005)

5. Arnold, D.N., Brezzi, F., Douglas, J.Jr.: PEERS: a new mixed finite element for plane elasticity. Jpn.
J. Appl. Math. 1(2), 347–367 (1984)

6. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element meth-
ods II: The elasticity complex. In: Arnold, D., Bochev, P., Lehoucq, R., Nicolaides, R., Shaskov,
M. (eds.): Compatible Spatial Discretizations, IMA Vol. Math. Appl., vol. 142, pp. 47–68. Springer,
Berlin (2006)

7. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and
applications. Acta Numer 15, 1–155 (2006)

8. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly
imposed symmetry. Math. Comput. 76, 1699–1723 (2007)

9. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)
10. Awanou, G.: Rectangular mixed elements for elasticity with weakly imposed symmetry condition.

Adv. Comput. Math. 38(2), 351–367 (2013)
11. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl.

Anal. 8(1), 95–121 (2009)
12. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, Springer Series in

Computational Mathematics, vol. 44. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36519-5
13. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from

Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8,
129–151 (1974)

http://dx.doi.org/10.1007/978-3-642-36519-5


572 D. N. Arnold et al.

14. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak
stress symmetry. Math. Comp. 79(271), 1331–1349 (2010)

15. Falk, R.S.: Finite element methods for linear elasticity. In: Boffi, D., Gastaldi, L. (eds.): Mixed
finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics, vol. 1939.
Springer-Verlag, Berlin (2008). Lectures given at the C.I.M.E. Summer School held in Cetraro, June
26–July 1, 2006

16. Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified
approach. Numer. Math. 76, 419–440 (1997)

17. Fortin, M.: Old and new finite elements for incompressible flows. Internat. J. Numer. Methods Fluids
1(4), 347–364 (1981)

18. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations, Springer Series in
Computational Mathematics, vol. 5. Springer, Berlin (1986)

19. Gopalakrishnan, J., Guzmán, J.: A second elasticity element using the matrix bubble. IMA J. Numer.
Anal. 32(1), 352–372 (2012)

20. Johnson, C., Mercier, B.: Some equilibrium finite element methods for two-dimensional elasticity
problems. Numer. Math. 30(1), 103–116 (1978)

21. Morley, M.E.: A family of mixed finite elements for linear elasticity. Numer. Math. 55(6), 633–666
(1989)

22. Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity
problem. Numer. Math. 48(4), 447–462 (1986)

23. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–
538 (1988)

24. Stenberg, R.: Two low-order mixed methods for the elasticity problem. In: The mathematics of finite
elements and applications, VI (Uxbridge, 1987), pp. 271–280. Academic Press, London (1988)

25. Fraeijs de Veubeke, B.M.: Displacement and equilibrium models in the finite element method. In:
Zienkiewicz, O.C., Holister, G.S. (eds.): Stress Analysis, pp. 145–197. Wiley, New York (1965)

26. Watwood, V.B.Jr., Hartz, B.J.: An equilibrium stress field model for finite element solution of two-
dimensional elastostatic problems. Internat. J. Solids Structures 4, 857–873 (1968)


	Mixed finite elements for elasticity on quadrilateral meshes
	Abstract
	Introduction
	Elasticity with weakly imposed symmetry and its discretization
	Construction of stable elements
	The stability condition (S2)
	The stability condition (S1)

	Stable elements for elasticity
	A first choice of elements
	Higher order elements
	A simpler element

	L2 estimates and rates of convergence
	Approximation properties on quadrilateral meshes
	Rates of convergence of the proposed elements

	Numerical results
	Acknowledgements
	References


