Skip to main content
Log in

Implicit Euler simulation of one-dimensional Burridge-Knopoff model of earthquakes with set-valued friction laws

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2016

Abstract

In the simulations of Burridge-Knopoff (BK) model of earthquakes, the friction force laws are important to produce earthquake-like stick-slip behaviors. Some friction force laws are set-valued and the BK model with them can produce consistent results with observed data of earthquakes in some aspects. However, it is cumbersome to simulate the BK model with set-valued laws by conventional explicit integration methods. In the presence of set-valued laws, the explicit integration methods can easily lead to the numerical chattering, violated constraints on the velocity of force laws, and the difficulty of identifying the states of blocks of the BK model. This paper employs an implicit Euler integration method to simulate the BK model with symmetric and asymmetric set-valued laws. This method removes the numerical chattering in the BK model, even in the cases of large time step sizes. It can easily detect the stuck or slipping state of a block element. Comparing to previous results integrated by explicit integration methods in the literature, the results integrated by this implicit method show smoother curves and lower irregularities in the magnitude distribution of events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, New York (1990)

    Google Scholar 

  2. Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)

    Article  Google Scholar 

  3. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57(3), 341–371 (1967)

    Google Scholar 

  4. Carlson, J.M., Langer, J.S.: Mechanical model of an earthquake fault. Phys. Rev. A 40(11), 6470–6484 (1989)

    Article  MathSciNet  Google Scholar 

  5. Erickson, B.A., Birnir, B., Lavallée, D.: Periodicity, chaos and localization in a Burridge-Knopoff model of an earthquake with rate-and-state friction. Geophys. J. Int. 187(1), 178–198 (2011)

    Article  Google Scholar 

  6. Xia, J., Gould, H., Klein, W., Rundle, J.B.: Simulation of the Burridge-Knopoff model of earthquakes with variable range stress transfer. Phys. Rev. Lett. 95(24), 248,501.1–248,501.4 (2005)

    Article  Google Scholar 

  7. Xia, J., Gould, H., Klein, W., Rundle, J.B.: Near-mean-field behavior in the generalized Burridge-Knopoff earthquake model with variable-range stress transfer. Phys. Rev. E 77(3), 031,132.1–031,132.11 (2008)

    Article  Google Scholar 

  8. Helmstetter, A., Hergarten, S., Sornette, D.: Foreshocks and aftershocks in the Olami-Feder-Christensen model. Phys. Rev. Lett. 88(23), 238,501–238,504 (2002)

    Article  Google Scholar 

  9. Helmstetter, A., Hergarten, S., Sornette, D.: Properties of foreshocks and aftershocks of the nonconservative self-organized critical Olami-Feder-Christensen model. Phys. Rev. E 70(4), 0461,201–04612,013 (2004)

    Article  Google Scholar 

  10. Carlson, J.M., Langer, J.S., Shaw, B.E., Tang, C.: Intrinsic properties of a Burridge-Knopoff model of an earthquake fault. Phys. Rev. A 44(2), 884–897 (1991)

    Article  Google Scholar 

  11. Carlson, J.M., Langer, J.S.: Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 22(62), 2632–2635 (1989)

    Article  Google Scholar 

  12. Marone, C.: Laboratory-derived friction laws and thier application to seismic faulting. Ann. Rev. Earth Planet. Sci. 26, 643–696 (1994)

    Article  Google Scholar 

  13. Dicterich, J.: A constituive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99(B2), 2601–2618 (1994)

    Article  Google Scholar 

  14. Mori, T., Kawamura, H.: Simulation study of spatiotemporal correlations of earthquakes as a stick-slip frictional instability. Phys. Rev. Lett. 94(5), 058,501.1–058,501.4 (2005)

    Article  Google Scholar 

  15. Mori, T., Kawamura, H.: Simulation study of the one-dimensional Burridge-Knopoff model of earthquakes. J. Geophys. Res. Solid Earth 111(B7), B073,021–B0730,216 (2006)

    Article  Google Scholar 

  16. Mori, T., Kawamura, H.: Simulation study of the two-dimensional Burridge-Knopoff model of earthquakes. J. Geophys. Res. Solid Earth 113(B6), B063,011–BB0630,116 (2008)

    Article  Google Scholar 

  17. Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. Autom. Control 47(5), 787–792 (2002)

    Article  MathSciNet  Google Scholar 

  18. Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Admittance and impedance representations of friction based on implicit Euler integration. IEEE Trans. Robot. 22(6), 1176–1188 (2006)

    Article  Google Scholar 

  19. Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. J. Appl. Math. 2013, 13 (2013). Article ID 320276

    MathSciNet  MATH  Google Scholar 

  20. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer-Verlag, Berlin (2004)

    Book  MATH  Google Scholar 

  21. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55(1), 45–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  23. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177(3-4), 329–349 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dirkse, S.P., Ferris, M.C.: The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software 5(2), 123–156 (1995)

    Article  Google Scholar 

  25. Acary, V., Bonnefon, O., Brogliato, B.: Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Trans. Computer-Aided Design for Integrated Circuits and Systems 29(7), 1042–1055 (2010)

    Article  Google Scholar 

  26. Acary, V., Brogliato, B.: Implicit Euler numerical scheme and chattering-free implementation sliding model systems. Syst. Control Lett. 59(5), 284–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bastien, J., Schatzman, M.: Numerical precision for differential inclusions with uniqueness. ESAIM: Mathematical Modelling and Numerical Analysis 36(3), 427–460 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Acary, V., Brogliato, B.: Implicit Euler numerical scheme and chattering-free implementation sliding model systems. Tech. Rep. RR-6886, INRIA (2009)

  29. Greenhalgh, S., Acary, V., Brogliato, B.: On preserving dissipativity properties of linear complementarity dynamical systems with the θ-method. Numer. Math. 125(4), 601–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marques, M.M.: Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, vol. 9. Birkhauser, Basel (1993)

    Book  MATH  Google Scholar 

  31. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. Journal of Differential Equations 26(3), 347–374 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Xiong.

Additional information

Communicated by: Silas Alben

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Kikuuwe, R. & Yamamoto, M. Implicit Euler simulation of one-dimensional Burridge-Knopoff model of earthquakes with set-valued friction laws. Adv Comput Math 41, 1039–1057 (2015). https://doi.org/10.1007/s10444-014-9398-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-014-9398-4

Keywords

Mathematics Subject Classification (2010)

Navigation