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Abstract

We provide explicit criteria for wavelets to give rise to frames and atomic decompositions
in L2(Rd), but also in more general Banach function spaces. We consider wavelet systems
that arise by translating and dilating the mother wavelet, with the dilations taken from
a suitable subgroup of GL(Rd), the so-called dilation group.The paper provides a unified
approach that is applicable to a wide range of dilation groups, thus giving rise to new atomic
decompositions for homogeneous Besov spaces in arbitrary dimensions, but also for other
function spaces such as shearlet coorbit spaces.

The atomic decomposition results are obtained by applying the coorbit theory developed
by Feichtinger and Gröchenig, and they can be informally described as follows: Given a
function ψ ∈ L2(Rd) satisfying fairly mild decay, smoothness and vanishing moment con-
ditions, any sufficiently fine sampling of the translations and dilations will give rise to a
wavelet frame. Furthermore, the containment of the analyzed signal in certain smoothness
spaces (generalizing the homogeneous Besov spaces) can be decided by looking at the frame
coefficients, and convergence of the frame expansion holds in the norms of these spaces. We
motivate these results by discussing nonlinear approximation.
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1 Introduction

The great success of wavelet theory in applications largely depends on two features: Approximation-
theoretic properties of wavelet orthonormal bases, and the availability of fast algorithms in
the discrete-domain setting. There are many facets to the approximation-theoretic proper-
ties; in this exposition I will focus mainly on a particularly appealing set of results, namely
the wavelet characterization of homogeneous Besov spaces. Given a wavelet orthonormal basis
(ψj,k)j,k∈Z ⊂ L2(R), every function f ∈ L2(R) has the expansion

f =
∑

j,k

〈f, ψj,k〉ψj,k , (1)

with a square-summable coefficient family (〈f, ψj,k〉)j,k∈Z. More importantly however, (1) con-
verges in smoothness spaces such as the homogeneous Besov spaces Ḃs

p,q(R), as soon as f belongs
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to that space. In fact, the wavelet system is an unconditional basis of that space, and mem-
bership of f ∈ Ḃs

p,q(R) is equivalent to a suitable weighted ℓp,q-summability condition on the
coefficients (thus can be decided just by looking at the coefficients). Thus the wavelet decomposi-
tion is valid simultaneously in a whole range of smoothness spaces, and this observation provides
a solid theoretic foundation for the development and study of algorithms for applications like
denoising or compression. (See subsection 1.1 for a discussion of nonlinear approximation.)
In this paper, we wish to extend these results to arbitrary dimensions, replacing dyadic dilations
in dimension one by certain rather general groups H of (typically nonscalar) dilations; H is
called the dilation group. The rationale for choosing H is explained in more detail in the next
section. This is a rather general setting with a lot of different groups to choose from, including
the similitude group in arbitrary dimensions, diagonal groups, but also the shearlet group that
has received considerable attention in the past few years; see [20] for an introduction.
For arbitrary dilation groups, the existence of associated orthonormal wavelet bases is not es-
tablished, and we will thus be concerned with frame rather than ONB expansions. The frame
expansions will be obtained as discretization of the continuous wavelet transform associated to
the matrix group H, by applying the coorbit theory established by Feichtinger and Gröchenig,
see [7, 8, 9, 17]. The previous paper [16] established that coorbit theory applies to a large class
of dilation groups and their associated continuous wavelet transforms, and thus provides the
existence of a consistently defined scale of Besov-type function spaces, atomic decompositions
in terms of bandlimited Schwartz functions, etc. Furthermore, [16] developed vanishing moment
criteria for analyzing windows, which mimic the simple criteria for wavelet ONB’s mentioned
above.
In principle, coorbit theory provides a description of “nice” wavelets that can be used to obtain
simultaneous atomic decompositions for a whole range of Besov-type spaces; this was used in
[16] to show the existence of band-limited atoms for this setting. However, both for practical and
theoretical considerations, one would also like to replace bandlimited atoms by, say, compactly
supported ones. This raises the challenge of finding explicit and easily fulfilled criteria for “nice”
wavelets with compact support (or, more generally, with certain decay and/or integrability
conditions), and it is the chief purpose of this paper to provide such criteria for general dilation
groups.
As a result, we will obtain a very general approach to the construction of wavelet frames in
higher dimensions, with very mild conditions on the wavelets to be chosen, and a large class
of dilation groups to choose from. The latter aspect is of particular relevance for the ongoing
search for anisotropic wavelet systems designed to resolve singularities in dimensions two and
higher, such as the shearlet systems.
While the construction of wavelet frames and bases is by now very well understood (at least for
some groups), constructing such systems, and guaranteeing their properties, is still fairly cum-
bersome. ONB’s are typically constructed from a multiresolution analysis, and their existence
has been established (to my present knowledge) only for very few classes of dilations, such as
dyadic dilations. In the construction of frames, the sampling set used to discretize shifts and
dilations is typically fixed beforehand, and then the frame (or ONB) generators are constructed
for this particular choice of sampling set, see [2] for the prototype. Furthermore, the construc-
tions for concrete groups, as in the shearlet case, are typically taylored to the specific structure
of the dilation group. By contrast, the discretization methods developed in [7, 8, 9] start from
a given “nice” wavelet and yield that the action of any sufficiently dense uniformly discrete
sampling set contained in the underlying affine group will give rise to a frame. The price one
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pays for this generality lies in the absence of explicit sampling densities and frame bounds. It
is the chief contribution of this paper to provide explicit and easily verifiable criteria that allow
to spot a nice wavelet.

1.1 Nonlinear approximation using wavelet frames

To illustrate the results in our paper, let us take a closer look at the problem of nonlinear
approximation. The following discussion loosely follows [3, Section 4.4]. Let (ψλ)λ∈Λ ⊂ H denote
any system of vectors in a Hilbert space H. We define the associated nonlinear approximation
error by

En(f ; (ψλ)λ) = inf





∥∥∥∥∥f −
∑

λ∈Λ′

cλψλ

∥∥∥∥∥
H

: cλ ∈ C , |Λ′| ≤ n



 . (2)

A famous result in wavelet approximation theory states that the nonlinear approximation error
of f ∈ L2(R) in a wavelet orthonormal basis (ψj,k)j,k∈Z ⊂ L2(R) fulfills

∞∑

n=1

n−p/2En(f ; (ψj,k))
p <∞

for some 0 ≤ p < 2 iff f ∈ Ḃ
1/p−1/2
p,p (R); see e.g. [6] for a much more complete discussion. Note

that finiteness of the sum can be understood as a sort of decay condition on the approximation
error, which becomes sharper as p decreases.
There are however some conditions that a wavelet has to meet: The precise range of homogeneous
Besov spaces for which the above equivalence is valid depends on properties of the wavelet,
typically formulated in terms of decay, smoothness and vanishing moments. However, it should
be stressed that these conditions are fairly easy to verify, and the existence of wavelet ONB’s
fulfilling them to any prescribed (finite) order has been established early on.
If one replaces bases by frames, the above sharp characterization of nonlinear approximation rate
and p-summability of the coefficients no longer holds; however, at least one direction remains
intact. The proof of the following proposition follows by the exact same reasoning as in [3,
Theorem 4.9].

Proposition 1.1. Let (ψλ)λ∈Λ denote a frame in the Hilbert space H. Given f ∈ H, let

f =
∑

λ∈Λ
cλψλ

with suitable coefficients (cλ)λ∈Λ. Let 1 ≤ p < 2. Then there exists a constant C depending on
p and the frame constants such that if (cλ)λ∈Λ ∈ ℓp(Λ), one has

( ∞∑

n=1

n−p/2En(f ; (ψλ))
p

)1/p

≤ C‖(cλ)λ‖p .

Using this observation, we can formulate an application of the results in this paper to homo-
geneous Besov spaces. The chief difference to the existing results (as far as I know them) is
the great freedom in choosing the analysing function: Any reasonably regular function fulfilling
explicit decay and vanishing moment conditions will give rise to a wavelet frame with properties
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analogous to wavelet ONB’s, as long as the sampling in time, scale and rotation is sufficiently
fine. For the proof, we refer to Remark 4.5 below. Note that the theorem employs the usual
notations xj = xj11 . . . xjdd for vectors x ∈ R

d and multiindices j ∈ N
d
0, as well as |j| =

∑d
i=1 ji.

Theorem 1.2. Let k ∈ N. Assume that ψ ∈ L2(Rd) ∩ C2k(Rd) fulfills

∀0 ≤ |j| < k :

∫

Rd

xjψ(x)dx = 0 ,

with absolute convergence. Assume further that all partial derivatives of xβψ of order up to k
are integrable, for all multiindices β of length ≤ k.
If k > 11

2 d + 3, there exist ǫ > 0 and a neighborhood U ⊂ SO(d) of the identity matrix, both
depending only on ψ, such that for all δ1, δ2 < ǫ and all finite sets {h1, . . . , hr} ⊂ SO(d) satisfying

SO(d) =

r⋃

ℓ=1

hiU ,

the wavelet system

(ψj,k,ℓ)j,k∈Zd,ℓ=1,...,d with ψj,k,ℓ(t) = (1 + δ1)
j/2ψ((1 + δ1)

jh−1
ℓ t− δ2k)

is a frame for L2(Rd). Furthermore, we find for any f ∈ L2(Rd) that f ∈ Ḃ
d/2−d/p
p,p (Rd) iff the

coefficient family (〈f, ψj,k,ℓ〉)j,k∈Z,ℓ=1,...,r is p-summable. In this case, the approximation error
En(f ; (ψj,k,ℓ)j,k,ℓ) fulfills

( ∞∑

n=1

n−p/2En(f ; (ψj,k,ℓ)j,k,ℓ)
p

)1/p

≤ C‖f‖
Ḃ

d/2−d/p
p,p

.

Observe that is easy to construct functions ψ as in the theorem: Simply pick a function ρ with
suitable decay in all derivatives of order up to 2k, and differentiate k times. If the function ψ
is isotropic, the wavelet transform is constant on SO(d)-cosets, and the rotations h1, . . . , hr can
be omitted from the theorem. Isotropic wavelets are constructed by picking a suitable isotropic
function and applying the Laplacian sufficiently often.
The (relevant) case 0 < p < 1 is excluded here, chiefly because the results established in this
paper and the precursor [16] are confined to coorbit spaces associated to Banach (rather than
quasi-Banach) spaces. The extension to quasi-Banach spaces is the subject of ongoing research.
As far as I am aware, the theorem is new, even for dimension one. The sampling set in the
theorem was chosen as regular grid mostly for the sake of notational convenience; the underlying
sampling theorems due to Feichtinger and Gröchenig theory allow much more general sampling
sets, see 2.7 below. For these irregular sampling sets, the Fourier techniques typically used to
derive frame characterizations of homogeneous Besov spaces such as the ϕ-transform [11] fail,
whereas an analog of Theorem 1.2 is still available.
The literature on irregular wavelet frames contains certain analogs to 1.2, usually restricted to
the L2-case. To my knowledge, the paper [10] is closest to the aims and scope of the present
article, but it treats only isotropic dilations. Another paper worthwhile mentioning in this
context is [22]. By comparison to the results in those papers, the condition k > 11

2 d+3 from the
theorem seems quite restrictive. Note however that our condition is also sufficient for anisotropic
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wavelets, and the theorem points out that the wavelet system generated by isotropically dilating
and translating a suitable finite number of rotations of such a wavelet will again yield a Banach
frame.
To some degree, additional restrictions on the wavelets are to be expected from an approach
that aims at treating large classes of dilation groups and function spaces other than L2 in a
unified perspective. As a rule, the explicit conditions on wavelets that are determined in this
paper are derived as a proof of principle, and do not have any claim to optimality. We refer to
Remark 4.1 for more detailed comments on this issue.
There is another direction in which the coorbit view provides a considerable extension of the
known results: Note that the above statement arises from a particular choice of dilation group,
namely the so-called similitude group H = R

+ · SO(d). As will be demonstrated in Section
4, the results in this paper apply to a much larger variety of groups, including the shearlet
dilation group studied, e.g., in [3, 4, 5, 20]. The first compactly supported shearlet frames for
coorbit spaces other than L2(R2) were introduced fairly recently in [5], and their construction is
considered an important step both for applied and theoretical purposes (e.g., for the derivation of
trace theorems); see also [18] for the related case of cone-adapted shearlet frames. The methods
developed in this paper provide an analog of Theorem 1.2 also for the shearlet setting: Here,
the pertinent notion of vanishing moments is

∀0 ≤ |j| < k , ∀ξ2 ∈ R :

∫

R2

xjψ(x)e−2πi〈ξ2 ,x2〉dx = 0 , (3)

with absolute convergence of the integrals. Any function that possesses sufficiently many vanish-
ing moments and integrable partial derivatives, under the action of a sufficiently dense sampling
set, will then give rise to a frame; and it is very easy to produce compactly supported functions
fulfilling these conditions. For comparison, [5, Corollary 3.3] imposes Fourier-side decay condi-
tions that in fact follow from regularity of ψ and the vanishing moment conditions (3). Thus
there is an obvious similarity between the cited result and the criteria derived in this paper;
however, [5, Corollary 3.3] in addition requires compact support.
Again, a priori estimates of the decay of the nonlinear approximation error are available, where
the role of the Besov spaces is taken over by the shearlet coorbit spaces Co(Lp(G)); this fact has
already been pointed out in [3]. It turns out that imposing vanishing moments of order k ≥ 127
(as defined by (3)), and partial derivatives of to order up to k with suitable decay will allow to
formulate a precise shearlet analog of Theorem 1.2; see Remark 4.11 below. (When pondering
the fairly astronomical number of 127 vanishing moments, please recall the above disclaimer
concerning optimality of the constants derived in this paper.)

1.2 A short overview of the paper

The present paper is a continuation of [16]. The chief purpose of both papers is to make certain
useful but abstract notions from coorbit theory explicit for the concrete case of wavelet systems
arising from the action of an affine group generated by the translations and a suitable closed
group H < GL(Rd) of dilations. The key object that coorbit theory provides for the construction
of atomic decompositions is the space Bv0 ⊂ L2(Rd); essentially, this is the set of “nice” wavelet
for which analogs of Theorem 1.2 can be formulated. The formal definition of this space is fairly
technical, see Section 2 below, and it is the chief contribution of this paper to provide concrete
and easily verified sufficient criteria for elements of Bv0 .
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The paper is structured as follows: Section 2 contains the necessary notions and results concern-
ing continuous wavelet transforms in higher dimensions. Coorbit theory is based on the theory
of square-integrable irreducible representations, and for the setup of an affine group acting on
L2(Rd) in the natural way, it is very well understood, which dilation groups provide such rep-
resentations. To any such group, there exists an associated open dual orbit O, which will play
a crucial role in the paper. Section 2 also contains the necessary ingredients of coorbit theory
required, in particular the definition and basic properties of the spaces Co(Y ) and the spaces
Av0 and Bv0 of analyzing vectors and “nice” wavelets, respectively.
Section 3 contains the central result of this paper. Theorem 3.4 contains a sufficient criterion
for nice wavelets in terms of vanishing moments. Here the proper notion of vanishing moments
is crucial: A function has vanishing moments iff its Fourier transform vanishes to a certain order
on the complement Oc of the open dual orbit. The latter subset can best be understood as the
“blind spot” of the wavelet transform, containing those frequencies which the wavelet transform
cannot resolve well. (This set is of measure zero, hence the existence of the blind spot is no
contradiction to the wavelet inversion formula.)
Theorem 3.4 does not come entirely for free: There is still one obstacle to its applicability,
encapsulated in the notion of strongly temperately embedded dual orbit, see Definition 3.3. I
therefore investigate, for various classes of groups, whether this condition is fulfilled. For all
groups that were considered, including diagonal and similitude groups in arbitrary dimensions,
as well as the shearlet group and a family of close relatives, the answer is yes. As a result one
obtains concrete criteria which considerably generalize the known results.

2 Coorbit spaces over general dilation groups

First some notation: Given f ∈ L1(Rd), its Fourier transform is defined as

F(f)(ξ) := f̂(ξ) :=

∫

Rd

f(x)e−2πi〈x,ξ〉dx ,

with 〈·, ·〉 denoting the euclidean scalar product on R
d. We will use the same symbol F for

the Fourier transform of tempered distributions. For any subspace X ⊂ S ′(Rd), we let F−1X
denote its inverse image under the Fourier transform.
In order to avoid cluttered notation, we will occasionally use the symbol X � Y between
expressions X,Y involving one or more functions or vectors in R

d, to indicate the existence of
a constant C > 0, independent of the functions and vectors occurring in X and Y , such that
X ≤ CY . We let | · | : Rd → R denote the euclidean norm. Given a matrix h ∈ R

d×d, the
operator norm of the induced linear map (Rd, | · |) → (Rd, | · |) is denoted by ‖h‖∞. By a slight
abuse of notation we will also use |α| =

∑d
i=1 αi for multiindices α ∈ N

d
0.

For r,m > 0, we let
|f |r,m = sup

x∈Rd,|α|≤r
(1 + |x|)m|∂αf(x)| .

denote the associated Schwartz norm of a function f : R
d → C with suitably many partial

derivatives.
Let us now describe the necessary notions connected to continuous wavelet transforms. We
fix a closed matrix group H < GL(d,R), the so-called dilation group, and let G = R

d
⋊H.

This is the group of affine mappings generated by H and all translations. Elements of G
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are denoted by pairs (x, h) ∈ R
d × H, and the product of two group elements is given by

(x, h)(y, g) = (x + hy, hg). The left Haar measure of G is given by d(x, h) = |det(h)|−1dxdh,
and the modular function of G is given by ∆G(x, h) = ∆H(h)|det(h)|

−1.
G acts unitarily on L2(Rd) by the quasi-regular representation defined by

[π(x, h)f ](y) = |det(h)|−1/2f
(
h−1(y − x)

)
. (4)

We assume that H is chosen such that π is an (irreducible) square-integrable represen-
tation. Square-integrability of the representation means that there exists at least one nonzero
admissible vector ψ ∈ L2(Rd) such that the matrix coefficient

(x, h) 7→ 〈ψ, π(x, h)ψ〉

is in L2(G), which is the L2-space associated to a left Haar measure on G. In this case the
associated wavelet transform

Wψ : L2(Rd) ∋ f 7→ ((x, h) 7→ 〈f, π(x, h)ψ〉)

is a scalar multiple of an isometry, which gives rise to the wavelet inversion formula

f =
1

cψ

∫

G
Wψf(x, h)π(x, h)ψ dµG(x, h) . (5)

A thorough understanding of the properties of the wavelet transform hinges on the dual action,
i.e., the (right) linear action R

d ×H ∋ (ξ, h) 7→ hT ξ: By the results of [12, 15], H is admissible
iff the dual action has a single open orbit O = {hT ξ0 : h ∈ H} ⊂ R

d of full measure (for some
ξ0 ∈ O), such that in addition the stabilizer group Hξ0 = {h ∈ H : hT ξ0 = ξ0} is compact. (This
condition does of course not depend on ξ0 ∈ O.) The dual orbit will be of central importance
to this paper.
Let us next describe the pertinent notions from coorbit theory. A weight on a locally compact
group K is a continuous function w : K → R

+ satisfying w(xy) ≤ w(x)w(y), for all x, y ∈ K.
The Besov-type coorbit spaces that we focus on in this paper are obtained by fixing a weight v
of the type

v(x, h) = (1 + |x|+ ‖h‖∞)sw(h) (6)

on G, where | · | : Rd → R is an arbitrary fixed norm, and w is some weight on H. (Note that
this indeed defines a weight v.) We then define, for 1 ≤ p, q <∞,

Lp,qv (G) =

{
F : G→ C :

∫

H

(∫

Rd

|F (x, h)|pv(x, h)pdx

)q/p dh

|det(h)|
<∞

}
,

with the obvious norm, and the usual conventions regarding identification of a.e. equal functions.
We write Lpv(G) = Lp,pv (G). The corresponding spaces for p = ∞ and/or q = ∞ are defined by
replacing integrals with essential suprema. We will also use

Lps(R
d) =

{
f Borel-measurable :

∫

Rd

|f(x)|p(1 + |x|)spdx <∞

}
.

We next recall the necessary ingredients of coorbit theory. Our main sources for the following
are the papers [7, 8, 9, 17]. We assume that Y is a Banach space of functions on G that
fulfills the conditions of [17, 2.2], i.e. it is continuously embedded in L1

loc(G), and fulfills certain
compatibility conditions with convolution. Examples of such spaces are the Lp,qv (G) defined
above. The following definition will be important:
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Definition 2.1. A weight v0 is called control weight for Y if it satisfies

v0(x, h) = ∆G(x, h)
−1v0((x, h)

−1) ,

as well as

max
(
‖L(x,h)±1‖Y→Y , ‖R(x,h)‖Y→Y , ‖R(x,h)−1‖Y→Y∆G(x, h)

−1
)
≤ v0(x, h)

where L(x,h), R(x,h) are left and right translation by (x, h) ∈ G.

Using a control weight v0 for Y we define the set

Av0 = {ψ ∈ L2(Rd) : Wψψ ∈ L1
v0(G)}

of analyzing vectors. It turns out that Av0 is a vector space, in fact a Banach space, and invariant
under π. We denote its conjugate dual as A∼

v0 . The sesquilinear map L2(Rd) ×Av0 ∋ (f, g) 7→
〈f, g〉 can be uniquely extended to A∼

v0 × Av0 . Hence, if we fix ψ ∈ Av0 , the definition of the
continuous wavelet transform of f ∈ A∼

v0 via

Wψf(x, h) = 〈f, π(x, h)ψ〉

again makes sense.
Now the coorbit space associated to Y is defined by fixing a nonzero ψ ∈ Av0 and letting

Co(Y ) = {f ∈ A∼
v0 : Wψf ∈ Y }

with the norm ‖f‖Co(Y ) = ‖Wψf‖Y . It now follows by [8, Theorem 5.2] that the space CoY is
a Banach space, and independent of the choice of the analyzing vector, as well as of the precise
choice of control weight.
Clearly, the whole construction hinges on the actual existence of a nonzero analyzing vector. For
arbitrary control weights v0, this might be difficult to answer. For the space Y = Lp,qv (G), with v
as in (6), we first note that by [16, Lemma 2.3], there exists a control weight v0 for Y = Lp,qv (G)
satisfying the estimate

v0(x, h) ≤ (1 + |x|)sw0(h) , (7)

with w0 : H → R+ defined by

w0(h) = (w(h) + w(h−1))max
(
∆G(0, h)

−1/q ,∆G(0, h)
1/q−1

)

×
(
|det(h)|1/q−1/p + |det(h)|1/p−1/q

)
(1 + ‖h‖∞ + ‖h−1‖∞)s .

But then Theorem 2.1 of [16] implies that Av0 is nontrivial, and thus CoY is indeed well-defined.
We next turn to the study of atomic decompositions. As already explained in the introduction,
the sampling theorems derived in [7, 8, 9, 17] are rather flexible in terms of the sampling sets,
at the price of imposing additional conditions on the analyzing vector. These are formulated in
the next definition.

Definition 2.2. Let Y denote any solid Banach function space on the locally compact group G,
U ⊂ G a compact neighborhood of the identity, and F : G→ C. We let

(
MR

UF
)
(x) = sup

y∈U
|f(xy)|
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denote the local maximum function of F with respect to U . Given a weight v0 on G, we denote
the associated Wiener amalgam space by

WR(C0,L1
v0) = {F : G→ C : F continuous ,MR

UF ∈ L1
v0(G)} ,

with norm ‖F‖WR(C0,L1
v0

) = ‖MR
UF‖L1

v0
.

We let
Bv0 = {ψ ∈ L2(Rd) : Wψψ ∈WR(C0,L1

v0)} .

Since L1
v0(G) ⊃WR(C0,L1

v0), every nonzero element in Bv0 can be used to characterize elements
of CoY , whenever v0 is a control weight for Y . The additional condition will allow to derive
the desired discrete characterizations as well. In other words, the elements of Bv0 , for a control
weight v0 associated to a Banach function space Y , are precisely the “nice” wavelets associated
to the coorbit space Co(Y ) that were mentioned in the introduction.

Definition 2.3. Let U ⊂ G denote a neighborhood of the identity, and Z = (zi)i∈I ⊂ G.

(a) The family (zi)i∈I is called U-dense, if
⋃
i∈I ziU = G.

(b) The family (zi)i∈I is called U-separated, if ziU ∩ zjU = ∅, whenever i 6= j. It is called
separated, if there exists a neighborhood U of unity such that it is U -separated. It is
called relatively separated if it is the finite union of separated families.

Remark 2.4. Note that U -dense, relatively separated families always exist, for every neighbor-
hood U of the identity. More precisely, given any separated family Z0, there exists a U -dense
separated set Z containing Z0. To see this, pick a symmetric neighborhood V of the identity such
that Z0 is V -separated, and in addition fulfills V 2 = {vw : v,w ∈ V } ⊂ U , and apply Zorn’s
Lemma to find a V -separated family Z = (zi)i∈I containing Z0 that is maximal with respect to
inclusion. Then maximality and V 2 ⊂ U imply that this family is U -dense.

For the formulation of the atomic decomposition result, we need a norm on the sequences space.
We use 1W : G→ R to denote the indicator function of a subset W ⊂ G.

Definition 2.5. Let Y be a solid Banach function space on G, and Z ⊂ G a relatively separated
set. Picking an arbitrary compact neighborhood W of the identity, we define

‖(cz)z∈Z‖Yd =

∥∥∥∥∥
∑

z∈Z
|cz |1zW

∥∥∥∥∥
Y

,

and let Yd = {(cz)z∈Z ∈ C
Z : ‖(cz)z∈Z‖Yd <∞}.

Remark 2.6. Note that Yd is a nontrivial Banach space, and the norm of Yd is (up to equiva-
lence) independent of the choice of W [7]. For the semidirect product group G = R

d
⋊H, the

typical sampling sets are of the type

Z = {(hjxk, hj) : j ∈ J, k ∈ K}

where {hj : j ∈ J} ⊂ H and {xk : k ∈ K} ⊂ R
d are uniformly dense and separated. One

easily verifies that Z is uniformly dense and separated in G. Indeed, if V ⊂ R
d and W ⊂ H

separate (xk)k∈K and (hj)j∈J , respectively, then U = {(x, g) : x ∈ V, g ∈ W} separates Z:
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(hjxk, hj)U ∩ (hj′xk′ , hj′)U 6= ∅ entails hjW ∩ hj′W 6= ∅, and thus by assumption on W , j = j′.
But then a comparison of the translation coordinates yields hjxk + hjV ∩ hjxk′ + hjV 6= ∅,
i.e., xk + V ∩ xk′ + V 6= ∅, and thus k = k′. A similar calculation shows that Z is U -dense if
{xk : k ∈ K} is V -dense and {hj : j ∈ J} is W -dense.
If Y = Lp,qv (G), for some weight v, the associated coefficient space norm is equivalent to a
discrete weighted ℓp,q-norm, i.e.

‖(cj,k)‖Yd ≍


∑

j∈J
|det(hj)|

q/p−1

(
∑

k∈K

(
|cj,k|v(hjxk, hj)|det(hj)|

1/p−1/q
)p
)q/p


1/q

(8)

with the usual modifications for p = ∞ and/or q = ∞. To see this, note that we can pick a
compact neighborhood W =W1 ×W2 ⊂ R

d ×H of the neutral element such that (hjxk, hj)W ∩
(hj′xk′ , xk′)W = ∅. By submultiplicativity and continuity of the weight w, there are constants
c1, c2 such that

∀j ∈ J∀k ∈ K : c1v(hjxk, hj) ≤ v|(hjxk,hj)W ≤ c2v(hjxk, hj) .

Hence if we employ this particular set W , left-invariance of Haar measure on G ensures (8). In
particular, the finitely supported sequences are dense in Yd.
As a special case, we obtain that the discrete coefficient space associated to Y = Lp(G) is indeed
ℓp(Z).

We can now formulate the atomic decomposition result [17], which will be seen to imply Theorem
1.2. Note in particular that, since L2(Rd) = CoL2(G) by [8, Corollary 4.4], this statement will
also yield criteria for wavelet frame generators of L2(Rd).

Theorem 2.7. Let v0 denote a control weight for Y , and let 0 6= ψ ∈ Bv0 . Assume that the
finitely supported seuences are dense in Yd. Then there exists a neighborhood U ⊂ G of unity
such that for all U -dense, relatively separated families (zi)i∈I ⊂ G, the following statements are
true:

(a) There is a linear bounded map C : CoY → Yd(Z) with the property that, for all f ∈ CoY ,

f =
∑

i∈I
C(f)(zi)π(zi)ψ ,

with unconditional convergence in ‖ · ‖CoY .

(b) Conversely, for every sequence (c(zi))i∈I ∈ Yd(Z), the sum

g =
∑

i∈I
c(zi)π(zi)ψ

converges unconditionally in ‖ · ‖CoY , with ‖g‖CoY � ‖(c(zi))i∈I‖Yd(Z).

(c) The norms ‖f‖CoY and ‖(Wψf(zi))i∈I‖Yd(Z) are equivalent. Moreover, f ∈ CoY iff
(Wψf(zi))i∈I ∈ Yd(Z).

We next exhibit a class of nice wavelets: Any bandlimited Schwartz function with Fourier support
contained in the open dual orbit is in Bv0 . This was shown in [16], using oscillation estimates.
The connection between oscillation and Wiener amalgam space is explained in the next remark:
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Remark 2.8. Let U ⊂ G denote a relatively compact neighborhood of the identity, and F : G→
C any function. We let

oscU (F )(x) = sup{|F (x) − F (xy)| : y ∈ U} .

It is easy to see that F ∈WR(C0,L1
v0) holds iff both F and oscU (F ) are in L1

v0(G).

The following is [16, Lemma 2.6].

Theorem 2.9. For any weight v0 satisfying v0(x, h) ≤ (1+|x|+‖h‖∞)sw0(h), with w0 : H → R
+

an arbitrary weight, we have F−1(C∞
c (O)) ⊂ Bv0 .

3 Formulation and proof of the main result

The results of the previous section have set the stage for the main result. While bandlimited
Schwartz functions are fairly convenient to work with for many purposes, the usefulness of
compactly supported wavelets has been emphasized repeatedly. The chief aim of this section
is to replace the assumption of proper confinement of the supports on the Fourier transform
by a more quantitative version in terms of decay properties of the Fourier transform ψ̂(ξ), as
ξ approaches the boundary of the dual orbit. These decay conditions will be formulated by
vanishing moment conditions, defined as follows:

Definition 3.1. Let r ∈ N be given. f ∈ L1(Rd) has vanishing moments in Oc of order r
if all distributional derivatives ∂αf̂ with |α| ≤ r are continuous functions, and all derivatives of
degree |α| < r are identically vanishing on Oc.

Note that under suitable integrability conditions on ψ, the vanishing moment conditions are
equivalent to

∀|j| < k,∀ξ ∈ Oc :

∫

Rd

xjψ(x)e−2πi〈ξ,x〉dx = 0 .

We next define an auxiliary function A : O → R
+ as follows: Given any point ξ ∈ O, let

dist(ξ,Oc) denote the minimal distance of ξ to Oc, and define

A(ξ) = min

(
dist(ξ,Oc)

1 +
√

|ξ|2 − dist(ξ,Oc)2
,

1

1 + |ξ|

)
.

By definition, A is a continuous function with A(·) ≤ 1.
Using A, we then define Φℓ : H → R

+ ∪ {∞}, for ℓ ∈ N as

Φℓ(h) =

∫

Rd

A(ξ)ℓA(hT ξ)ℓdξ (9)

We note a few simple but useful properties of Φℓ:

Lemma 3.2. (a) ℓ ≤ ℓ′ implies Φℓ(h) ≥ Φℓ′(h), for all h ∈ H.

(b) Φℓ(h) = |det(h)|−1Φℓ(h
−1).
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Proof. Part (a) follows from A(·) ≤ 1, and part (b) by substitution: Letting ω = hT ξ, and using
the notation h−T = (h−1)T , we find

Φℓ(h) =

∫

Rd

A(ξ)ℓA(hT ξ)ℓdξ

= |det(h)|−1

∫

Rd

A(h−Tω)ℓA(ω)ℓdω = |det(h)|−1Φℓ(h
−1) .

Now the following definition will allow to formulate sufficient vanishing moment criteria for
elements of Bw0

.

Definition 3.3. Let w0 : H → R
+ denote a weight, s ≥ 0. We call O strongly (s,w0)-

temperately embedded (with index ℓ ∈ N) if Φℓ ∈W (C0,L1
m), where the weight m : H →

R
+ is defined by

m(h) = w0(h)|det(h)|
−1/2(1 + ‖h‖∞)2(s+d+1) .

This definition plays a similar role as the notion of temperately embedded orbits introduced in
[16]. Essentially, the index ℓ will determine the number of vanishing moments needed to ensure
that a given function is in Bw0

. Note that somewhat contrary to the intuition conveyed by the
terminology, it is currently not clear whether strong temperate embeddedness implies temperate
embeddedness.

Theorem 3.4. Let the weight v0 on G fulfill the estimate v0(x, h) ≤ (1+ |x|)sw0(h), and assume
that O is strongly (s,w0)-embedded with index ℓ. Then any function ψ ∈ L1(Rd) ∩ Cℓ+d+1(Rd)
with vanishing moments in Oc of order t > ℓ+ s+ d+ 1 and |ψ̂|t,t <∞ is contained in Bw0

.
There exist compactly supported functions ψ satisfying this condition.

Note that the condition |ψ̂|t,t < ∞ is guaranteed by integrability of xβ∂αψ, for all multiindices
α, β of length ≤ t. It is thus fulfilled by all compactly supported ψ with continuous partial
derivatives up to order t.
Before we prove the theorem, we need various auxiliary results.

Lemma 3.5. Let m denote an arbitrary weight on a locally compact group G, f a continuous
function on G, and U a compact neighborhood of the identity. Then there are constants c1, c2,
depending only on U and m, such that

c1M
R
U (m · f)(x) ≤ m(x)MR

U (f)(x) ≤ c2M
R
U (m · f)(x) .

Proof. Using submultiplicativity and continuity of m, one readily verifies the estimates with

c1 =
1

supy∈U m(y)
, c2 = sup

y∈U
m(y−1) .

✷

We next cite a useful result [16, Lemma 3.6], which explains the usefulness of the auxiliary
functions: They serve as envelope functions for the Fourier transform ψ̂, f̂ and their derivatives,
which can be translated to decay estimates for wavelet coefficients.
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Lemma 3.6. Let α ∈ N
d
0 be a multiindex with |α| < r. Assume that f, ψ ∈ L1(Rd) have

vanishing moments of order r in Oc, and fulfill |f̂ |r,r−|α| < ∞, |ψ̂|r,r−|α| < ∞.Then there exists
a constant C > 0, independent of f and ψ, such that

|∂α(f̂ ·Dhψ̂)(ξ)| ≤ C|f̂ |r,r−|α||ψ̂|r,r−|α|(1 + ‖h‖∞)|α|A(ξ)r−|α|A(hT ξ)r−|α| .

Here we used the notation Dhψ̂ : ξ 7→ ψ̂(hT ξ).

Now the following estimate reveals the usefulness of the auxiliary function Φℓ, by giving an
estimate of the wavelet coefficient Wψψ. The chief advantage of this estimate is that it separates
the translation and dilation variables. Note that the same estimate applies also to Wψf , as long
as both ψ and f fulfill the conditions of the Lemma.

Lemma 3.7. Let 0 < m < r, and let ψ ∈ L1(Rd) denote a function with vanishing moments of
order r in Oc and |ψ̂|r,r <∞. Then

|Wψψ(x, h)| � |ψ̂|2r,r(1 + |x|)−m|det(h)|1/2(1 + ‖h‖∞)mΦr−m(h) .

Proof. Since

Wψψ(x, h) = |det(h)|1/2
(
ψ̂ · (Dhψ̂)

)∨
(x) ,

we can use the standard estimate of decay on the space side by L1-norms of derivatives on the
Fourier transform side to obtain

|Wψψ(x, h)| � |det(h)|1/2(1 + |x|)−m
∑

|α|≤m

∥∥∥∂α
(
ψ̂ ·Dhψ̂

)∥∥∥
1

� (1 + |x|)−m|det(h)|1/2
∑

|α|≤m
|ψ̂|2r,r−|α|(1 + ‖h‖∞)|α|

∫

Rd

A(ξ)r−|α|A(hT ξ)r−|α|dξ
︸ ︷︷ ︸

=Φr−|α|(h)

,

where we used Lemma 3.6. Now the monotonicity properties of the Schwartz norm and the Φℓ
(with respect to their subscripts) allow to estimate

∑

|α|≤m
|ψ̂|2r,r−|α|(1 + ‖h‖∞)|α|Φr−|α|(h) � |ψ̂|2r,r(1 + ‖h‖∞)mΦr−m(h) ,

which finishes the proof. ✷

Proof of 3.4: We fix V = B1(x) and W = {h ∈ H : ‖h− id‖∞ < 1/2}. Then U = V ×W ⊂ G
is a neighborhood of the identity in G, and we will use this neighborhood to show finiteness of
the amalgam norm ‖Wψψ‖WR(C0,L1

v0
). To this end, let k = s + d + 1, and use Lemma 3.7 to

estimate as follows:

‖Wψψ‖WR(C0,L1
v0

)

≤

∫

H

∫

Rd

sup
y∈V,g∈W

|Wψψ(x+ hy, hg)| (1 + |x|)sdx w0(h)
dh

|det(h)|

�
∣∣∣ψ̂
∣∣∣
2

t,t

∫

H

∫

Rd

sup
y∈V,g∈W

(
(1 + |x+ hy|)−k(1 + |x|)s

(1 + ‖hg‖∞)k|det(hg)|1/2
∫

Rd

A(ξ)t−kA((hg)T ξ)t−kdξ

)
dx w0(h)

dh

|det(h)|

≤
∣∣∣ψ̂
∣∣∣
2

t,t

∫

H

∫

Rd

(
sup
y∈V

(1 + |x+ hy|)−k
)
(1 + |x|)sdx

(
sup
g∈W

Ψ(hg)

)
w0(h)

dh

|det(h)|
, (10)
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where we introduced the auxiliary function

Ψ(h) = (1 + ‖h‖∞)k|det(h)|1/2Φt−k(h) .

Next, using that V is the unit ball, we find |x+ hy| ≥ max(|x| − |hy|, 0) ≥ max(|x| − ‖h‖∞, 0),
and thus

sup
y∈V

(1 + |x+ hy|)−k ≤ (1 + max(0, |x| − ‖h‖∞))−k .

Hence

∫

Rd

(
sup
y∈V

(1 + |x+ hy|)−k(1 + |x|)s

)
dx

≤

∫

Rd

(1 + max(0, |x| − ‖h‖∞))−k (1 + |x|)sdx

=

∫

|x|≤‖h‖∞
(1 + |x|)sdx+

∫

|x|>‖h‖∞
(1 + |x| − ‖h‖∞)−k(1 + |x|)sdx

≤ C1(1 + ‖h‖∞)s‖h‖d∞ +

∫

Rd

(1 + | |x| − ‖h‖∞ |)−k(1 + |x|)sdx ,

with C1 denoting the volume of the unit ball. Now the estimate (1 + | |x| − ‖h‖∞|) (1+‖h‖∞) ≥
(1 + |x|) yields

∫

Rd

(1 + | |x| − ‖h‖∞ |)−k(1 + |x|)sdx ≤ (1 + ‖h‖∞)k
∫

Rd

(1 + |x|)s−kdx
︸ ︷︷ ︸

=:C2

with finite constant C2 since k − s = d+ 1, and we finally arrive at

∫

Rd

(
sup
y∈V

(1 + |x+ hy|)−k
)
(1 + |x|)sdx ≤ C(1 + ‖h‖∞)k . (11)

We can now wrap up the proof: Plugging (11) into (10), and applying Lemma 3.5 to the local
maximum function supg∈W Ψ(hg) = MR

UΨ(h), we obtain

‖Wψψ‖WR(C0,L1
v0

)

�

∫

H
(1 + ‖h‖∞)kMR

U (Ψ)(h)w0(h)
dh

|det(h)|

�

∫

H
MR

U (Φt−k)(h)(1 + ‖h‖∞)2kw0(h)|det(h)|
1/2dh

= ‖Φt−k‖WR(C0,L1
m) .

Since t − k ≥ ℓ, the final expression is finite by assumption, and the sufficient criterion for
ψ ∈ Bv0 is established.
Regarding existence of compactly supported atoms, we recall from [16, Lemma 4.1] the existence
of a partial differential operator D of order k ≤ 2d with constant coefficients and the property
that, for all ρ ∈ L1(Rd) with integrable partial derivatives of sufficiently high order, Dtρ has
vanishing moments of order t. Thus picking ρ ∈ C∞

c (Rd) and letting ψ = Dtρ yields the desired
compactly supported atom. ✷
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4 Verifying strong temperate embeddedness

Theorem 3.4 shows that explicit vanishing moment conditions for elements of Bv0 , given a
concrete dilation group H and control weight v0, can be obtained by the following steps:

1. Compute the dual orbit O, and the auxiliary function A : O → R
+.

2. Compute an upper estimate of

Φℓ : H ∋ h 7→

∫

Rd

A(ξ)A(hT ξ)dξ ,

i.e., determine Φ̃ℓ : H → R
+ with Φℓ � Φ̃ℓ.

3. Determine Ψℓ with MR
U Φ̃ℓ(ξ) � Ψℓ(ξ).

4. Determine an explicit ℓ such that
∫

H
Ψℓ(h)w0(h)|det(h)|

−1/2(1 + ‖h‖∞)2(s+d+1)dh <∞ .

In this section we will see that this program can indeed be carried out for a large class of dilation
groups, leading to concrete criteria. In particular, our results will cover all admissible dilation
groups in dimension two. Note that there is some freedom of choice in picking the upper bounds
Φ̃ℓ and Ψℓ.

Remark 4.1. In the following calculations, we have typically tried to cover large classes of
weights with minimal computational effort, possibly at the cost of suboptimal estimates for ℓ.
Given any concrete group dilation H and a control weight v0 on G of particular interest, better
estimates for ℓ may be possibly achieved by other methods.
It should be mentioned at this point that the approach via Theorem 3.4 is probably not well-suited
for obtaining optimal estimates for the number of vanishing moments. Note that the theorem
is based on the decay estimate in Lemma 3.7 which uses the global behaviour of the wavelet
and its Fourier transform. It seems likely that for the estimation of local quantities, such as
MR

U (Wψψ), this is not the sharpest available method. As an interesting alternative, we mention
the techniques of [10], which achieve similar results with significantly less vanishing moments,
but only for isotropic dilations.

4.1 The similitude groups

The similitude dilation group is defined by H = R
+ · SO(d) ⊂ GL(d,R), for d > 2 denote the

similitude group. In the interest of a unified treatment, we let H = R \ {0} in the case d = 1.
The similitude group dilation group H for d = 2 was the first higher-dimensional dilation group
used for the construction of continuous wavelet transforms [1, 21]. The open dual orbit is easily
computed as O = R

d \ {0}, hence we find Oc = {0}. This implies

A(ξ) = min

(
|ξ|,

1

1 + |ξ|

)
.

We write elements h ∈ H as h = rS, with r > 0 and S ∈ SO(d); for d = 1 we admit S ∈ {±1}.
Haar measure on H is then given by dh = dr

|r|dS; here dS denotes integration against Haar



16

measure on SO(d) normalized to one. The following lemma provides the central estimate of the
auxiliary function Φℓ:

Lemma 4.2. For h = rS ∈ H and ℓ > d, we have

Φℓ(h) ≤ Cmin(rℓ−d, rd−ℓ) .

Proof. First note that by invariance of the euclidean distance under elements of SO(d), we
have A(hξ) = A(rξ), and thus Φℓ(h) = Φℓ(r · idRd), and integration in polar coordinates yields

Φℓ(h) =

∫

Rd

A(ξ)ℓA(hT ξ)ℓdξ

= C1

∫ ∞

0
min

(
s,

1

1 + s

)ℓ
min

(
rs,

1

1 + rs

)ℓ
sd−1ds ,

where C1 is the surface of the unit ball. Let us now assume that r ≤ 1; the case r > 1 will then
be addressed using Lemma 3.2(b). First note that

min

(
s,

1

1 + s

)
=

{
s s ≤ c
1

1+s s > c

where we used c =
√
5−1
2 . This implies

sd−1min

(
s,

1

1 + s

)ℓ
min

(
rs,

1

1 + rs

)ℓ
=





s2ℓ+d−1rℓ 0 < s ≤ c
rℓsℓ+d−1

(1+s)ℓ
c < s ≤ c/r

sd−1

(1+s)ℓ(1+rs)ℓ
c/r < s

, (12)

and hence

Φℓ(rS)/C1 =

(
rℓ
s2ℓ+d

2ℓ+ d

)∣∣∣∣
s=c

s=0

+ rℓ
∫ c/r

c

sℓ+d−1

(1 + s)ℓ
ds

︸ ︷︷ ︸
=:I1

+

∫ ∞

c/r

sd−1

(1 + s)ℓ(1 + rs)ℓ
ds

︸ ︷︷ ︸
=:I2

.

Now sℓ

(1+s)ℓ
≤ 1 implies

I1 ≤ rℓ
∫ c/r

c
sd−1ds ≤ C2r

ℓ−d

with a suitable constant C2 > 0. Furthermore, for s > c/r, we have

sd−1

(1 + s)ℓ
≤ (1 + s)d−1−ℓ ≤ (1 + c/r)d−1−ℓ ≤ C3r

ℓ+1−d

which implies that

I2 ≤

∫ ∞

c/r

C3r
ℓ+1−d

(1 + rs)ℓ
ds = C3r

ℓ−d
∫ ∞

c

1

(1 + s)ℓ
ds = C4r

ℓ−d .

In summary, this yields
Φℓ(h) ≤ C5r

ℓ−d .

If r > 1, then
Φℓ(h) = |det(h)|−1Φℓ(h

−1) ≤ r−dC5r
d−ℓ = C5r

−ℓ .

This finishes the proof. ✷



17

Theorem 4.3. Assume that the control weight on H fulfills

w0(h) ≤ (r + r−1)β

for some β > 0. Then the dual orbit is (s,w0)-strongly temperately embedded, with index ℓ =
β + 2s + 5

2d+ 3.

Proof. Since the mapping Ψℓ : h = rS 7→ min(rd−ℓ, rℓ−d) is submultiplicative, Lemma 3.5
implies that c1Ψℓ ≤ MR

UΨℓ ≤ c2Ψℓ, with suitable constants 0 < c1 ≤ c2. We have |det(h)| = rd

and ‖h‖∞ = r, and by the previous lemma Φℓ ≤ CΨℓ. Hence it is sufficient to prove that the
integral ∫ ∞

0
(r + r−1)β(1 + r)2(s+d+1)r−d/2min

(
rd−ℓ, rℓ−d

) dr
r

is finite. This is the case as soon as ℓ > β + 2s+ 5
2d+ 2. ✷

We will next exhibit homogeneous Besov spaces as coorbit spaces over the similitude group, a
fact that has already been noted in [7, 7.2]. Since the argument for higher dimensions is only
sketched in [7], I include a short proof that combines results from [16] with the ϕ-transform
characterization due to Frazier and Jawerth.

Theorem 4.4. For all 1 ≤ p, q <∞, we have Ḃα
p,q(R

d) = Co(Lp,qv (G)), with weight function

v(x, h) = v(x, rS) = r−α−d/2+d/q .

Proof. We will use the ϕ-transform characterization of Frazier and Jawerth, see [11]. The ϕ-
transform is based on the choice of two isotropic Schwartz functions ϕ,ψ with Fourier transforms
compactly supported away from zero, and satisfying (amongst other properties)

∀f ∈ S ′(Rd)/P : f =
∑

j∈Z
f ∗ ϕj ∗ ψj ,

with convergence in S ′(Rd) modulo polynomials. Here ϕj(x) = 2−jϕ(2−jx) = 2−j/2(π(0, 2j)ϕ)(x),
and ψj is defined analogously. P ⊂ S ′(Rd) denotes the subspace of polynomials, and the se-
ries converges in S ′(Rd)/P. The associated discrete wavelet systems are then defined (in the
terminology of this paper) via

ϕj,k = π(2jk, 2j)ϕ , ψj,k = π(2jk, 2j)ψ .

Here we have already somewhat adapted the notation of [11] to the terminology of this paper,
in particular the indexing conventions for small vs. large scales used here differ from [11]. The
norms of the associated discrete coefficient spaces are defined by

‖(cj,k)j,k‖ḃαp,q
=



∑

j∈Z



∑

k∈Zd

(
2−jα−jd/2+jd/p|cj,k|

)p


p/q



1/q

with the usual adjustments in the cases p = ∞ and/or q = ∞. We now define the separated
subset

Z = {(2jk, 2j · idRd) : j ∈ Z, k ∈ Z
d} ⊂ G
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which is in obvious bijective correspondence to Z×Z
d. This bijection then induces an isometric

isomorphism
ḃαp,q

∼= ℓp,qv (Z)

which we will use to identify the two spaces at our convenience.
Now [11, Theorem 6.16] states that f ∈ Ḃα

p,q(R
d) iff (〈f, ϕj,k〉)j,k ∈ ḃαp,q, and we will use this

characterization to show that Ḃα
p,q(R

d) = Co(Lp,qv (G))

To see the inclusion Ḃα
p,q(R

d) ⊂ Co(Lp,qv (G)), first recall by (7) that there exists a control weight
for Lp,qv (G) satisfying the assumption of 2.9. Thus this theorem yields that both ϕ and ψ are in
the space Bv0 . Moreover, the set {(2jk, 2j) : j ∈ Z, k ∈ Z

d} is a separated subset of G. Hence,
if f ∈ Ḃα

p,q(R
d), the sum ∑

j,k

〈f, ϕj,k〉π(2
jk, 2j)ψ

converges in Co(Lp,qv (G)), with respect to the norm of that space, by [8, Theorem 6.1(ii)]. Here we
used (〈f, ϕj,k〉)j,k ∈ ḃαp,q, the observation that for Y = Lp,qV (G), the norm equivalence‖(cj,k)j,k‖Yd ≍
‖(cj,k)j,k‖ḃqα,p

holds (see Remark 2.6), and the density of the finitely supported sequences in the

coefficient space (this is why we exclude the value ∞ for p and/or q). Since Co(Lp,qv (G)) ⊂
S ′(Rd)/P continuously (see the remarks following [16, Corollary 4.5]), we find that the Co(Lp,qv )-
limit of the sum coincides with f . Hence f ∈ Co(Lp,qv (G)).
Conversely, assume that f ∈ Co(Lp,qv (G)), then the fact that ϕ ∈ Bv0 allows to invoke Theorem
2.7. Hence, for sufficiently large m ∈ N, and a suitable finite set S ⊂ SO(d) of rotations (which
we can assume to contain the identity matrix), the set

Z ′ =

{(
2j/mS

k

m
, 2j/mS

)
: j, k ∈ Z, S ∈ S

}
⊂ G

will be such that 2.7(c) applies, yielding that

(
〈f, π(z′)ϕ〉

)
z′∈Z′ ∈ ℓp,qv (Z ′) .

But since Z ⊂ Z ′, this implies (〈f, ϕj,k〉)j,k ∈ ḃαp,q, and thus f ∈ Ḃα
p,q(R

d). ✷

Remark 4.5. Let us now work out concrete vanishing moment conditions for atoms in Ḃα
p,q(R

d).
By (7) (with s = 0), there exists a control weight for Lp,qv (G) that is majorized by

w0(x, rS) =

= max
(
1,∆G(0, rS)

−1
) (

|det(rS)|1/p−1/q + |det(rS)|1/q−1/p
)
(r−α−d/2+d/q + rα+d/2−d/q)

≤
(
r−d + rd

)2
(r−α−d/2+d/q + rα+d/2−d/q)

� (r + r−1)2d+|α−d/2+d/q| .

Thus vanishing moments of order t > |α−d/2+d/q|+ 11
2 d+3 will suffice, by Theorems 4.3 and

3.4. Applying this to the case α = d/2 − d/q and p = q, we obtain Theorem 1.2 by combining
Theorem 2.7 with Proposition 1.1.
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4.2 The diagonal groups

The diagonal group of dimension d is

H =








a1
a2

. . .

ad


 :

d∏

i=1

ai 6= 0





. (13)

The open dual orbit is given by O = {ξ = (ξ1, . . . , ξd)
T ∈ R

d :
∏
i ξi 6= 0}. The auxiliary function

A is given by

A(ξ) = min

(
mini |ξi|

1 +
√

|ξ|2 −mini |ξi|2
,

1

1 + |ξ|

)
.

The control weights we are interested in are of the type

v0(x, h) = (1 + |x|+ ‖h‖∞)sw0(h) ,

where w0(h) =
∏d
i=1

(
ai + a−1

i

)α
. The diagonal group is in fact a special case of a diagonally

acting direct product group. Hence we first prove the following, somewhat more general result,
which is of independent interest.

Lemma 4.6. Let Hj < GL(dj ,R) be admissible dilation groups, with j = 1, 2, . . . , k, and∑k
j=1 dj = d, and let H < GL(d,R) be defined as

H =








h1 0
h2

. . .

0 hk


 : hj ∈ Hj, j = 1, . . . , k





.

Then H is admissible. Let v0 denote a weight on G = R
d
⋊H, satisfying the estimate

v0(x, h) = (1 + |x|+ ‖h‖∞)s
k∏

j=1

wj(hj) , h =




h1 0
h2

. . .

0 hk


 ,

with weights wj on Hj. Let Oj denote the open dual orbit of Hj, and O the open dual orbit
of H. If Oj is (s,wj)-temperately embedded with index ℓj, for j = 1, 2, . . . , k, then O is (s,w)-
temperately embedded with index ℓ = kmax(ℓ1, ℓ2, . . . , ℓk).

Proof. Obviously, H has a unique open orbit given by O =
∏k
j=1Oj , and the associated fixed

groups are the direct products of the fixed groups in Hj, respectively. These are compact by
assumption, hence H is admissible as well.
Let A : O → R

+ and Aj : Oj → R
+ (j = 1, . . . , k) denote the associated envelope functions.

Then we have, for ξ = (ξ1, ξ2, . . . , ξk) with ξj ∈ Oj :

A(ξ)k ≤
k∏

j=1

Aj(ξj) . (14)



20

To see this, let ηj ∈ Oc
j ⊂ R

dj denote elements of minimal distance to ξj, i.e. |ξj − ηj | =

dist(ξj ,O
c
j). Let j0 ∈ {1, . . . , k} be arbitrary, and let η = (ξ1, . . . , ξj0−1, ηj0 , ξj0+1, . . . , ξk)

T ∈ Oc.
Then we have

dist(ξ,Oc) ≤ |ξ − η| = |ξj0 − ηj0 | ,

as well as √
|ξ|2 − dist(ξ,Oc)2 ≥

√
|ξ|2 − |ξ − η|2 =

√
|ξj0 |

2 − |ηj0 |
2 .

Combining the two estimates, we get

dist(ξ,Oc)

1 +
√

|ξ|2 − dist(ξ,Oc)2
≤

|ξj0 − ηj0 |

1−
√

|ξj0 |
2 − |ηj0 |

2
≤ Aj0(xj0) .

Together with the obvious estimate 1
1+|ξ| ≤

1
1+|ξj0 |

, this yields A(ξ) ≤ Aj0(ξj0), and taking the

product over j0 = 1, . . . , k yields (14).
Now Fubini’s theorem immediately implies that Φℓk(h1, . . . , hk) ≤

∏k
j=1Φℓ,j(hj), where Φm :

H → R
+ ∪∞ and Φℓ,j : Hj → R

+ ∪ {∞} are the functions defined according to (9). Note that
here we used that left Haar measure on H is the product of left Haar measures on the Hj. Now

the assumptions on the Hj, together with (1 + ‖h‖∞)s ≤
∏k
j=1(1 + ‖hj‖∞)s, yield the desired

result. ✷

We can now combine the lemma with Theorem 4.3, to obtain the following result.

Corollary 4.7. Let H be defined by (13), and assume that the control weight on H fulfills

w0(h) ≤
d∏

a=1

(|aj |+ |aj |
−1)α

for some α > 0. Then the dual orbit is (s,w0)-strongly temperately embedded, with index ℓ =
d(α+ 2s + 11/2).

4.3 Shearlet groups in dimension two

Fix a real parameter c, and let

H = Hc =

{(
a b
0 ac

)
: a, b ∈ R, a 6= 0

}
.

Here we use the convention ac = sign(a)|a|c for a < 0. For c = 1/2, Hc is the shearlet group
introduced in [19], and further studied (e.g.) in [3, 4], see also [20] for a comprehensive overview.
The other groups are obviously closely related; the parameter c can be understood as controlling
the anisotropy used in the scaling. Haar measure on H is given by db da|a|2 , the modular function

is ∆H(h) = |a|c−1. The dual orbit is computed as

O = R
2 \ ({0} × R)) .

For h =

(
a b
0 ac

)
∈ H and ξ0 = (1, 0)T ∈ O, we obtain hT ξ0 = (a, b)T .

One computes

A(ξ) = min

(
|ξ1|

1 + |ξ2|
,

1

1 + |ξ|

)
.
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We now come to the critical Step 2 in the program outlined at the beginning of this section.
The following estimate is central to this subsection:

Lemma 4.8. Let Φℓ : H → R
+ be defined according to (9). Assume that t, r1, r2 ≥ 1 are positive

integers satisfying r2 > 1 as well as

t ≥ 3r1 + (3 + 6|c|)r2 + 6|c|+ 2 . (15)

Then, for all h =

(
a b
0 ac

)
∈ H, we have the estimate

Φt(h) ≤ C(|a|+ |a|−1)−r1(1 + |b|)−r2 , (16)

with a suitable constant C > 0.

Proof. We first prove a somewhat stronger estimate for |a| ≤ 1, and then use Lemma 3.2(b)
for the other case. Let

u1 = r1 + (1 + 2|c|)r2 + 2|c| , u2 = 2u1 + 2 = 2r1 + (2 + 4|c|)r2 + 4|c|+ 2 . (17)

Then we have u1 + u2 ≤ t, and thus we obtain, for all 1 < u3 ≤ u1

∀ξ = (ξ1, ξ2)
T ∈ O : A(ξ)t ≤

|ξ1|
u1

(1 + |ξ1|)u2
1

(1 + |ξ2|)u3
. (18)

For ξ ∈ O, we have hT (ξ) = (aξ1, bξ1 + acξ2)
T , and hence plugging (18) into the definition of Φt

yields

Φt(h) =

∫

R2

A(ξ)tA(hT ξ)tdξ

≤

∫

R

|ξ1|
u1

(1 + |ξ1|)u2
|aξ1|

u1

(1 + |aξ1|)u2∫

R

(1 + |ξ2|)
−u3(1 + |bξ1 + acξ2|)

−u3dξ2dξ1 . (19)

We now employ the estimate

∫

R

(1 + |y|)−r(1 + α|x− y|)−rdy ≤ C
(
α−1(1 + |x|)−r + (1 + α|x|)−r

)
, (20)

(see [5, Lemma 3.1]) with r = u3, α = |a|c and x = a−cbξ1, to continue from (19) to obtain

Φt(h) ≤ C(I1 + I2)

with

I1 =

∫

R

|ξ1|
u1

(1 + |ξ1|)u2
|aξ1|

u1

(1 + |aξ1|)u2
|a|−c

(1 + |a−cbξ1|)u3
dξ1

and

I2 =

∫

R

|ξ1|
u1

(1 + |ξ1|)u2
|aξ1|

u1

(1 + |aξ1|)u2
1

(1 + |bξ1|)u3
dξ1 .
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Now

I1 = |a|u1−c
∫

R

|ξ1|
2u1

(1 + |ξ1|)u2(1 + |aξ1|)u2(1 + |a−cbξ1|)u3
dξ1

= |a|u1−c|a−cb|−u3
∫

R

|ξ1|
2u1−u3

(1 + |ξ1|)u2(1 + |aξ1|)u2
|a−cbξ1|u3

(1 + |a−cbξ1|)u3︸ ︷︷ ︸
≤1

dξ1

≤ |a|u1−c+cu3 |b|−u3C
∫

R

max{1, |ξ1|
2u1

(1 + |ξ1|)u2
dξ1 ,

where we used that 2u1 − u3 ≥ 2. Our choice of constants implies u2 − 2u1 = 2, hence the
integral converges. Since this holds for all 1 < u3 ≤ r2, we thus obtain, using |a| ≤ 1,

I1 � |a|u1−|c|(1+r2)(1 + |b|)−r2 . (21)

For I2, we obtain with a similar calculation

I2 = |a|u1 |b|−u3
∫

R

|ξ1|
2u1−u3

(1 + |ξ1|)u2(1 + |aξ1|)u2
|bξ1|

u3

(1 + |bξ1|)u3︸ ︷︷ ︸
≤1

dξ1

� |a|u1 |b|−u3 ,

and since 1 < u3 ≤ r2 was arbitrary, we find for |b| ≥ 1:

I2 � |a|u1(1 + |b|)−r2 .

But this means that for the case |a| ≤ 1, |b| ≥ 1 we have in fact established

Φt(h) � |a|u1−|c|(1+r2)(1 + |b|)−r2 , (22)

which is stronger than (16), since u1 ≥ r1 + |c|(1 + r2).
To establish (22) for |a| ≤ 1 and |b| ≤ 1, we employ similar (but easier) estimates to derive for
j = 1, 2

Ij � |a|u1−c � |a|u1−|c|(1+r2)(1 + |b|)−r2 .

In order to apply Lemma 3.2 to the case |a| > 1, we first compute h−1 =

(
a−1 −a−c−1b
0 a−c

)
.

Hence Lemma 3.2 and (22) yield

Φt(h) = |det(h)|−1

︸ ︷︷ ︸
=|a|−1−c

Φt(h
−1)

� |a|−1−c|a|−u1+|c|(1+r2)(1 + |a−c−1b|)−r2

≤ |a|−u1+|c|(2+r2)|a|(1+|c|)r2(1 + |b|)−r2

= |a|−u1+|c|(2+r2)+(1+|c|)r2(1 + |b|)−r2

= |a|−r1(1 + |b|)−r2 ,

by choice of u1. This proves the Lemma. ✷
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Remark 4.9. Combining Lemma 3.7 with (16) yields a decay estimate for shearlet coefficients,
that is possibly of independent interest:

|Wψf(x, h)| ≤ C(1 + |x|)−m(|a|+ |a|−1)−r1(1 + |b|)−r2 ,

which holds for all shearlets ψ and signals f fulfilling sufficient vanishing moment, smoothness
and decay conditions. Note that the additional factors (1+ ‖h‖∞)m and |det(h)|1/2 occurring in
Lemma 3.7 are absorbed by suitably high powers of (|a|+ |a|−1)−1(1 + |b|)−1.

The following theorem establishes strong temperate embeddedness. We use the same w0 as in
[3]; note that the parametrization of the dilation group used in that paper differs from the one
employed here.

Theorem 4.10. Let w0(h) = (|a|+ |a|−1)u1(|a|+ |a|−1 + |acb|)u2 , for some u1, u2 > 0. Then O
is strongly (s,w0)-temperately embedded with index

ℓ =

⌈
3u1 + (9 + 9|c|)u2 + 18(1 + |c|)s +

147

2
|c|+

163

2

⌉
. (23)

Proof. Introduce
r2 = u2 + 2s+ 8

and

r1 = 2 + r2 + u1 + u2(1 + |c|) + 2(1 + |c|)s +
15

2
|c|+

17

2

= u1 + u2(2 + |c|) + 2(2 + |c|)s +
13

2
|c|+

37

2
.

Then one readily verifies
ℓ ≥ 3r1 + (3 + 6|c|)r2 + 6|c| + 2 ,

hence Lemma 4.8 is applicable.
We fix the neighborhood U of the identity element in H as

U =

{(
a1 b1
0 ac1

)
: 1/2 < a1 < 2 , |b1| < 1

}
.

Given h =

(
a b
0 ac

)
∈ H, we employ (16) to estimate

MR
U (Φt)(h) � sup

{(
|aa1|+ |aa1|

−1
)−r1 (1 + |ab1 + ac1b|)

−r2 : 1/2 < a1 < 2, |b1| < 1
}

≤ 2r1
(
|a|+ |a|−1

)−r1 sup
1/2<a1<2,|b1|≤1

(1 + |ab1 + ac1b|)
−r2

�
(
|a|+ |a|−1

)−r1 (1 + |a|)r2(1 + |b|)−r2

�
(
|a|+ |a|−1

)r2−r1 (1 + |b|)−r2 .

A left Haar measure on H is given by db da|a|2 , and instead of the operator norm, we take the

equivalent norm ‖h‖ = |a|+ |ac|+ |b|. Hence we need to estimate

I =

∫

R′

∫

R

(|a| + |a|−1)u1(|a|+ |a|−1 + |acb|)u2 |a|−(1+c)/2

(1 + |a|+ |a|c + |b|)2(s+3)
(
|a|+ |a|−1

)r2−r1 (1 + |b|)−r2db
da

|a|2
.
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Using the estimates
(|a|+ |a|−1 + |acb|) ≤ (|a|+ |a|−1)1+|c|(1 + |b|)

and
(1 + |a|+ |a|c + |b|) � (|a|+ |a|−1)1+|c|(1 + |b|) ,

we find that

I �

∫

R

(|a|+ |a|−1)e1da

∫

R

(1 + |b|)e2db ,

with exponents

e1 = r2 − r1 + u1 + u2(1 + |c|) + 2(s + 3)(1 + |c|) +
1

2
|c|+

5

2

= r2 − r1 + u1 + u2(1 + |c|) + 2(1 + |c|)s +
13

2
|c|+

17

2

and
e2 = −r2 + u2 + 2s+ 6 .

Our choice of r1, r2 implies that e1 = e2 = −2. Hence I <∞, and we are done. ✷

Remark 4.11. In order to formulate an analog of Theorem 1.2, we want to explicitly determine
a sufficient number of vanishing moments for atoms in Co(Lp(G)). For this purpose, first observe

that for h =

(
a b
0 ac

)
, the modular function of G given by ∆G(x, h) =

∆H (h)
|det(h)| = |a|−2. Hence

a control weight for Co(Lp(G)) is majorized by

w0(x, h) = max
(
∆G(0, h)

−1,∆G(0, h)
)
� (|a|+ |a|−1)2 .

Hence Theorem 3.4, together with the formula from 4.10 (with d = 2, c = 1/2, u1 = 2, u2 = s = 0)
yields that for k ≥ 127, any function ψ ∈ L2(R2) with integrable derivatives of order up to 2k
and vanishing moments of order k on the coordinate axis {0}×R will be an atom for all coorbit
spaces Co(Lp(G)), 1 ≤ p ≤ 2. Thus a shearlet analog of 1.2 follows from Theorem 2.7.

Remark 4.12. For dimension d = 2, the examples covered in this section contain a system of
representatives of admissible dilation groups up to conjugacy and finite index, see [13, 14]. It is
easy to see that passing from an admissible dilation group H1 to a conjugate group H2 = gH1g

−1,
the open dual orbit of H1 is strongly temperately embedded with respect to a weight w1 on H1 if
and only if the open dual orbit H2 is strongly temperately embedded with respect to the weight
w2 : H2 ∋ h2 7→ w1(g

−1h2g). Also, it is clear that the finite index condition has no effect on this
property. Thus we have indeed verified that for all reasonable choices of weights on an admissible
dilation group in dimension two, the condition of Theorem 3.4 is fulfilled.
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[13] Hartmut Führ. Zur Konstruktion von Wavelettransformationen in höheren Dimensionen.
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Analysis. Birkhäuser/Springer, New York, 2012. Multiscale analysis for multivariate data.

[21] Romain Murenzi. Wavelet transforms associated to the n-dimensional Euclidean group with
dilations: signal in more than one dimension. In Wavelets (Marseille, 1987), Inverse Probl.
Theoret. Imaging, pages 239–246. Springer, Berlin, 1989.

[22] Wenchang Sun and Xingwei Zhou. Density and stability of wavelet frames. Appl. Comput.
Harmon. Anal., 15(2):117–133, 2003.


	1 Introduction
	1.1 Nonlinear approximation using wavelet frames
	1.2 A short overview of the paper

	2 Coorbit spaces over general dilation groups
	3 Formulation and proof of the main result
	4 Verifying strong temperate embeddedness
	4.1 The similitude groups
	4.2 The diagonal groups
	4.3 Shearlet groups in dimension two

	5 Acknowledgement

