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Abstract

This work presents a new adaptive multilevel approximation of the gradient operator on a
recursively refined spherical geodesic grid. The multilevel structure provides a simple way to
adapt the computation to the local structure of the gradient operator so that high resolution
computations are performed only in regions where singularities or sharp transitions occur.
This multilevel approximation of the gradient operator is used to solve the linear spherical
advection equation for both time-independent and time-dependent wind field geophysical
test cases. In contrast with other approximation schemes, this approach can be extended
easily to other curved manifolds by choosing an appropriate coarse approximation and using
recursive surface subdivision. The results indicate that the adaptive gradient calculation
and the solution of spherical advection equation accurate, efficient and free of numerical
dispersion.

Keyword: Second generation wavelet, Gradient operator on the sphere, Spherical geodesic
grid, Advection equation, Adaptive wavelet collocation method.

1 Introduction

Many physical systems are characterized by a wide range of active spatial and temporal
scales. In addition, applications in geophysics and medicine require tools for analyzing data
on a sphere or on other regular closed surfaces [1, 2]. These tools often rely on computing the
gradient of a function defined on the curved surface. Numerical approximation of the gradient
on the sphere is also necessary to model the tropical atmosphere [3], for transportation problems
[4], in image processing [5] and in computer vision [6]. Moreover, in image processing gradient
operators are used in the detection of edges and for estimating their local orientation. In medical
imaging [7], gradients are used to estimate the direction of surface normals when processing
volumetric data. Gradients are also required to evaluate the source term in turbulence models,
such as large eddy simulation (LES). In this paper we introduce a new way to approximate
the gradient operator on the sphere for functions containing localized small scale structure (i.e.
sharp transitions). This approach is adaptive, computationally efficient, and does not suffer
from numerical dispersion.

Operational models in atmospheric physics, meteorology and climatology are increasingly
based on spherical geodesic grids. The main reason for the choice of this grid is its quasi-
uniform convergence on the sphere, which avoids the problems associated with the traditional
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latitude-longitude grid with the approximation of crucial differential operators[8] (e.g. Lapla-
cian, Jacobian, divergence and gradient). Accurate and stable numerical schemes, together
with consistent physical parameterizations, are needed for atmospheric simulations. In ad-
dition to these requirements, computational efficiency is necessary for long-term simulations,
which means higher resolutions should be used only in regions with fine structure. Furthermore,
in many situations the small spatial scales are highly localized, and thus efficient solution of
the problem requires a locally adapted grid. Wavelets provide a natural way of dealing with
this class of problems. Their power lies in the fact that they only require a small number of
coefficients to accurately represent smooth functions and large data sets.

Wavelet analysis and approximation is now used in many areas, including signal processing,
data and image compression, solution of partial differential equations (PDEs) and modelling
multi-scale phenomena. Well-known orthogonal and continuous wavelets include the Daubechies
wavelet [9], Coiflets [9], Meyer wavelet [10] and Morlet wavelet [9]. Wavelet transforms devel-
oped in the 1980s (so-called first generation wavelets) were constructed in Fourier space using
basis functions that are dilations and translations of a single function (the mother wavelet).
These wavelets were therefore limited to flat geometries and simple domains. We use Swelden’s
[11] second generation wavelets to overcome these limitations, which allows wavelets to be
defined on general curved surfaces.

A dynamically adaptive multilevel wavelet collocation method for the solution of partial
differential equations in flat geometry and finite domains was developed by Vasilyev et al.
[12, 13]. Adaptive wavelet methods have been developed for other applications in [14, 15, 16, 17].
Recently, this adaptive wavelet collocation methods has been extended from flat geometry to
spherical geometry by Mehra and Kevlahan [18] and subsequently extended by [19, 20]. The
new adaptive multiscale gradient operator defined here extends the applicability and power of
such wavelet methods.

An important application of this new gradient operator approximation is to advection. Since
geophysical fluid motions on all scales are dominated by the advection process, the numerical
solution to the advection problem is crucial for the overall accuracy of the flow solver. Further-
more, in physical–chemical problems exact discrete conservation of certain physical quantities,
such as mass, is highly desirable. In [18] the advection equation on a curved surface was
approximated based on the conservation form,

∂u

∂t
+∇ · (~V u) =

∂u

∂t
+∇ · (u∇χ)− J(u, ψ). (1)

This representation uses the Helmholtz–Hodge decomposition of the velocity field V into two
scalar potentials, χ and ψ,

~V = k×∇ψ +∇χ, (2)

where k is the unit vector normal to the surface, ψ is the stream function representing the
divergence-free part, and χ is the velocity potential representing the curl-free part. The Jacobian
operator is defined by J(α, β) = k · (∇α×∇β) for arbitrary scalar functions α and β.

Although the flux–divergence form of the advection equation (1) is well suited to collocated
numerical approximations of the shallow-water equations on the sphere [21], it is computation-
ally expensive as it requires solving two elliptic equations to find the two scalar potentials χ
and ψ from the velocity field ~V at each time step. In addition, in [18] we found that it suffers
from numerical dispersion when used in the linear advection equation on the sphere. Numerical
dispersion is undesirable for advection problems as it leads to large accumulated errors when
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the equations are integrated over long times. Thus, it is often preferable to approximate the
advection operator directly in non-conservation form using the gradient operator,

∇ · (~V u) = ~V · ∇u+ u∇ · ~V . (3)

The objective of this paper is to derive a computationally efficient non-dispersive multi-
level wavelet approximation of the gradient operator on an adaptive spherical geodesic grid
contrary to [18] where the discrete adaptive approximations of the differential operators were
not optimized for particular applications. Therefore, our aim is to correct these shortcomings
(mentioned in previous paragraph) by developing a computationally efficient dispersion-free dy-
namically adaptive implementation of the advection operator suitable for geophysical flows on
the sphere. This required developing a new adaptive multi-level discretization of the gradient
operator and testing that it is computationally efficient and dispersion free on the sphere. In
addition, the adaptive grid must remain stable for long times (i.e. the adaptive grid should be
simply translated and not spread or deform when considering the linear advection problem).

In the current paper, wavelets are used to adapt the computational grid (and hence compress
the gradient operator), while finite differences are used to approximate gradient operator. The
accuracy of both the gradient operator (first and second component) is controlled by a tolerance
parameter ε. Using standard test cases from [22] we verify that the method indeed eliminates
numerical dispersion and, because it is no longer necessary to solve two Poisson problems at
each time step, it is far more computationally efficient. An important goal was to ensure
that the dynamically adaptive grid properly tracks advected structures, without grid noise or
spreading. To address the performance our method furthermore, we consider highly deformed
linear advection problems on the sphere [4]. Grid stability and minimization of dispersive errors
for advection problems is vital for efficient dynamically adaptive methods over long times and
is one of the major contributions of this paper. We then use the multilevel adaptive wavelet
approximation of the gradient operator to solve the linear advection equation on the sphere,
which is a standard test case for the shallow water equations on the sphere. One Further, the
strength of this new approximation method is that it can be extended easily to any smooth
curved surface (or other complex domains), while retaining the freedom to choose the wavelet
basis depending on the application.

This paper is organized as follows. In Section 2 we introduce the construction of the wavelet
transform on the multiscale spherical geodesic grid system. The approximation of gradient op-
erator on an adaptive spherical geodesic grid is presented in Section 3. In Section 4 we apply the
method to three stationary test cases for gradient operators: (1) an initial condition introduced
by Heikes and Randall [21], (2) a Gaussian function as initial condition, and (3) turbulence
data. Finally, the multilevel approximation of gradient operator is applied to the solution
of the spherical advection equation for both time-independent and time-dependent wind field
geophysical test cases.

2 Wavelet transform on the spherical geodesic grid system

Various grid construction methods based on recursive subdivision of the icosahedron have
been proposed, for example by Sadourny et al. [23], Williamson [22] and Masuda and Ohnishi
[24]. Such geodesic grids have already been used as the basis for simulations of the shallow water
equations [21] and reaction–diffusion equations on the sphere [25]. In general, the icosahedron is
recursively refined by bisecting edges of the existing grid (i.e. dyadic refinement). However, for
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large numbers of subdivisions (e.g. greater than eight or nine) the grid becomes increasingly
non-uniform, which can lower the convergence rate of interpolation on the grid. To correct
this non-uniformity the grid points can be redistributed, or the interpolation and differential
operators on the grid can be modified [21].

To construct a spherical geodesic grid (also called icosahedral–hexagonal grid), we begin
with a platonic solid (see Fig. 1) with spherical triangular faces. Each triangular face is then
subdivided into four smaller spherical triangles. A variety of construction methods have been
proposed for spherical geodesic grids [21, 23]. Here we consider only the simplest edge bisection
method for which the number of grid points at subdivision level j is Kj = 10× 4j + 2 . Each of
the Kj grid points is surrounded by 6 nearest neighbours except for the original 12 icosahedral
vertices which have 5 nearest neighbours (see Fig. 1). The method can be easily modified for
the case when the geometry coarse grid has been optimized.

Let S be a triangulation of the sphere S and denote the set of all vertices obtained after j
subdivisions by Sj = {pjk ∈ S|k ∈ K

j}, where Kj is an index set, and let qjk be the centre of

the triangle with vertices (pji , p
j
k, p

j
k+1) (see Fig. 2). The original icosahedron S0 contains only

12 vertices (see Fig. 1 (a)) and S1 contains those vertices plus all new vertices on the edge
midpoints (see Fig. 1 (b)). Since Sj ⊂ Sj+1 we also let Kj ⊂ Kj+1. Let Mj = Kj+1\Kj be the
indices of the vertices added when prolonging the grid from level j to j + 1 (see Fig. 1).

(a) level – 0 (b) level – 1 (c) level – 2 (d) level – 3

Figure 1: Geodesic grid generation based on an icosahedron embedded in the sphere

A second generation multi-resolution analysis (MRA) [11] of the sphere provides a sequence
of approximation subspaces Vj ⊂ L2(S) with j > 0 on the sphere S = {p = (px, py, pz) ∈ R3 :
||p|| = a}, where a is the radius of the sphere.

• Vj ⊂ Vj+1,

•
⋃
j≥0 Vj is dense in L2(S),

• Each Vj has a Riesz basis of scaling functions {φjk|k ∈ K
j}.

Since φjk ∈ V
j ⊂ Vj+1, for every scaling function φjk filter coefficients {hjk,l} exist such that

φjk =
∑

l∈Kj+1

hjk,lφ
j+1
l . (4)
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Thus, instead of basing the multiresolution analysis on the scaling functions φjk it could also

be based on the filter coefficients {hjk,l}, as long as the set of coefficients admits a solution to

equation (4) (for details see [12, 26]). Note that the filter coefficients {hjk,l} will in general be

different for every k ∈ Kj at a given level j > 0 due to the non-uniform geometry of the grid
generated by subdivision of the icosahedron. Therefore, each scaling function satisfies a different
refinement relation (unlike first generation wavelets, there is no unique mother wavelet). Each
MRA is accompanied by a dual MRA consisting of nested spaces Ṽj spanned by the dual scaling
functions φ̃jk, which are biorthogonal to the (primal) scaling functions φjk,

〈φjk, φ̃
j

ḱ
〉 = δk,ḱ, for k, ḱ ∈ Kj ,

where 〈f, g〉 =
∫ ∫

s fg dw is the inner product on the sphere. The dual scaling functions satisfy

refinement relations with coefficients {h̃jk,l}.
Wavelet coefficients encode the difference between two successive levels of representation.

More precisely, the wavelets form a Riesz basis for the space Wj , which is the complement of
Vj in Vj+1 (i.e. Vj+1 = Vj

⊕
Wj). In our case, the wavelets form a Riesz basis for L2(S) and

allow a function to be represented by its wavelet coefficients. Since Wj ⊂ Vj+1, we can write

ψjk =
∑

l∈Kj+1

gjk,lφ
j+1
l ,

and the spherical wavelets ψjm have d̃ vanishing moments if there exists d̃ linearly independent
polynomials Pi, 0 6 i < d̃, such that

〈ψjm, Pi〉 = 0 ∀j > 0,m ∈Mj ,

whereMj is the index set and the polynomials Pi are defined as the restriction to the sphere of
polynomials on R3. The main advantage of the wavelet decomposition is its ability to provide
a compressed representation of a large class of functions. For functions which contain isolated
small scales on a large scale background, most wavelet coefficients are small. Discarding the
small coefficients and reconstructing with the remainder (i.e. nonlinear filtering) provides an
efficient multiscale approximation of the original function. In the following Section we derive
a new multiscale wavelet method for approximating one of the most important such operators,
the gradient operator on the sphere.

Figure 2: Schematic figure of angles αi,k, βi,k, neighboring vertices and area AS .

3 Adaptive approximation of the gradient operator on a spher-
ical geodesic grid system

Consider a sphere of radius a whose surface is defined by the spherical coordinates (θ, φ),
where θ (−π 6 θ 6 π) and φ (−π/2 6 φ 6 π/2) are the longitude and latitude respectively.
The gradient on the surface of the sphere is given by

∇su = i
1

a cosφ

∂u

∂θ
+ j

1

a

∂u

∂φ
,
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where i and j are longitudinal and latitudinal unit vectors respectively.
As mentioned in the introduction, previously, Mehra and Kevlahan [18] approximated the

advection operator using the flux–divergence form, where the flux term is calculated in the form
of the flux–divergence and Jacobian operators. That form was computationally expensive as
it requires solving two elliptic equations to find the χ and ψ from the velocity field ~V see (1).
Mehra and Kevlahan also found that this flux–divergence form suffers from some numerical
dispersion when used in the linear advection equation on the sphere. Here we approximate
the gradient operator directly on an adaptive spherical geodesic grid. This technique is not
based on the flux–divergence form, and hence avoids the computationally expensive Helmholtz
decomposition into curl-free and divergence-free parts as well as the solution of elliptic equations
at each time step.

Let Sj be the region on the sphere bounded by ∂s. Now, applying the divergence theorem∫
Sj
∇ · ~F dA =

∫
∂s

~F · n ds, (5)

where ~F is any vector field on the sphere and n is the unit outer normal vector to ∂s. Now
consider the special case where ~F is the flux of the scalar field u, ~F = u~C, where ~C is a non-zero
constant vector field. Then the divergence theorem in (5) becomes∫

Sj
∇ · (u~C) dA =

∫
∂s
u~C · n ds,

= ~C ·
∫
∂s
un ds. (6)

Using the vector identity ∇ · (u~C) = (∇u) · ~C + u(∇ · ~C) in the left hand side of (6), we can
write ∫

Sj
∇ · (u~C) dA =

∫
Sj

[(∇u) · ~C + u(∇ · ~C)] dA,

= ~C ·
∫
Sj
∇u dA. (7)

Comparing (6) and (7) shows that

~C ·
∫
Sj
∇u dA = ~C ·

∫
∂s
un ds,

Since ~C is a non-zero constant vector we have∫
Sj
∇u dA =

∫
∂s
un ds. (8)

Let pji be a vertex of the triangulation at level j and let pjk, k ∈ N(i), be the set of nearest

neighbour vertices of pji (see Fig. 2).
We now use the finite volume approximation of the gradient operator on the sphere defined

in [27]. This method is based on the linear approximation of u at the triangle centroids qjk using

the values of u at the triangle vertices pji p
j
k p

j
k−1 and area coordinates,

u(qjk) =
αu(pji ) + β u(pjk−1) + γ u(pjk)

α+ β + γ
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where α is the area of the triangle qjk p
j
k p

j
k−1, β is the area of the triangle pji p

j
k q

j
k and γ is

the area of the triangle pji q
j
k p

j
k−1. u is then approximated at the mid-point of the arc joining

triangle centroids qk and qk+1 by linear interpolation as (u(qjk) + u(qk+1))/2 to give a second-
order approximation to the line integrals along the edges of the central hexagon in Fig. 2. The
discrete approximation to the gradient operator is then found from (8) as

∇u(pji ) =
1

As(p
j
i )

∑
k∈N(i)

lk

[
u(qjk) + u(qjk+1)

2

]
nk −

u(pji )

As(p
j
i )

∑
k∈N(i)

lknk, (9)

where lk is the length of the arc joining the triangle centroids qk and qk+1, nk is the outward unit
normal vector to this arc at its midpoint, and As(p

j
i ) is the area of the one ring neighbourhood

of pji . The control area As(p
j
i ) can be calculated by the formula given in [28],

As(p
j
i ) =

1

8

∑
k∈N(i)

(cotαi,k + cotβi,k) ||pjk − p
j
i ||

2
,

where αi,k and βi,k are the angles shown in Fig. 2 and N(i) is the set of nearest neighbour

vertices of vertex pji .
The second term on the right hand side of (9) is a local curvature correction that ensures

the gradient of a constant function on the sphere is exactly zero. As noted in [25], however, this
correction term is negligible in practice, especially for grids with six or more levels of dyadic
refinement. Thus, we will neglect the correction term in the our approximation.

The expression for gradient (9) can be written compactly in a vector form as

∇su = (G1u, G2u),

where G1u and G2u are respectively the longitudinal (first component) and latitudinal compo-
nents (second component) of the gradient operator.

A function u(p) ∈ L2(S) can therefore be represented in terms of its wavelet coefficients as

u(p) =
∑
k∈K0

c0
kφ

0
k(p) +

∞∑
j=0

∑
m∈Mj

djmψ
j
m(p). (10)

This equation can be written as the sum of two terms composed of wavelets whose amplitudes
are respectively above and below some prescribed threshold ε, i.e.,

u(p) = u≥(p) + u<(p), (11)

where u≥(p) =
∑
k∈K0

cJ0k φ
J0
k (p) +

∞∑
j=J0

∑
m∈Mj

|djm|≥ε

djmψ
j
m(p), (12)

u<(p) =

∞∑
j=J0

∑
m∈Mj

|djm|<ε

djmψ
j
m(p), (13)

where J0 is the coarse level of approximation. Donoho [29] has shown that for smooth enough
u,

‖u− u≥‖∞ ≤ c1ε. (14)
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The number of significant coefficients N(ε) = N depends on ε,

N(ε) ≤ c2ε
−n/d, (15)

where d is the order of interpolation, n is the dimension of the problem and the coefficients c1

and c2 depend on u(p). Combining relations (14) and (15) gives the following error bound in
terms of N(ε)

‖u− u≥‖∞ ≤ c3N(ε)−d/n. (16)

Note that d controls the number of zero moments of the interpolating scaling function. This
error estimate has been verified numerically for flat geometry [12, 30] and on the sphere [18] .

The estimates (14–16) allow us to control both the error of the approximation and the
number of wavelet coefficients (i.e. grid points) using only the threshold parameter ε. In the
present case we use butterfly interpolation [31, 26], which should give fourth-order convergence
d = 4 provided the grid is sufficiently uniform (i.e. for a moderate number of refinement levels).
For very large numbers of the levels the convergence rate of the butterfly interpolation drops
to second-order accuracy, d = 2, as the bisection refinement leads to a distorted grid near the
edges and vertices of the original icosahedron.

Assume that we differentiate locally at a point pjk ∈ S
j and that hj characterizes the

local grid spacing in all directions at that point. Then, by construction, the local truncation
error of the interpolation scheme is (hj)d = O(ε). Then approximation of gradient operator
will reduce the order of the scheme by one to (hj)d−1 = O(εd−1/d). The convergence rate of
the discrete approximation to the gradient operator Gu≥ on the adapted spherical grid to the
discrete approximation of the gradient operator on the full spherical grid Gu is therefore

||Gu −Gu≥||∞ ≤ c5ε
1−1/d ≤ c6N(ε)−(d−1)/2. (17)

Note that this convergence rate measures the error due to the wavelet filtering on the adaptive
grid when the grid is adapted by filtering the function u rather than ∇u (hence the fact that
the error is no longer proportional to ε). As mentioned above, we use butterfly interpolation
and so we expect that ||Gu − Gu≥||∞ ∼ ε3/4 ∼ N(ε)3/2 for sufficiently uniform grids, and

||Gu − Gu≥||∞ ∼ ε1/2 ∼ N(ε)1/2 for non-uniform grids (i.e. when using a very large number of
refinement levels). Recall that the discrete approximation of the continuous gradient operator
on the sphere is itself only first-order accurate (i.e. exact for constant functions).

In order to realize the benefits of the wavelet compression, we need to be able to reconstruct
G1u

≥(p) from the subset of N grid points (recall (10) and (11)). Again, we recall that the
wavelet coefficients measure the local differences between approximations of a function at two
successive levels of resolution j and j+1. Thus, if there are no points in the immediate vicinity
of a grid point pji (i.e. djk ≤ ε for all k ∈ N(i), and the points pji , k ∈ N(i), are not present in

Sj+1) then there exists some neighbourhood Ωj
i of pji , where the function can be interpolated

by a wavelet interpolant based on coefficients sjk,m(k ∈ Km) to accuracy O(ε),∣∣∣∣∣∣u(p)−
∑
k∈K(i)

sjk,mφ
j
k(p)

∣∣∣∣∣∣ ≤ c3ε,

where the coefficients sjk,m can be chosen according as in [18]. After the wavelet decomposition
each grid point on the finest level of resolution J is uniquely associated either with a wavelet or
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with a scaling function at the coarsest level of resolution. Consequently, the collocation point
should be omitted from the computational grid if the associated wavelet is omitted from the
approximation. For the stability of the reconstruction we must retain all grid points associated
with the scaling function at the coarsest level of resolution. This procedure results in a set
of nested adaptive computational grids Sj≥ ⊂ Sj , such that Sj≥ ⊂ S

j+1
≥ , for any j < J − 1.

Performing the wavelet transform on that adaptive grid guarantees that all wavelet coefficients
are exactly the same as those obtained from the wavelet transform of G1u

≥(p) on the complete
grid and then setting to zero those wavelet coefficients that do not belong to the adaptive grid.
This is the perfect reconstruction criterion. The procedure for adding additional grid points
to an adaptive grid, so that the resulting grid satisfies the perfect reconstruction criterion,
is called the perfect reconstruction check (for details reconstruction one can see for one and
two-dimension in [12, 30] and for sphere in [18]). The grid adaptation algorithm for the first
component of gradient operator is described in Algorithm 1. The application of this algorithm
is illustrated in the following test cases.

Algorithm 1: grid adaptation of the first component of gradient operator

• A coarsest level J0

• A threshold parameter ε > 0

• Positive adjacent zone constants M and L

Iterative grid adaptation:
m = 0
S≥,m = SJ0
while m = 0 or S≥,m 6= S≥,m−1 or ||(G1u)− (G1u)≥,m||∞ > ε do

Sample first component of the gradient operator (G1u) on S≥,m to give (G1u)≥,m.

m = m+1
Forward wavelet transform

Compression: retain only signification coefficients |djk| ≥ ε to initialize S≥,m.
Reconstruction check:

add grid points needed to calculate significant coefficients.
add all points at coarsest level: SJ0 ⊂ S≥,m.

Adaptation: add grid points associated with adjacent zone.
Inverse wavelet transform: interpolates (G1u)≥,m onto new grid S≥,m.

Converged result: S≥ = S≥,m, (G1u)≥ = (G1u)≥,m.

4 Results

We verify the multilevel adaptive wavelet approximation of the gradient operator on a
spherical geodesic grid by applying it to three complementary test cases. The first test case uses
the test function introduced in [21] to verify the error estimate (17) for the second component
of the gradient operator. The second test case we uses a Gaussian function on the sphere here
to verify the approximation of the first component of gradient operator. Finally, in third test
case we apply our method to calculate the gradient of real turbulence data on the sphere. In
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Figure 3: Scaling of number of active grid points N(ε) with tolerance ε for the second component
of the gradient operator for test case 1. The results are compared with the theoretical scaling
ε−1/2.

this test case we compute both components of the gradient operator. Numerical errors are
estimated by using L∞ and L2 norms computed using the following formulas,

||u||∞ = max
k∈Kj

(|u(pjk)|),

||u||2 =

 1∑
k∈Kj

As(p
j
k)

∑
k∈Kj

As(u(pjk))
2


1/2

.

4.1 Test case 1

Consider the function introduced by Heikes and Randall [21],

u(θ, φ) = cos(θ) cos4(φ). (18)

We compute the second component of the gradient operator for the test function (18) and
plot ε and N(ε) compared to the theoretical prediction N(ε) ∼ ε1/2 for fourth-order butterfly
interpolation derived in Section 3 in Fig. 3. The relation between ||G2u −G2u

≥ ||∞ and N(ε)

is plotted in Fig. 4 (left), and the relation between ||G2u −G2u
≥ ||2 and N(ε) is plotted in Fig.

4 (right). One observes that l∞ error is of order O(N(ε)−3/2) (consistent with fourth-order
accurate wavelet interpolation). Again, the relation of ||G2u −G2u

≥ ||∞ and ||G2u −G2u
≥ ||2 are

plotted as a function of ε in Fig. 5.
Hence, the approximation of the second component of the gradient operator is indeed con-

trolled by the tolerance ε. The second component of the gradient operator is shown in Fig. 6
(left) and the associated adaptive computational grid G2u

≥ is shown in Fig. 6 (right). The
adapted grid is fine only in regions where the function has a strong gradient. Therefore, the
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Figure 4: Scaling of the error in the second component of the gradient operator with number
of active grid points N(ε) in the L∞ (left) and L2 (right) norms for test case 1 compared with
the theoretical scaling ε−3/2.
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Figure 5: Control of error for the second component of the gradient operator in the L∞ (left)
and L2 (right) norms for test case 1 compared with the theoretical scaling ε3/4.

adaptive grid clearly reflects the structure of the function. The first component gives similar
results.

In order to demonstrate the efficiency of the multilevel approximation of gradient operator
on an adaptive spherical geodesic grid we need to compare the number of grid points used in the
adaptive case and the nonadaptive case. This can be measured by the compression coefficient
C = N (ε=0)

N (ε6=0) . As expected, Fig. 7 (left) shows that the compression coefficient C increases when

the wavelet prescribed threshold parameter (ε) increases. In the limit ε → 0 the compression
coefficient tends to one and the computational grid converges to a uniform (regular) grid.

Finally, we check that the maximum jmax = 7 levels used in the tests are indeed sufficient
to fully resolve the test function for the range of tolerances ε considered here. This is confirmed
in Fig. 7 (right), which shows that the number of active points does not increase as when we
allow more than jmax = 7.
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Figure 6: Second component of gradient operator of test case 1 (left) and its adaptive grid
(right).
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Figure 7: Relation between compression coefficient (C) and ε of second component gradient
operator of test case 1 (left). N(ε) as a function of number of allowed levels j (right).

4.2 Test case 2

The second test case is the localized Gaussian function on the sphere

u(θ, φ) = 2 exp

[
−(θ − θ0)2 + (φ− φ0)2

L2

]
, (19)

where θ0 = 0 and φ0 = 0 and L = 1/2π. This time we show results for first component of the
gradient operator. The relation between ε and N(ε) is plotted in Fig. 8. The scalings of errors
||G1u −G1u

≥ ||∞ and ||G1u −G1u
≥ ||2 are plotted in Fig. 9 and Fig. 10 as a function of ε and N(ε)

respectively. Once again, the approximation of the gradient operator is well-controlled by the
tolerance parameter ε.
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Figure 8: Relation between number of active grid points N(ε) and tolerance ε for the first
component of the gradient operator for test case 2.
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Figure 9: Scaling of the error in the first component of the gradient operator with number of
active grid points N(ε) in the L∞ (left) and L2 (right) norms for test case 2 compared with the
theoretical scaling ε−3/2.

Figs. 11 and 12 show the two components of gradient operator for test case 2 together with
the associated adaptive computational grids ε = 10−3. As in the previous test case, the adaptive
grid is fine only in regions where the function has a strong gradient.

To get a better idea of how the adaptive grid tracks regions of sharp transition, we have
plotted the relation between level the j and the number of active grid points N(ε) in Fig. 13.
This figure shows that we need only up to level j = 7 because for j > 7 there is no change
in the number of active points for the range of tolerances ε considered here. In this case the
compression coefficient C ≈ 22 for ε = 10−2.
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Figure 10: Control of error for the first component of the gradient operator in the L∞ (left)
and L2 (right) norms for test case 2 compared with the theoretical scaling ε3/4.

Figure 11: First component of the gradient operator (left) and the corresponding adaptive grid
(right) for test case 2 with tolerance ε = 10−3.

4.3 Test case 3

For the third test case we consider real turbulence data on the sphere, the real turbulence
field is generated by the integration of the two-dimensional Navier-Stokes equations on the
sphere without rotation after 12 hour with random seed initial condition. The field organized
structures are well localized and spread on a wide range of scales. Hence this will be a good
test case for approximation of both component of gradient operator on the sphere.

We show results for both components of the gradient operator of turbulence data on a
sphere. The turbulence data on the sphere is shown in Fig. 14. The first component of gradient
operator is shown in Fig. 15 (left) and the associated adaptive computational grid G1u

≥ is shown
in Fig. 15 (right). The second component of gradient operator is shown in Fig. 16 (left) and
the associated adaptive computational grid G2u

≥ is shown in Fig. 16 (right). In the present
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Figure 12: Second component of the gradient operator (left) and the corresponding adaptive
grid (right) for test case 2 with tolerance ε = 10−3.
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Figure 13: Relation between the level of resolution j and number of active grid points N(ε) for
the first component of the gradient operator for test case 2

calculation jmax = 7 for both the turbulence data and the wavelet transform. The relation
between ε and N(ε) is plotted in Fig. 17, for both components of gradient operator. The scaling
relations between ε and the error of the first and second components of the gradient operator
are plotted in Fig. 18 and Fig. 19 respectively. The results indicate that in this statistically
homogeneous, but strongly multiscale case, as in the previous cases, the approximation error
of the gradient operator is well-controlled by ε.

4.4 Test case 4 (Spherical advection equation)

We discussed multilevel approximation of the gradient operator in Section 3. Now we con-
sider dynamic grid adaptation for the solution of linear advection problem, i.e. we incorporate
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Figure 14: Real turbulence data.

Figure 15: First component of gradient operator (left) and the corresponding adaptive grid
(right) for the turbulence data shown in Fig. 14. Note the presence of benign well-known
grid-scale checkerboard oscillations in the visualization of the gradient due to the use of the
C-grid [32].

our gradient scheme in a time-dependent PDE solver.
Advection processes are of paramount importance in atmospheric numerical modeling. Since

the fluid motions on all scales are dominated by the advection process the accurate and efficient
numerical solution of the advection problem determines the overall accuracy of the ocean or
atmosphere simulation. One of the main goals of this paper to apply our adaptive method
for the gradient operator to standard geophysical test cases for the transport problem on the
sphere [33, 4, 34]. We consider two standard geophysical test cases for linear advection driven
by time-independent and time-dependent winds respectively.

When solving the time-dependent PDEs an additional criterion for grid adaptation should
be added. The computational grid should consist of grid points associated with those wavelets

16



Figure 16: Second component of gradient operator (left) and the corresponding adaptive grid
(right) for the turbulence data shown in Fig. 14.
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Figure 17: Scaling of number of active grid points N(ε) with tolerance ε for the first component
of gradient operator (left) and second component of gradient operator (right) for turbulence
test case 3. The results are compared with the theoretical scaling ε−1/2.

whose coefficients are currently significant, or could become significant during a time step. In
other words, at any instant in time, the computational grid should consist of the N(ε) significant
grid points plus those grid points in an adjacent zone [18] in both position and scale that could
becomes significant in one time step. This allows for the appearance of details on finer scales,
such as shocks and localized gradients. With the addition of an adjacent zone, we have a
dynamically adaptive method for time-dependent PDEs on the sphere, defined by the method
of lines as a system of ordinary differential equations in time. The three basic steps are as
follows:

1. Knowing the solution u≥(t) on the adaptive grid, we compute the values of wavelet coeffi-
cients corresponding to each component of the solution using the fast wavelet transform.
For a given threshold ε. we update St+∆t

≥ based on the magnitude of wavelet coefficients.
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Figure 18: Relation between ||G1u −G1u
≥ ||∞ and ε (left), and relation between ||G1u −G1u

≥ ||2
and ε (right) for the first component of turbulence data.
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Figure 19: Relation between ||G2u −G2u
≥ ||∞ and ε (left), and relation between ||G2u −G2u

≥ ||2
and ε (right) for the second component of turbulence data.

We also add an adjacent zone [18] to the significant coefficients to allow for the change in
the solution during one time step.

2. If there is no change between computational grids St≥ and St+∆t
≥ , we go directly to the

next step. Otherwise, we interpolate the values of the solution at the collocation points
St+∆t
≥ , which are not included in St≥.

3. We integrate the resulting system of ordinary differential equations in time (e.g. using
Runge–Kutta) to obtain new values to u≥(t + ∆t) at positions on adaptive grid St+∆t

≥ ,
and go back to step 1.

The time integration step 3 of the above algorithm requires finite approximations of the differ-
ential operators in space that define the right hand side of the system of ordinary differential
equations in time.
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4.4.1 Advection of cosine bell with time-independent wind fields

In this case a cosine bell is advected once around the sphere, which is a standard test
case for any numerical scheme considered for climate or weather modelling. The case was
suggested by Williamson [33] to simulate the advection of a height field, u(θ, φ) on the surface
of a sphere at an angle α which is the angle between the axis of solid-body rotation and the
coordinate axis of spherical coordinate system. Using adaptive wavelet collocation method
[18], the partial differential equation to be solved is the spherical advection equation, which in
spherical coordinates is given by

∂u

∂t
+ v.∇u = 0, (20)

where t ∈ [0, T ] is the time and T is the ending time of the simulation, and the advecting wind
field are given by v = (v1, v2)

v1 =u0

[
cos(φ) cos(α) + sin(φ) cos

(
θ +

3π

2

)
sin(α)

]
,

v2 =u0 sin

(
θ +

3π

2

)
sin(α),

(21)

where u0 the advection speed, here we set u0 so that the rotation period is equal to one. Further,
(20) can be written as

∂u

∂t
= v1G

1u + v2G
2u.

The initial cosine bell test pattern that to be advected is given by,

u(θ, φ) =


1

2
[1 + cos(πr/R)] if r < R,

0 if r ≥ R,

where R = a/3 and r = a arccos[sin(φc) sin(φ)+cos(φc) cos(φ) cos(θ−θc)], which is the geodesic
distance between (φ, θ) and the center (φc, θc) = (0, 0). We integrate (20) in time using the
fourth-order Runge–Kutta method with time step ∆t = 10−4. The initial conditions are chosen
such that α = π

2 − 0.05 (this is the most unfavourable case for latitude longitude grids). The
exact solution of the advection equation at any time step is simply a translation of the initial
condition, since the solid-body rotation moves the cosine bell around the globe without any
shape deformation.

The initial cosine bell is plotted in Fig. 20 (left) and its associated adaptive grid is plotted
Fig. 20 (right). Note that this is also the exact solution after one orbit on the non-rotating
sphere. The solution of the advection equation after one complete orbit around the non-rotating
sphere is shown in Fig. 21 (left) and its associated adaptive grid is shown in Fig. 21 (right).
Comparing this to the exact solution (the initial condition) in Fig. 20, shows no sign of any
trailing dispersive wave trains, i.e., the pattern is simply advected without changing shape as
in the exact solution. The dependence of the error on the tolerance ε and on the number of
active N(ε) is shown in Fig. 22 which confirms that the error is controlled by ε. The l∞ error as
a function of time is shown in Fig. 23. Note that in our previous approach using the Helmholtz
decomposition for the flux–diffusion equation [18], some numerical dispersion was evident after
one revolution in both the solution and computational grid. Thus, the present approximation
represents a significant improvement both in qualitative accuracy and reduced computational
cost over the previous method.
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Figure 20: Cosine bell initial conditions and exact solution after one orbit on a non-rotating
sphere (left) and its associated adaptive grid (right).

Figure 21: Numerical solution of the advection of cosine bell test case after one orbit on a
non-rotating sphere (left) and its associated adaptive grid (right).

4.4.2 Advection of cosine bells with time-dependent wind fields

We now consider the advection of two symmetric cosine bells for the time-dependent wind
test case proposed in [4]. The spatial and temporal structure of the velocity vector V(θ, φ, t) =
(v1(θ, φ, t), v2(θ, φ, t)) is

v1 = 2 sin2 (θ) sin (2φ) cos(πt/T ),

v2 = 2 sin(2θ) cos(φ) cos(πt/T ). (22)
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Figure 22: Error convergence as a function of tolerance ε (left) and as a function of number of
active grid points N(ε) (right) for the solution of advection of cosine bell
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Figure 23: Point wise (L∞) error of the advected cosine bell solution as a function of time.

The symmetric cosine bell initial condition u(θ, φ) is

u(θ, φ) =


b+ cu1(θ, φ) if r1 < R,

b+ cu2(θ, φ) if r2 < R,

b otherwise,

(23)

where the background value b = 0 and amplitute c = 1, such that u ∈ [0, 1]. The initial position
of the distribution ui = u(θi, φi, t) with i = 1, 2, is

ui(θ, φ) =
hmax

2
[1 + cos(πri/R)] if ri < R. (24)

where the amplitude hmax = 1, base radius R = a/3, and great circle distance between (θ, φ)
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and the center (θi, φi) is ri = ri(θ, φ) = a arccos[sin(φi) sin(φ)+cos(φi) cos(φ) cos(θ−θi)], where
(θ1, φ1) = (π/6, 0) and (θ2, φ2) = (−π/6, 0). The initial condition is plotted in Fig. 24 (left)
and its associated adaptive grid is plotted Fig. 24 (right).

The advection equation (20) is integrated with time-dependent velocity vector (22) and ini-
tial profile (23) in time using the fourth-order Runge–Kutta method with time step ∆t = 10−4.
The exact solution of this test case at time T = 5 is identical to the initial condition although,
unlike the previous time-independent wind case, the solution is different at intermediate times.
As time increases the cosine bells are increasingly deformed into spiral shapes until at time
t = T/2 the field is maximally deformed and has split into four pieces as shown in Fig. 25.
The solution should return exactly to the initial double cosine bell state at t = 5. Comparing
Fig. 24 to the numerical solution at t = 5 shown in Fig. 26 shows the good qualitative accuracy
of the dynamically adaptive wavelet method for this challenging transport test. More qualita-
tively, we also show contour plots of the solution at four times in Fig. 27. As in the simpler
time-independent case, there is no sign significant numerical dispersion of the solution or grid.
The only difference is that the grid for the solution at t = 5 is slightly larger than than of the
initial condition, although the numerical solutions is essentially identical.

The accuracy is measured using l∞ error, which is computed at the end of the simulation t =
T when the exact solution is known (i.e., it equals the initial condition). Numerical convergence
is verified by progressively decreasing the threshold parameter ε. We the dependence of the
error on the tolerance ε and on the number of active grid points N(ε) Fig. 28. These results
confirm convergence and that the errors are indeed controlled by ε and N(ε).

These results show that our dynamically adaptive gradient approximation method is both
qualitatively and quantitatively accurate, and is able to track the reversible deformation gener-
ated by the time-dependent advecting velocity field. It is thus well-suited to ocean and atmo-
sphere simulation where accurate and efficient non-dispersive and non-diffusive computation of
transport problems is essential.

5 Summary and future work

This paper introduces a new wavelet-based multilevel approximation of gradient and advec-
tion operators on an adaptive spherical geodesic grid. This new method, unlike our previous
flux–divergence form [18], does not require computing the Helmholtz–Hodge decomposition and
appears not to suffer from numerical dispersion in either the solution or dynamically adapted
computational grid. Since computation of gradient operators is necessary for many applica-
tions in data analysis and in the numerical simulation of PDEs on the sphere, this efficient and
accurate new technique should be practically useful.

The theoretical properties of the scheme are verified by applying it to the localized test
function proposed by Heikes & Randall [21], a Gaussian function on the sphere, and a real
turbulence data. Finally, the gradient operator approximation is implemented in a dynamically
adaptive linear advection solver. This solver is then applied to a standard geophysical test
case for time-independent [33] transport and a more recent and more challenging test case for
deformational time-dependent transport on the sphere [4].

Our approach is based on second-generation wavelets which means it can be custom designed
for general curved complex domains and irregular sampling. The high resolution computations
are performed only in regions where sharp transitions occur. Thus, the strength of this method
is that it can be generally applied in atmospheric and geophysical simulation problems (e.g.
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Figure 24: Cosine bells initial conditions and exact solution after time T = 5 on a non-rotating
sphere (left) and its associated adaptive grid (right).

Figure 25: Numerical solution of the advection of cosine bells at time t = 2.5 (left) and its
associated adaptive grid (right).

Figure 26: Numerical solution of the advection of cosine bells at time t = 5 when cosine bells
return back to the initial position (left) and its associated adaptive grid (right).
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Figure 27: Contour plots of cosine bells initial conditions and exact solution after time t = 5 on
a non-rotating sphere (left), numerical solution of the advection of cosine bells at time t = 2.5
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Figure 28: Error convergence as a function of tolerance ε (left) and number of active grid points
N(ε) (right) for the solution of advection of cosine bells

on the geoid rather than a perfect sphere), computational fluid dynamics and turbulence flow
while retaining the freedom and flexibility to select the wavelet basis best-suited to the specific
application.
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