Skip to main content

Advertisement

Log in

Modeling shallow avalanche onset over complex basal topography

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with modeling of the onset of a shallow avalanche (soils, snow or other geomaterials) over various bottom topologies (mountains, valleys, ...). In order to do that, we use the shallow visco-plastic model with topography, developed in Ionescu (J. Non-Newtonian Fluid Mech. 193:116–128 2013), and we introduce a simple criterion to distinguish if an avalanche occurs or not. This criterion, relating the yield limit (material resistance) to the distribution of the external forces, is deduced from an optimization problem, called limit load analysis. The plastic dissipation functional which is involved in the limit load problem is non smooth and non coercive in the classical Sobolev spaces. To prove the existence of an onset velocity field (collapse flow) the appropriate functional space consists of bounded tangential deformation functions. We propose therefore a numerical strategy to solve the limit load problem and to get the onset flow field. A mesh free method, called the discontinuous velocity domain splitting (DVDS), is adapted here. The limit load problem is thus reduced to the minimization of a shape dependent functional. The discontinuous collapse flow velocity field is associated to a sub-domain and a rigid flow. With a level set of a Fourier function we give a description of the sub-domains and then we use genetic algorithms to solve the resulted non convex and non smooth global optimization problem. Finally, we illustrate the proposed numerical approach by solving several safety factor problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancey, Ch.: Plasticity and geophysical flows: A review. J. Non-Newtonian Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  2. Balmforth, N.J., Burbidge, A.S., Craster, R.V., Salzig, J., Shen, A.: Viscoplastic models of isothermal lava domes. J. Fluid Mech. 403, 37–65 (2000)

    Article  MATH  Google Scholar 

  3. Balmforth, N.J., Craster, R.V., Sassi, R.: Shallow viscoplastic flow on an inclined plane. J. Fluid Mech. 470, 1–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balmforth, N.J., Craster, R.V., Rust, A.C., Sassi, R.: Viscoplastic flow over an inclined surface. J. Non-Newtonian Fluid Mech. 142, 219–243 (2007)

    Article  MATH  Google Scholar 

  5. Bingham, E.C. Fluidity and Plasticity. Mc Graw-Hill, New-York (1992)

    Google Scholar 

  6. Bouchut, F., Mangeney-Castelnau, A., Perthame, B., Vilotte, J.-P.: A new model of Saint- Venant and Savage-Hutter type for gravity driven shallow water flows. C. R. Acad. Sci.Paris 336, 531–536 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchut, F., Fernandez-Nieto, E., Mangeney, A., Lagre, P.Y.: On new erosion models of Savage-Hutter type for avalanches. Acta Mecha. 199, 198–208 (2008)

    Article  Google Scholar 

  8. Christiansen, E.: Limit analyis of collapse states. In: Handbook of Numerical Analysis, vol. 4, P.G. Ciarlet and J.L. Lions, eds., Noth Holland, Amsterdam, 193–312 (1996)

  9. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis of limit design. Q. Appl. Math. 10, 157–175 (1952)

  10. Drucker, D.C., Prager, W., Greenberg, H.J.: Extended limit design theorems for continuos media. Q. Appl. Math. 9, 381–389 (1952)

    MathSciNet  MATH  Google Scholar 

  11. Gray, J.M.N.T., Wieland, M., Hunter, K.: Gravity driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. London, A. Math. Phys. Eng. Sci. 455, 1841–1874 (1999)

    Article  MATH  Google Scholar 

  12. Hassani, R., Ionescu, I.R., Lachand-Robert, T.: Shape optimization and supremal functionals in landslides modelling. Math. Model. Numer. anal. 36, 1013–1026 (2005)

    Google Scholar 

  13. Ionescu, I.R.: Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope. J. Non-Newtonian Fluid Mech. 165, 1328–1341 (2010)

    Article  MATH  Google Scholar 

  14. Ionescu, I.R.: Viscoplastic shallow flow equations with topography. J. Non-Newtonian Fluid Mech. 193, 11–128 (2013)

    Article  Google Scholar 

  15. Ionescu, I.R., Lachand-Robert, T.: Generalized Cheeger sets related to landslides. Calc. Var. and PDE 3, 227–249 (2005)

    Article  MathSciNet  Google Scholar 

  16. Ionescu, I.R., Lupaşcu, O.: Onset of a dense avalanche on a plane slope submitted (2014)

  17. Ionescu, I.R., Oudet, E.: Discontinuous velocity domain splitting method in limit load analysis. Int. J. Solids Struct. 47, 1459–1468 (2010)

    Article  MATH  Google Scholar 

  18. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  19. Keller, J.B.: Shallow-water theory for arbitrary slopes of the bottom. J. Fluid Mech. 489, 345–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matthies, H., Strang, G., Christiansen, E.: The saddle point of a differential program. In: Glowinski, R., Rodin, E., Zienkiewicz, O.C. (eds.) . Energy Methods in Finite Element Analysis. Wiley, New York (1979)

    Google Scholar 

  21. Mageney-Castelneau, A., Villote, J.P., Bristeau, M.O., Perthame, B., Bochut, F., Simeoni, C., Yernei, S.: Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. B11(2527), 108 (2003)

    Google Scholar 

  22. Mageney-Castelneau, A., Bochut, F., Villote, J.P., Lajeunesse, E., Aubertin, A., Pirulli, M.: On the Saint-Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110 B9, B09103 (2005)

  23. Pardalos, P.M., Romeijn, E.H. (eds.): Handbook of global optimization, vol. 2. Nonconvex Optimization and its Applications, 62. Kluwer Academic Publishers, Dordrecht (2002)

  24. Pudasaini, S.P., Hutter, K.: Avalanche Dynamics - Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, Berlin (2007)

    Google Scholar 

  25. Pudasaini, S.P., Hutter, K.: Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495, 193–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pudasaini, S.P., Hutter, K., Eckart, W.: Gravity driven rapid shear flows of dry granular masses in topographies with ortogonal and non-orthogonal metrics. Dynamic response of granular and porous materials under large and catastrophic deformation, edited by K. Hunter and N. Kircher, Lecture Notes in Applied and computational mechanics 11, Springer Berlin, 43–8 (2003)

  27. Suquet, P.: Un espace fonctionnel pour les équations de la plasticité. Math. Ann. Fac. Sci. Toulouse, V. Sér. Math. 1, 77–87 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Temam, R.: Problèmes Mathématiques en Plasticité. Gauthiers-Villars, Paris (1983)

    MATH  Google Scholar 

  29. Temam, R., Strang, G.: Functions of bounded deformation. Arch. Ration. Mech.Anal. 75, 7–21 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. of Fluid Mech. 199, 177–215 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Savage, S.B., Hutter, K.: The dynamics of granular materials from initiation to runout. Acta Mechanica 86, 201–223 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Y., Hutter, K., Pudasaini, S.P.: The Savage-Hutter theory: a system of partial differential equations for avalanche flow of snow, debris, and mud. ZAMM 84, 507–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wieland, M., Gray, J.M.N.T., Hunter, K.: Channelized free surfaces flow of cohesion less granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73–100 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Lupaşcu.

Additional information

Communicated by: John Lowengrub

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionescu, I.R., Lupaşcu, O. Modeling shallow avalanche onset over complex basal topography. Adv Comput Math 42, 5–26 (2016). https://doi.org/10.1007/s10444-015-9407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9407-2

Keywords

Mathematics Subject Classification (2010)

Navigation