Skip to main content
Log in

Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Projection-based model reduction techniques rely on the definition of a small dimensional subspace in which the solution is approximated. Using local subspaces reduces the dimensionality of each subspace and enables larger speedups. Transitions between local subspaces require special care and updating the reduced bases associated with each subspace increases the accuracy of the reduced-order model. In the present work, local reduced basis updates are considered in the case of hyper-reduction, for which only the components of state vectors and reduced bases defined at specific grid points are available. To enable local reduced basis updates, two comprehensive approaches are proposed. The first one is based on an offline/online decomposition. The second approach relies on an approximated metric acting only on those components where the state vector is defined. This metric is computed offline and used online to update the local bases. An analysis of the error associated with this approximated metric is then conducted and it is shown that the metric has a kernel interpretation. Finally, the application of the proposed approaches to the model reduction of two nonlinear physical systems illustrates their potential for achieving large speedups and good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Eng. 80(9), 1241–1258 (2009)

    Article  MATH  Google Scholar 

  2. Amsallem, D., Cortial, J., Farhat, C.: Toward real-time computational-fluid-dynamics-based aeroelastic computations using a database of reduced-order information. AIAA J 48(9), 2029–2037 (2010)

    Article  Google Scholar 

  3. Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7), 1803–1813 (2008)

    Article  Google Scholar 

  4. Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33(5), 2169–2198 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Amsallem, D., Zahr, M.J., Choi, Y., Farhat, C.: Design Optimization Using Hyper-Reduced-Order Models. published online, Structural and Multidisciplinary Optimization (2014)

  6. Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Methods Eng. 92(10), 891–916 (2012)

    Article  MathSciNet  Google Scholar 

  7. An, S.S., Kim, T., James, D.L.: Optimizing cubature for efficient integration of subspace deformations. ACM Trans. Graph 27(5), 1 (2008)

    Article  Google Scholar 

  8. Anttonen, J.: Techniques for reduced order modeling of aeroelastic structures with deforming grids. Ph.D. Thesis, Air Force Institute of Technology (2001)

  9. Astrid, P., Weiland, S., Willcox, K.: Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans. Autom. Control. 53(10), 2237–2251 (2008)

    Article  MathSciNet  Google Scholar 

  10. Balajewicz, M., Dowell, E.H., Noack, B.R.: Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. J. Fluid Mech. 729, 285–308 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Barone, M.F., Kalashnikova, I., Segalman, D., Thornquist, H.: Stable Galerkin reduced order models for linearized compressible flow. J. Comput. Phys. 228(6), 1932–1946 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l’Academie des Sciences Paris 339, 667–672 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press (2004)

  14. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl. 415, 20–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bui-Thanh, T., Willcox, K., Ghattas, O.: Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications. AIAA J. 46(10), 2520–2529 (2008)

    Article  Google Scholar 

  16. Carlberg, K., Bou-Mosleh, C., Farhat, C.: Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. Int. J. Numer. Methods Eng. 86(2), 155–181 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242(C), 623–647 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Casenave, F., Ern, A., Lelièvre, T.: Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method. ESAIM Math. Model. Numer. Anal. 48(1), 207–229 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chipman, J.S.: On least squares with insufficient observations. J. Am. Stat. Assoc. 59(308), 1078–1111 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dihlmann, M., Drohmann, M., Haasdonk, B.: Model reduction of parametrized evolution problems using the reduced basis method with adaptive time-partitioning. Proc. ADMOS 2011 (2011)

  22. Drohmann, M., Haasdonk, B., Ohlberger, M. Adaptive Reduced Basis Methods for Nonlinear Convection–Diffusion Equations. In: Finite Volumes for Complex Applications VI – Problems & Perspectives, pp. 369–377. Springer Proceedings in Mathematics 4 (2011)

  23. Edelman, A., Arias, T., Smith, S.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Eftang, J.L., Patera, A.T., Rønquist, E.M.: An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32(6), 3170–3200 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Eftang, J.L., Stamm, B.: Parameter multi-domain ‘hp’ empirical interpolation. Int. J. Numer. Methods Eng. 90, 412–428 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Everson, R., Sirovich, L.: Karhunen–Loeve procedure for gappy data. J. Opt. Soc. Am. A 12(8), 1657–1664 (1995)

    Article  Google Scholar 

  27. Gerbeau, J.F., Lombardi, D.: Approximated Lax pairs for the reduced order integration of nonlinear evolution equations. J. Comput. Phys. 265, 246–269 (2014)

    Article  MathSciNet  Google Scholar 

  28. Golub, G.H., Van Loan, C.F.: Matrix computations. Johns Hopkins University Press (1996)

  29. Greville, T.: Note on fitting of functions of several independent variables. J. Soc. Ind. Appl. Math. (1961)

  30. Gu, C., Roychowdhury, J.: Model reduction via projection onto nonlinear manifolds, with applications to analog circuits and biochemical systems. Proc. 2008 IEEE/ACM Int. Conf. Comput. Aided Des., 85–92 (2008)

  31. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17(4), 423–442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17(2), 145–161 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Idelsohn, S., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49, 253–270 (1985)

    Article  MATH  Google Scholar 

  34. Krislock, N.: Numerical solution of semidefinite constrained least squares problems. Master of Science Thesis, Department of Mathematics. University of British Columbia (2003)

  35. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. Mit Press (2012)

  36. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric Model Order Reduction by Matrix Interpolation. at-Automatisierungstechnik 58(8), 475–484 (2010)

    Google Scholar 

  37. Paul-Dubois-Taine, A., Amsallem, D.: An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models. published online, International Journal for Numerical Methods in Engineering (2014)

  38. Peherstorfer, B., Butnaru, D., Willcox, K., Bungartz, H.J.: Localized discrete empirical interpolation method. SIAM J. Sci. Comput. 36(1), A168–A192 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rozza, G., Huynh, D., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput Methods Eng. 15, 229–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ryckelynck, D.: A priori hyperreduction method: an adaptive approach. J. Comput. Phys. 202(1), 346–366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sirovich, L.: Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)

    MATH  MathSciNet  Google Scholar 

  42. Stewart, G.W.: Perturbation theory for the singular value decomposition. svd and signal processing, II: algorithms. Anal. Appl., 99–109 (1990)

  43. Washabaugh, K., Amsallem, D., Zahr, M.J., Farhat, C.: Nonlinear Model Reduction for CFD Problems Using Local Reduced Order Bases. AIAA Paper 2012-2686, 42nd AIAA Fluid Dynamics Conference and Exhibit 25–28 June 2012, New Orleans, Louisiana, pp. 1–16 (2012)

  44. Wendland, H.: Scattered data approximation. Cambridge University Press (2005)

  45. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Amsallem.

Additional information

Communicated by: Editors of Special Issue on MoRePas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amsallem, D., Zahr, M.J. & Washabaugh, K. Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction. Adv Comput Math 41, 1187–1230 (2015). https://doi.org/10.1007/s10444-015-9409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9409-0

Keywords

Mathematics Subject Classfication

Navigation