Skip to main content
Log in

A stabilized finite volume method for Stokes equations using the lowest order P 1P 0 element pair

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a new stabilized finite volume method for Stokes problem using the lowest order P 1P 0 element pair. To offset the lack of the inf -sup condition, a simple jump term of discrete pressure is added to the continuity approximation equation. A discrete inf -sup condition is established for this stabilized scheme. The optimal error estimates are given in the H 1- and L 2-norms for velocity and in the L 2-norm for pressure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amara, M., Dabaghi, F.: An optimal C 0 finite element algorithm for the 2D biharmonic problem: theoretical analysis and numerical results. Numer. Math. 90, 19–46 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barth, T., Bochev, P., Gunzburger, M., Shadid, J.: A taxonomy of consistently stabilized finite element methods for the Stokes problem. SIAM J. Sci. Comput. 25, 1585–1607 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Behr, M., Franca, L.P., Tezduyar, T.: Stabilized finite element methods for the velocity pressure stress formulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 104, 31–48 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blasco, J., Codina, R.: Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Engrg. 182, 277–300 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44, 82–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cai, Z.Q.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Z.Y.: L 2 estimate of linear element generalized difference schemes. Acta. Sci. Nat. Univ. Sunyatseni 33, 22–28 (1994)

    MATH  Google Scholar 

  9. Chen, Z.Y., Li, R.H., Zhou, A.H.: A note on the optimal L 2-estimate of the finite volume element method. Adv. Comput. Math. 16, 291–303 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, L.: A new class of high order finite volume element methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4011–4023 (2010)

    Google Scholar 

  11. Chou, S.H., Li, Q.: Error estimates in L 2, H 1, L in covolume methods for elliptic and parabolic problem: a unified approach. Math. Comp. 69, 103–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chou, S.H., Kwak, D.Y.: Analysis and convergence of a MAC scheme for the generalized Stokes problem. Numer. Methods PDEs. 13, 147–162 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chou, S.H.: Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comp. 217, 85–104 (1997)

    Article  Google Scholar 

  14. Chou, S.H., Kwak, D.Y.: A covolume method based on rotated bilinears for the generalized Stokes problem. SIAM J. Numer. Anal. 35, 494–507 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Codina, R., Blasco, J.: Analysis of a pressure stabilized finite element approximation of the stationary Navier-Stokes equations. Numer. Math. 87, 59–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Crouzeix, M., Raviart, P.A.: Comforming and noncomforming finite element methods for sovling the stationary Stokes equations. RAIRO 3, 33–76 (1973)

    MathSciNet  Google Scholar 

  17. Cui, M., Ye, X.: Unified analysis of finite volume methods for the Stokes equations. SIAM J. Numer. Anal. 48, 824–839 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial projections, pressure. Int. J. Numer. Methods Fluids 46, 183–201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Douglas Jr., J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, 495–508 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ewing, R.E., Lin, T., Lin, Y.P.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, Vol. 749. Springer-Verlag, Berlin (1979)

  22. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms Springer Series in Computational Mathethmatics, Vol. 5. Springer-Verlag, Berlin (1986)

  23. Hughes, T.J.R., Liu, W., Brooks, A.: Finite element analysis of incompressible viscous flows by the penalty function formulation. J. Comput. Phys. 30, 1–60 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics, V. Circumventing the Babus̆ka-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59, 85–99 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Johnson, C., Pitkäranta, J.: Analysis of some mixed finite element methods related to reduced integration. Math. Comp. 38, 375–400 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, J., He, Y.: A new stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comp. Appl. Math. 214, 58–65 (2008)

    Article  MATH  Google Scholar 

  27. Li, J., Chen Z.X.: A new stabilized finite volume method for the stationary Stokes equations. Adv. Comput. Math. 30, 141–152 (2008)

    Article  Google Scholar 

  28. Li, R.H., Chen, Z.Y., Wu, W.: Generalized difference methods for differential equations: numerical analysis of finite volume methods. Marcel, New York (2000)

    Google Scholar 

  29. Lv, J.L., Li, Y.H.: L 2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37, 393–416 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Oden, T.J.: RIP-methods for Stokesian flow In: Finite Elements in Fluids, Vol. 4. John Wiley, New York (1982)

  31. Shen, J.: On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J. Numer. Anal. 32, 386–403 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Xu, J.C., Zou, Q.S.: Analysis of linear and quadratic simplical finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ye, X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Methods PDEs. 17, 440–453 (2001)

    Article  MATH  Google Scholar 

  34. Ye, X.: A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44, 183–198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhang, T., Lin, Y.P., Tait, R.J.: On the finite volume element version of Ritz-Volterra projection and applications to related equations. J. Comput. Math. 20, 491–504 (2002)

    MATH  MathSciNet  Google Scholar 

  36. Zhang, T.: Superconvergence of finite volume element method for elliptic problems. Adv. Comput. Math. 40, 399–413 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie Zhang.

Additional information

Communicated by: Charlie Elliott

This work was supported by the National Natural Science Funds of China, No. 11371081; and the State Key Laboratory of SAPI Fundamental Research Funds, No. 2013ZCX02.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Tang, L. A stabilized finite volume method for Stokes equations using the lowest order P 1P 0 element pair. Adv Comput Math 41, 781–798 (2015). https://doi.org/10.1007/s10444-014-9385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9385-9

Keywords

Mathematics Subject Classifications (2010)

Navigation