Skip to main content
Log in

Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The stabilized finite element method based on local projection stabilization is applied to discretize the Stokes eigenvalue problems, then the corresponding stability and convergence properties are given. Furthermore, we use a postprocessing technique to accelerate the convergence rate of the eigenpair approximations. The postprocessing strategy contains solving an additional Stokes source problem in an augmented finite element space which can be constructed either by refining the mesh, or increasing the order of finite element space. Numerical tests are also provided to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreev, A.B., Lazarov, R.D., Racheva, M.R.: Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182, 333–349 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babuška, I., Osborn, J.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)

    Article  MATH  Google Scholar 

  3. Babuška, I., Osborn, J.: Eigenvalue Problems, In Handbook of Numerical Analysis. In: Lions, P. G., Ciarlet P.G. (eds.) Finite Element Methods (Part 1), Vol. II, pp 641–787. Amsterdam, North-Holland (1991)

  4. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier-Stokes equations, in Numerical Mathematics and Advanced Aplications, 123–130 (2004)

  6. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43, 2544–2566 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernardi, C., Raugel, B.: Analysis of some finite elements of the Stokes problem. Math. Comput. 44, 71–79 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    Book  MATH  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  10. Chatelin, F.: Spectral Approximation of Linear Operators. Academic Press Inc, New York (1983)

    MATH  Google Scholar 

  11. Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems. Appl. Math. 54, 237–250 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method. Appl. Math. 51, 73–88 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ciarlet, P.G.: The finite Element Method for Elliptic Problem. Amsterdam, North-Holland (1978)

    Google Scholar 

  14. Clement, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)

    MATH  MathSciNet  Google Scholar 

  15. Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1998)

    Article  MathSciNet  Google Scholar 

  16. Ganesan, S., Matthies G., Tobiska, L.: Local projection stabilization of equal order interpolation applied to the Stokes probelm. Math. Comput. 77, 2039–2060 (2008)

    Article  MATH  Google Scholar 

  17. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Berlin (1986)

  18. Grisvard, P.: Singularities in Boundary Problems. MASSON and Springer-Verlag (1985)

  19. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84, 71–88 (2015). doi:10.1090/S0025-5718-2014-02825-1

  20. Lin, Q., Xie, G.Q.: Acceleration of FEA for eigenvalue problems. Bull. Sci. 26, 449–452 (1981)

    MathSciNet  Google Scholar 

  21. Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Meth. Part. D. E 25, 244–257 (2008)

    Article  MathSciNet  Google Scholar 

  22. Matthies, G., Skrzypacz, P., Tobiska, L.: Superconvergence of a 3D finite element method for stationary Stokes and Navier-Stokes problems. Numer. Meth. Part. D. E 21, 701–725 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilizations applied to the Oseen problem. ESIAM Math. Model. Numer. Anal. 41, 713–742 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. ETNA 32, 90–105 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36, 427–453 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nafa, K., Wathen, A.J.: Local projection stabilized Galerkin approximations for the generalized Stokes problem. Comput. Methods Appl. Mech. Engrg 198, 877–833 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osborn, J.: Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13, 185–197 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Racheva, M.R., Andreev, A.B.: Superconvergence postprocessing for Eigenvalues. Comput. Methods Appl. Math. 2, 171–185 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations. Convection-diffusion-reaction and flow problems, Number 24 in SCM. Springer, Berlin (2008)

    Google Scholar 

  30. Schieweck, F.: Uniformly stable mixed hp-finite elements on multilevel adaptive grids with hanging nodes. ESIAM: Math. Model. Numer. Anal 42, 493–505 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

  32. Sloan, I. H.: Iterated Galerkin method for eigenvalue problems. SIAM J. Numer. Anal. 13, 753–760 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wieners, C.: A numerical existence proof of nodal lines for the first eigenfunction of the plate equation. Arch. Math. 66, 420–427 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Review 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  36. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xu, J., Zhou, A.: Local and parallel finite element algorithms for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18, 185–200 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yang, Y., Jiang, W., Zhang, Y., Wang, W., Bi, H.: A two-scale discretization scheme for mixed variational formulation of eigenvalue problems. Abstr. Appl. Anal. 2012, Article ID 812914, 29 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hehu Xie or Xiaobo Yin.

Additional information

Communicated by: Jinchao Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Yin, X. Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem. Adv Comput Math 41, 799–812 (2015). https://doi.org/10.1007/s10444-014-9386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9386-8

Keywords

Mathematics Subject Classifications (2010)

Navigation