Skip to main content
Log in

Software concepts and numerical algorithms for a scalable adaptive parallel finite element method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 12 July 2016

Abstract

An efficient implementation of an adaptive finite element method on distributed memory systems requires an efficient linear solver. Most solver methods, which show scalability to a large number of processors make use of some geometric information of the mesh. This information has to be provided to the solver in an efficient and solver specific way. We introduce data structures and numerical algorithms which fulfill this task and allow in addition for an user-friendly implementation of a large class of linear solvers. The concepts and algorithms are demonstrated for global matrix solvers and domain decomposition methods for various problems in fluid dynamics, continuum mechanics and materials science. Weak and strong scaling is shown for up to 16.384 processors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aland, S., Lowengrub, J., Voigt, A.: Two-phase flow in complex geometries: a diffuse domain approach. CMES 57, 77–108 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Amestoy, P., Duff, I., L’Excellent, J., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amestoy, P., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  4. Backofen, R., Barmak, K., Elder, K., Voigt, A.: Capturing the complex physics behind universal grain size distributions in thin metallic films. Acta Mater. 64, 72–77 (2014)

    Article  Google Scholar 

  5. Backofen, R., Rätz, A., Voigt, A.: Nucleation and growth by a phase field crystal (PFC) model. Philos. Mag. Lett. 87(11), 813–820 (2007)

    Article  Google Scholar 

  6. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., manual, H. Zhang. PETSc users: Technical Report ANL-95/11 - Revision 3.2. Argonne National Laboratory (2011)

  7. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2011)

  8. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw. 38(2), 14/1–14/28 (2012)

    MathSciNet  Google Scholar 

  9. Bangerth, W., Hartmann, R., Kanschat, G.: Deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Article  MathSciNet  Google Scholar 

  10. Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burstedde, C., Ghattas, O., Gurnis, M., Isaac, T., Stadler, G., Warburton, T., Wilcox, L. C.: Extreme-scale AMR. In SC10: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. ACM/IEEE (2010)

  12. Burstedde, C., Ghattas, O., Stadler, G., Tu, T., Wilcox, L. C.: Towards adaptive mesh pde simulations on petascale computers. In TeraGrid’08 (2008)

  13. Burstedde, C., Wilcox, L. C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davis, T.: Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis, T.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 165–195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive discretization schemes: abstraction principles and the dune-fem module. Computing 90, 165–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dryja, M., Smith, B., Widlund, O.: Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal. 31(6), 1662–1694 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elder, K. R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 245701, 88 (2002)

    Google Scholar 

  19. Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method-part I: A faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50(7), 1523–1544 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method. Numerical Linear Algebra with Applications 7(7-8), 687–714 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Filippone, S., Colajanni, M.: PSBLAS: a library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26(4), 527–550 (2000)

    Article  Google Scholar 

  22. Golub, G., van Van Loan, C.: Matrix Computations. The Johns Hopkins University Press (1996)

  23. Jansson, N., Hoffman, J., Jansson, J.: Framework for massively parallel adaptive finite element computational fluid dynamics on tetrahedral meshes. SIAM J. Sci. Comput. 34(1), 24–41 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kay, D., Welford, R.: Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM J. Sci. Comput. 29(6), 2241–2257 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, H., Lee, C., Park, E.: A FETI-DP formulation for the stokes problem without primal pressure components. SIAM J. Numer. Anal. 47(6), 4142–4162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kirk, B. S., Peterson, J. W., Stogner, R. H., Carey, G. F.: libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with Computers 22(3–4), 237–254 (2006)

  27. Klawonn, A., Rheinbach, O.: Robust FETI-DP methods for heterogeneous three dimensional elasticity problems. Comput. Methods Appl. Mech. Eng. 196(8), 1400–1414 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM 90(1), 5–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Klawonn, A., Widlund, O. B.: Dual-primal FETI methods for linear elasticity. Commun. Pur. Appl. Math. 59(11), 1523–1572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lesoinne, M.: A FETI-DP corner selection algorithm for three-dimensional problems. In: Proceedings of the 14th International Conference on Domain Decomposition Methods (2003)

  31. Li, X., Lowengrub, J., Rätz, A., Voigt, A.: Solving PDEs in complex domains: a diffuse domain approach. Commun. Math. Sci. 7, 81–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Logg, A., Mardal, K.-A., Wells, G. N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer (2012)

  33. Mandel, J.: Iterative solvers by substructuring for the p-version finite element method. Comput. Methods Appl. Mech. Eng. 80(1-3), 117–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mandel, J.: On block diagonal and schur complement preconditioning. Numer. Math. 58, 79–93 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9(3), 233–241 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mandel, J., Sousedík, B., Dohrmann, C.: Multispace and multilevel BDDC. Computing 83, 55–85 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. T. P: Matthew. Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer (2008)

  38. Ribalta, A., Stoecker, C., Vey, S., Voigt, A.: AMDiS - adaptive multidimensional simulations: Parallel concepts. In Domain Decomposition Methods in Science and Engineering XVII, volume 60 of Lecture Notes in Computational Science and Engineering, pp. 615–621. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  39. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)

  40. Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized navierâĂŞstokes equations for incompressible flow. J. Comput. Appl. Math. 128(1-2), 261–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stukowski, A.: OVITO Web page. http://www.ovito.orf (2010)

  42. Stukowski, A.: Visualization and analysis of atomistic simulation date with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 128, 261–279 (2010)

    Google Scholar 

  43. Trottenberg, U., Oosterlee, C. W., Schüller, A.: Multigrid: Basics, Parallelism and Adaptivity. Academic Press (2000)

  44. Vejchodský, T., Šolín, P., Zítka, M.: Modular hp-FEM system HERMES and its application to Maxwell’s equations. Math. Comput. Simul. 76(1-3), 223–228 (2007)

    Article  MATH  Google Scholar 

  45. Vey, S., Voigt, A.: AMDiS: adaptive multidimensional simulations. Comput. Vis. Sci. 10, 57–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Šístek, J., Sousedík, B., Burda, P., Mandel, J., Novotný, J.: Application of the parallel BDDC preconditioner to the Stokes flow. Computers and Fluids 46(1), 429–435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Witkowski, T., Voigt, A.: A multi-mesh finite element method for Lagrange elements of arbitrary degree. J. Comput. Sci. 3, 420–428 (2012)

    Article  Google Scholar 

  48. Xue, M., Jin, J.: Nonconformal FETI-DP methods for large-scale electromagnetic simulation. IEEE Trans. Antennas Propag. PP(99), 1 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Voigt.

Additional information

Communicated by: Charlie Elliott

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witkowski, T., Ling, S., Praetorius, S. et al. Software concepts and numerical algorithms for a scalable adaptive parallel finite element method. Adv Comput Math 41, 1145–1177 (2015). https://doi.org/10.1007/s10444-015-9405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9405-4

Keywords

Mathematics Subject Classification (2010)

Navigation