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Model Order Reduction of Parameterized Circuit
Equations Based on Interpolation

Nguyen Thanh Son - Tatjana Stykel

Abstract In this paper, the state-of-the-art interpolation-based model order re-
duction methods are applied to parameterized circuit equations. We analyze these
methods in great details, through which the advantages and disadvantages of each
method are illuminated. The presented model reduction methods are then tested
on some circuit models.
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Interpolation
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1 Introduction

Model order reduction is known to be a crucial tool for the simulation of very large
integrated circuits and interconnects. This issue attracted the attention of many
researchers. It can be seen through numerous published works [20,22,24,26,28,38,
39], just to name a few.
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Using the modified nodal analysis (MNA), see, e.g., [44], linear RLC circuits
can be modeled by a system of differential-algebraic equations (DAESs)

Ez(t) = Az(t) + Bu(t),
y(t) = B a(t),

(1)
where z(t) € RY is the state vector containing the node potentials and currents
through inductors and voltage sources, u(t) € R™ is the input vector consisting of
the currents of current sources and the voltages of voltage sources, and y(t) € R™
stands for the output vector. It is the minus of the voltages of current sources and
the currents of voltage sources. The system matrices have the form

AcCAT 0 0 ~ARGAL —Ar —Ay ~A7 0
E=| 0 L 0|, A= A% 0 0|, B=|0 0,
0 00 AL 0 0 0 -I

where A¢, Ay, Ar, Ay and Az are the incidence matrices describing the circuit
topology, and G, £ and C are the conductance, inductance and capacitance matri-
ces, respectively. For practical models, the state space dimension N depends on the
number of circuits components and is usually huge. The simulations of such large-
scale circuit equations are unfeasibly time consuming. The main task of model
order reduction is to approximate system (1) by a model of lower dimension which
inherits some important physical properties from (1) such as passivity and reci-
procity. System (1) is passive if its transfer function H(s) = BT (sE—A) !B is posi-
tive real, i.e., H(s) is analytic in the open right half-plane C4 and H(s)+H(s)* <0
for all s € C4. Furthermore, system (1) is reciprocal if H(s) = SH(s)” S for all
s € C, where S € R™*™ is a diagonal signature matrix satisfying S? = I. Note
that if the circuit has neither V-loops nor I-cutsets and the element matrices G, £
and C are symmetric and positive definite, then (1) is passive and reciprocal.

In circuit design and optimization problems, the system matrices in (1) depend,
in general, on some parameters that describe the geometric and material proper-
ties of circuits. For example, when modeling a transmission line by an equivalent
lumped circuit shown in Figure 1, the length of the line and the number of seg-
ments may vary. Also, the material used to manufacture the cable will directly
affect the circuit components. In this case, the capacitance, conductance and in-
ductance matrices are constructed dependently on all these values, and the circuit
equations become

E(p)z(t) = A(p)z(t) + Bu(t),

2
y(t) = BT a(t), .

where
AcC(p)AE 0 0 ~ARG(p)AR —Ar —Ay
E(p) = 0 L) o|, Alp) = AL 0 0 (3)
0 0 0 AL 0 0

with a parameter vector p € P C R?. We assume that the parameter domain P is
connected and the dependencies of system matrices on p are smooth enough to
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Fig. 1 Lumped-element transmission line

perform later steps. Our task now is to approximate the parameterized system (2)
by a reduced-order model

E(p)a(t) = Alp)2(t) + B(p)u(t),

X Ay (4)

g(t) = C(p)a(t),
where E(p), A(p) € R™", B e R™™, € € R™*" and r < N. It is required that
the output g of (4), which actually depends on the parameter p, approximates the
output y of the original system (2), i.e., the approximation error § — y is small.
In the frequency domain, the approximation error can be measured as H-—Hin
an appropriate system norm, where

H(p,s) = BT(sE(p) — Ap)"'B,
H(p,s) = C(p)(sE(p) — A(p))~"'B(p)

are the parameterized transfer functions of (2) and (4), respectively. Note that
even if B is parameter-independent, the reduced input and output matrices may
depend on p.

The problem formulated above has been well established and known as para-
metric model order reduction (PMOR). The main point here is that the dependence
of the original system on parameters should be symbolically preserved or the re-
duced system should be easily adapted to the parameter changes, so that for each
new parameter value, the corresponding reduced-order model can be simulated
without reducing the order again. Several approaches have been proposed for the
PMOR problem. The authors of [12,17,21,23,34] proposed to match the so-called
generalized moments of the transfer function H(p, s) through projecting the orig-
inal system on (the union of) generalized Krylov subspaces. A closely related
interpolatory Haz-optimal model reduction method for parameterized systems was
considered in [8,11]. In [9,10,40], first the balanced truncation method [35] was
used to reduce the order of the original system at selected grid points in the pa-
rameter domain and then a parameter-dependent reduced transfer function was
constructed through interpolating the reduced transfer functions. Henceforth, we
refer to this approach as interpolation in the frequency domain. Instead of inter-
polating the reduced transfer functions, it has been proposed in [3,5,18,37] to
interpolate the reduced system matrices to get the reduced-order model on the
whole parameter domain. From now on, this approach will be referred to as inter-
polation in the time domain. Another idea of using interpolation, which has been
investigated in [4,41], is the construction of the parameter-dependent projection
matrices via the interpolation of the projection subspaces for systems at the grid
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points. Some other PMOR methods can be found in [14,15,29,30,32,31], see also
[13] for a recent survey on state-of-the-art methods in parametric model reduction.

Unfortunately, these PMOR approaches have not been extensively employed for
parameterized circuit equations. Besides the moment matching based methods [17,
28,33,34] and the reduced basis technique [19], only interpolation in the frequency
domain for circuit systems in the scattering form has been considered in [24]. In
this paper, the three aforementioned interpolation-based PMOR methods will be
investigated for reducing the order of the parameterized MNA system (2), (3). Our
goal is twofold. First, we present an extension of these methods to parameterized
DAEs and, secondly, we exploit the network structure to make them more efficient
for circuit equations. As noted in [43], the standard model reduction methods
cannot always be directly applied to DAE systems and their extensions often
require a special attention due to algebraic constraints on a solution space.

The remainder of this paper is organized as follows. In Section 2, three interpo-
lation based PMOR methods are reviewed. They are also accompanied by detailed
remarks on the practical aspects and application to circuit equations. Section 3
contains some results of numerical experiments demonstrating the properties of the
presented model reduction methods. Finally, the conclusion is given in Section 4.

2 Model reduction methods for parameterized circuit systems

Let po,...,pr € P be different parameter vectors selected as interpolation points.
At each grid point p;, we approximate the so-called local DAE system

Ejij(t) = Ajx;(t) + Bu(t),
yj(t) = B a;(t)

with E; = E(p;) and A; = A(p;), j =0,...,k, by a reduced-order model

()

Ejij(t) = Aji;(t) + Bju(t),
9;(t) = C;;(1)
using any known projection-based model reduction method. In this case, the sys-
tem matrices in (6) have the form

(6)

I T A T > T A T

where the projection matrices Z;, W; € RN X7 determine, respectively, the sub-
spaces Z; and W; of interest. For example, in moment matching approximation
and interpolatory model reduction, the columns of Z; and W} form the bases of cer-
tain (rational) Krylov subspaces associated with (5), e.g., [6,26]. Since for circuit
equations, the preservation of passivity and reciprocity is of great importance, we
determine the reduced-order local systems (6) using the PAssivity-preserving Ba-
lanced Truncation method for Electrical Circuits (PABTEC) presented in [38,39].
Also, PRIMA and SPRIM algorithms [27,36] can be employed for computing the
projection matrices Z; and W;.

The reduced-order models (6) can now be used to construct the reduced-order
model (4) using an interpolation approach. A general idea of interpolation is to
evaluate the unknown data at any points using pre-computed or known data on
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a chosen grid. Applied to the PMOR problem, the known data are the reduced-
order systems at p;, and one needs to compute the reduced-order model at any
parameter p € P. Such a model can be determined in the frequency domain by its
transfer function, in the time domain by its system matrices or by the projection
subspaces on which the original system is projected. In this section, these three
different PMOR approaches based on interpolation will be investigated and com-
pared with respect to the availability of error bounds and preservation of passivity
in the reduced-order model.

2.1 Interpolation in the frequency domain

A combination of model reduction of the local systems with interpolation in the
frequency domain was first proposed for standard state space systems with £ =T
n [9] and then re-investigated in [40]. An extension of this method to DAE systems
is, however, straightforward [24].

Using the data (p;, Hj(s)), where H;(s) = Cj(sE; — A;)71B; is the transfer
function of the local reduced—order model (6) for j =0,...,k, one computes the
reduced transfer function H(p, s) at any p € P by interpolation. Using multivariate
polynomial or rational interpolation, we construct the reduced transfer function

H(p,s) = ij (n) B (5), (7)

j=0

where the weight functions f;(p) satisfy the conditions f;(p;) = d;; with the Kro-
necker delta d;;. It is easy to see that H(p,s) fulfills the interpolation conditions
H(pj,s) = H;(s) for j =0,... k.

In the transient analysis of electrical circuits, it is important to have a state
space representation for the reduced transfer function (7). It can be obtained as
follows

k
H(p,s) = ng(p VEj(s) =Y fi(p)Ci(sE; — Aj) " By = C(p)(sE — A)™'B

7=0 j=0
where . . . . . A
E = diag(Ey, ..., EL), A = diag(Ao, ..., Ag),
B=[Bj,.... B 1", C)=1fop)Co, ..., frp)Cy].
Since, initially, only the matrices E and A are parameter-dependent, one may
prefer to place f;(p) into E and A by writing H(p,s) = C(sE(p) — A(p)) " 'B

where
E(p) = diag(Eo/fo(p), - , B/ fr(p)).
A(p) = diag(Ao/fo(p), -+, A/ fr(p)), (8)
B=[BL, ..., BT, é [Co, ..., Crl,

provided f;(p) #0 for j =0,...,k

If the reduced-order local systems (6) are passive and reciprocal, then the
approximate model (4), (8) is also reciprocal independently of the interpolation
method used. However, passivity can be guaranteed only if the weight functions
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satisfy the positivity conditions f;(p) > 0 for j = 0,..., k. For example, linear B-
splines fulfill these conditions, whereas the Lagrange polynomial or cubic splines
do not meet this property. We can also use other positive interpolation schemes
considered in [2].

To measure the quality of the approximation, the error between the original
and the reduced-order systems should be estimated. To this end, the following
norm

[H 2o @)@t = sup sup [[H(p,s)]2,
peP seCy
will be used, where || - ||2 denotes the spectral matrix norm. In this definition, we
require that P ¢ R? is bounded and closed, E(p) and A(p) depend continuously
on p, and H(p,s) is proper for all p € P and analytic for all s € C4. Then the
approximation error can be estimated as

k
1H — Hllz, ®)oHo. < NEH, D, 8)|lco ®)@Ho +Or£ja%<k A 2153;) ||,
where
k
Ex(H,p,s) = H(p,s) = > _ fi(p)H(s)
j=0
is the interpolation error, and
Aj = 1H(pj:) = Bi Ol = sup [H(pj,5) = B (5)]1 (9)
sely

is the local Hoo-norm error [9]. Using the linear spline interpolation and assuming
that the transfer function H(p, s) of system (2) satisfies the Lipschitz condition

1 H(p1,-) — H(p2,)#e < Lllp1 — p2l] (10)

for all p;,p2 € P and a Lipschitz constant L > 0, we obtain the following error
estimate
H-H < Lh ax Aj, 11
[ 2o @)@t < +ax 4 (11)

where A; are as in (9), and h is the maximum of the diameters of the subdomains
in P generated by the grid points po, ..., ps. Condition (10) can be guaranteed if
E(p) and A(p) are both continuously differentiable with respect to p and, addition-
ally, either the transfer function is proper or its polynomial part is independent
of p. Estimate (11) was proved in [40] for one-dimensional parameter space. An ex-
tension for the multi-dimensional case is, however, straightforward. Note that the
PABTEC algorithm [38,39] provides computable error bounds for the local sys-
tems, that, in turn, implies the existence of the error bounds for the reduced-order
parameterized system.

Finally, we want to make some remarks on the dimension of the reduced para-
meterized system (4) obtained by interpolation in the frequency domain. This
system has the state space dimension rg + ...+ ry, where r; is the state space
dimension of the local reduced system (6). In practice, not as simple as, e.g., heat
equations, quite many circuit systems are not well reducible. Hence, in many cases
one will end up with a reduced-order model being of about the same dimension as
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the original one, or even larger than that if the number of interpolation points is
large. One remedy for this problem, which has been proposed in [9], is to employ
a sparse grid technique [16]. Accordingly, the number of grid points, and, therefore,
the overall reduced order can be reduced significantly. Another approach is based
on using local interpolation schemes such as linear spline interpolation or local
inverse distance weighted interpolation [2], where the dimension of the reduced
model is independent of the number of interpolation points and does not exceed
(d41)r for simplicial grids and 2% for rectangular grids with d being the dimension
of the parameter domain P and » = max{rg,...,r;}. Local interpolation schemes
can certainly combined with the sparse grid technique.

2.2 Interpolation on the manifold of projection subspaces

We would like to begin this subsection by a note that the set of all subspaces in RV
of fixed dimension, say r, forms a Riemannian manifold [1,25]. It is called Grass-
mann manifold and denoted by &(r, N). Therefore, the interpolation of projection
subspaces is actually performed on this manifold. It was realized in [4] that the in-
terpolation of the matrices whose columns span the corresponding subspaces does
not work in general. One reason is that the subspaces spanned by resulted ma-
trices may not belong to the considered manifold. To solve this problem, a 4-step
procedure was proposed in [4] where the interpolation process was done on the
tangent spaces of the Grassmann manifold.

We will denote by Tyy,®(r, N) the tangent space of &(r, N) at Wo , by Log,y, (W)
the logarithm of W on the Grassmann manifold, and by Exp,y,, (3) the exponent of
Y € Ty, 6(r, N), see [1] for detail. Next, we present a procedure for interpolating
the right projection subspaces Wy, ..., Wy.

Step 1 Choose a contact point for the tangent space, e.g., Wo.
Step 2 Map Wi, --- , Wy, to Ty, &(r, N) by Log,y, . For this purpose, we compute
the thin singular value decomposition (SVD)

(I = Wo(Wg W)~ W )W (W W)~  (Wa W) '/* = Uw, Sw, Vi, (12)
for j =1,...,k. Then the image Yy, = Log,y, (V) is spanned by the columns

of a matrix
Yw, = Uw, arctan(EWj)ij[;j, j=1,...k,
and Yy, = Logyy, (Wo) = 0.

Step 3 Interpolate on Ty, &(r, N) using some standard interpolation technique:
for a parameter value p € P, the columns of a matrix

k
w(p) = £i(p)Yw,, (13)
j=1

where f;(p) are weights depending on the interpolation method, span the sub-
space Vi (p) that belongs to Ty, &(r, N).
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Step 4 Map Yy (p) back to the Grassmann manifold &(r, N) by Expy,, . For this
purpose, one has to compute first the thin SVD

Yw (p) = Uw (p) Zw (p)Viv ()" (14)
and then the matrix representation
W (p) = Wo(Wg Wo) ™/ *Viy (p) cos(Zw (p)) + Uw (p) sin(Zw () (15)
of the sought-after subspace W(p) = Exp,y, (Yw (p))-

A similar procedure is performed to interpolate the left projection subspaces
Z1,..., 2 to get Z(p) with the basis matrix

Z(p) = Zo(Z3 Zo)~"*Viz(p) cos(2z(p)) + Uz (p) sin(z(p)). (16)

Then the system matrices of the reduced-order model (4) can be determined by
projection
E(p) = Z" (p)E(0)W(p), Alp) = Z" (p)Alp)W (p), (17)
B(p) = 2" (p)B, Clp) = CW(p).

The procedure presented above is the same as in [4] except for the formulas
(12), (15) and (16) adapted from [3]. The difference comes from the fact that in
[4], the bases W; and Z; are required to be orthonormal, i.e, W]-TWj = ZJ-TZJ» =1
for 5 =0,...,k, while we consider here general basis matrices. Unlike PRIMA and
SPRIM based on an Arnoldi procedure [7], the columns of the projected matrices
in the PABTEC algorithm are not necessarily orthogonal. The generalization in
(12), (15) and (16) helps to get rid of the orthogonalization of the bases.

Note that for a parameter p not belonging to the set {po,...,pr}, we have
to do all computations (13)-(17) in order to determine the reduced-order system.
Working with parametric systems, this action, in general, has to be repeated many
times. The computational speed of this stage is, therefore, of great importance.
For a class of affine parameter-dependent systems with E = I, it was proposed in
[41] to decompose the computation process into an offline stage, which is usually
computational expensive, and an online stage, in which the computational com-
plexity is independent of the problem dimension N. Next, we present an extension
of this approach for the DAE system (2).

Suppose that the system matrices F(p) and A(p) in (2) have the following form

ng naA

E(p) =Y 0B, Ap)=Y_ [{(p)A,
=1 1=1

where E; and A; are independent of p. For the effectiveness of the method presented
later on, we assume, moreover, that ng, n4 < N and the evaluation of fiE (p) and
fZ-A (p) is cheap. Such an affine representation for circuit equations can be obtained
as follows. The element matrices C(p), £L(p) and G(p) are often diagonal and can
be written as

ne ne ng
Co) =D fEP) e, L) =D [E ) e, G0) =D f7(0)J e
=1 =1 =1
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where J,» denotes a square matrix of appropriate size whose all entries are zeros
except that the entries from the (nj_; + 1)-th position to the n}-th position on
the diagonal are equal to one, and ng = 0. Then we have

Bl) = Zfz EC+Zfz WEF. A=) fF(p)A] +45,

i=1
where
Acdc AL 000 0 0 0
ES = 0 00/, Ef={0 J,c OF,
0 00 0 0 0
~ARJ gA% 0 0 0 —Ar —Ay
A7 = o0 o0o0l|, AY=]4L 0o o0
0 0 0 AL o 0

Let Py € RVX™W be an orthonormal basis of the intersection of the orthogonal
complement of the subspace spanned by the columns of Uy, and the subspace
spanned by that of [Uyy,, ..., Uw,]. It is nothing else but the matrix whose columns
are the left singular vectors of (I —Uy, U{/Tvl)[UWzv ..., Uw,]. Note that the number
of columns of Py, satisfies ny < (k — 1)r. Consider the matrix

fi(p)arctan(Sw, ) + f2(P) Uy, Y, Vi, + ... + fr(0) Uy, Y, Vv

F2 () P (I - Uw U ) Yw,Viv, + - .. + fio(p) P (1= Unr, UL ) Y, Vi,
(18)

Kw(p) =

where f;(p),i = 1,...,k are the interpolation coefficients in (13). Analogously, we
construct the matrix Kz(p) from Pz, ¥z , Uz, Vz, and Yz,,..., Yz, . Let

Kw (p) = w (p)Sw ()i (), Kz(p) = D4 (p)Sz(p)¥% (p) (19)

be the thin SVDs of Ky (p) and Kz(p). Then the reduced system matrices are
computed as

E(p) = Z" (p) E(p)W (p) (20)

=312 ()eos(5 ()05 )V (2 20) 25 B0 (W Wo) Nty (p)eos(Siw ()
S B () cos(S 2 ()WL (0)VE (28 20) 28 BulUw, P loow (o) sin(Sw (1)

i=1

+Zf1 )sin(Sz (p))B% (P)[Uz,, Pz]" E:Wo(Wd Wo)™ 2 Viy, Wy (p) cos(Sw (p))

+ZfiE(p) sin(Sz(p)2% (0)[Uz,, Pz]" EilUw,, Pw)®w (p)sin(Sw (p)).
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The matrix A(p) is constructed similarly. The input and output matrices are

B(p)= 2" (p)B (21)
= cos(Sz(p))WE (p)VE (28 20)72 28 B + sin(Sz()) 8% (p)[Uz,, Pz]" B,
C(p) = B"W(p) (22)

_1 .
= B Wo(Wo Wo) ™2 Vv, (p) cos(Sw () + B” [Uw, , Pw]w (p) sin(Sw (),
respectively. Then, the offline-online decomposition runs as follows.

Offline: Compute
e W; and Z; corresponding to p; for j =0,...,k;
[UW s S, ,VW] and [Ugz,, X z,,Vz)] representmg Logy,(W;) and Log z (Z;),
respectlvely7 forj=1,...,k
e Py and Py from the thm SVDs of the matrices (I—-Uyy, UW1 WOw,s - U, ]
and (I — Uy, UZ)Uz,, ..., Uz,].
Compute and store
e all parameter-independent terms for Ky (p) in (18) and Kz(p);
e all parameter-independent terms for the reduced system matrices F, A, B
and C in (20)-(22).
Online: For any value p € P, we compute
o Kw(p) asin (18) and Kz(p);
e the thin SVDs of Ky (p) and Kz(p) as in (19);
e the reduced system matrices as in (20)-(22).

Note that unlike [4,41], where one-sided projection methods were used to com-
pute the local reduced-order systems, the above procedure involves two-sided pro-
jection that may be advantageous for general DAE systems. However, for the
circuit system (2) with

E(p)=E"(p) >0, A(p)+ AT (p) <0, c =BT, (23)

we have to restrict ourself to one-sided projection (as it is used in SPRIM and
PRIMA for general circuits and in PABTEC for RC and RL circuits) in order to
guarantee the preservation of passivity and reciprocity in the reduced-order model.
Finally, we remark that the model reduction approach based on the interpolation
of the projection subspaces does not provide any error bound even if for the local
subsystems, error bounds are available.

2.3 Interpolation in the time domain

Interpolation of the reduced-order local systems (5) in the time domain is probably
the most simple idea for determining a reduced-order model on the whole param-
eter domain. We, however, do not perform a naive interpolation of the reduced
system matrices Ej, Aj, Bj and éj. Instead, we follow two adjustment methods
proposed in [37] and [5], respectively, combined with the interpolation on suitable
matrix manifolds as considered in [18].

It was argued in [37} that summing up two different local reduced systems
(E;, A;, B;, C;) and (E; ],BJ,Cj) means that we have to accept that the two
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corresponding local state vectors Z; and #; are identical. In fact, it is false, since
Z; and &; are the coordinates of the state vector on different projection subspaces
W; and W; spanned by W; and Wj, respectively. This observation leads to the
use of a common subspace for all local reduced systems without affecting their
input-output behavior. This can be done as follows. Let Ry, and Ry be the N x r
matrices whose columns are the left singular vectors of the matrices [Wo, ..., W]
and [Zo, ..., Zy], respectively, corresponding to the r largest singular values. Then
the local reduced-order system (5) is transformed into

M;E; Ty (t) = MjA;T;;(t) + M;Bju(t),
9(t) = C3T5a5(t),

with T; = (R, W;)~! and M; = (ZJ-TRZ)_l, and the new reduced system matrices
are used as the known data in interpolation to get the reduced system matrices
at a given value p. Note that our left transformation matrix M; differs from that
in [37], where M; = (Z;F]-?WV)_1 was chosen. Since we do not see any reason to
use information from the right common projection subspace for adjusting the left
local projection matrices, our choice seems to be more appropriate. It should be
noted that the transformation matrices 7; and M; may be ill-conditioned which
leads to poor approximation.

Realizing that the direct interpolation of the local reduced-order systems is
inadvisable, another approach was proposed in [5] which is based on minimization
(not elimination as mentioned in [5]) of the differences between the local pro-
jection matrices. This approach can also be extended to DAE systems. First, one
chooses the reference projection matrices, e.g., Wy and Zy, and solves the following
minimization problems

(24)

Q; = argmin ||W;Q — Wol|F, Rj = argmin||Z;R — Zo||
QEGL(r) ReGL(r)

for j =1,...,k, where GL(r) denotes the set of r x r nonsingular matrices. After
that, W; and Z; are replaced by W;Q; and Z;R;, which span the subspaces W;
and Z;, respectively, but are closest to Wy and Zy among all the matrices that
span W; and Z;, respectively. The local reduced system matrices become

If W; and Z; have orthonormal columns, then the search for the transformation
matrices Q; and R; is restricted to the set of orthogonal matrices [5]. The solutions
of these orthogonal minimization problems are given by

Qi =U (Vo))" Ry=URpviH)" (26)
where the orthogonal factors are determined from the SVDs
Wi Wo =Ujg 50 (Vo)™ Z] 2o = U E5(vi6)"
In the general case, the sought-after matrices can be taken
Qs =W wy) ' wiwe, Ry =(2]2)7" 2] 2.

Note that if these matrices are ill-conditioned, the orthogonal transformation ma-
trices (26) should be preferred.
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Table 1 Logarithmic and exponential mappings for some matrix manifolds

Manifold: nonsingular symmetric
positive definite

Expg(Y) exp(Y)S S1/2 exp(Y)S1/2
Logg (T) log(TS~1)  log(S—1/2TS~1/2)

The last step is to interpolate the adjusted system matrices. Since the reduced
matrices usually own some special properties such as nonsingularity or symmetric
positive definiteness, the direct interpolation, like those on Grassmann manifolds,
may not work. For this reason, it was suggested in [5,18] to employ the 4-step
procedure mentioned in Subsection 2.2. The only difference is that we have to use
different logarithmic and exponential mappings depending on the properties of the
matrices to be interpolated. Table 1 provides the appropriate mappings for differ-
ent matrix manifolds in which exp and log are the standard matrix exponential
and matrix logarithm.

For circuit equations, the system matrices satisfy the conditions (23). In case
of one-sided projection, the reduced local system matrices maintain these pro-
perties meaning, in particular, that E‘j and —Aj — flf are symmetric and positive
semidefinite. For some special circuits, as for example, RC circuits with current
sources, one gets even the local reduced-order systems with positive definite E‘j
and ffij. Then the interpolation on the appropriate matrix manifold should be
used in order to keep these properties in the interpolated reduced system and, as
a consequence, to guarantee the preservation of passivity and reciprocity in this
system. However, if Ej and Aj are singular, we cannot compute the logarithmic
mapping as in Table 1. In this case, we perform the direct interpolation

Bp) = 3 fi)E;  Alp) = Xk) fi(p)A;,
J=0 Jj=0

X k N R k s

B(p) = Z f](p)B]7 C(p) = Z fj(p)cjv
J=0 Jj=0

where the weight functions satisfy f;(p) > 0 for j =0,...,k. These conditions also
ensure the preservation of passivity and reciprocity in the reduced-order paramet-
ric system.

In Table 2, we summarize the essential properties of the interpolation-based
model reduction methods for parameterized circuit systems considered in this sec-
tion.

3 Numerical examples

In this section, we consider some numerical examples in which the presented
interpolation-based methods are utilized for model reduction of parameterized
circuit equations.

Ezxample 1 The first example is an one-port RCV circuit described by the MNA
system (2), (3) of order N = 5000. The parametrized capacitance and conductance
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Table 2 Properties of the interpolation-based model reduction methods for parameterized
circuit systems

Interpolation = Dimension  Passivity = Error Remarks
bound
time domain r yes no one-sided projection; adjustment of

the reduced system matrices is needed,;
if no interpolation on matrix manifolds

then f;(p) = 0;

projection r yes no online-offline decomposition for affine
subspaces parameter-dependent system matri-
ces; one-sided projection

frequency cr yes yes f;(p) > 0; reduced local systems may
domain (c<k+1) have different dimensions; passivity
preserving methods for local systems

matrices have the form C(p) = p™ I and G(p) = pP I with p = [p(*), pP]T € P and
P = [107'2,50 - 107*?] x [1,45]. The reduced-order local models were computed
on the grid P, = 10~ *2[1, 5, 15, 30, 50] x [1, 5, 15, 30, 45]. For computing these
models, we use a balanced truncation model reduction approach presented in [39]
and implemented in a MATLAB toolbox PABTEC [42]. This approach is based
on a reformulation of the MNA system (2), (3) with p = p; in the modified loop
analysis (MLA) form which has the same transfer function Hj;(s). Frequency in-
version of the MLA system yiels H}(s) = H;(1/s). The Lyapunov-based balanced
truncation method is then applied to H;(s) followed by frequency inversion of the
reduced-order model f];(s) providing the reduced-order model H;(s) = I:I;(l/s),
see [39] for details. An advantage of this multi-step approach is that the frequency-
inverted MLA system H;(s) for RCV circuits is symmetric, and, therefore, only
one Lyapunov equation has to be solved resulting in one-sided projection. Further-
more, the reduced-order model ﬁj(s) is passive and reciprocal, it is exact at zero,
i.e., H;(0) = H;(0), and there exists a computable error bound on ||H; — H;]3_. -
Note that the frequency inversion preserves passivity and reciprocity, and both
Hj(s) and HJ (s) have the same Hoo-norm. In order to guarantee passivity in the
reduced-order interpolated system H (p, s) for any parameter p, we first perform
interpolation in the frequency domain, time domain or on the Grassmann manifold
of the reduced-order frequency-inverted models H 7(s), yielding ﬁj* (p, s), and then
determine a realization of H;(p,s) = ﬁ;(n 1/s).

In our experiments, order of all local reduced models is r; = 26. To measure
the quality of approximations, we use a rough estimate of the relative error

max ||H(p,iw) — H(p,iw)|2

WE [Wmin,Wmax]

(27)

max 1H (p, iw)]|2

we [wmin ;Wmax

With wmin = 10 and wmax = 10'%. In Figure 2a), we present the relative error (27),
where the reduced-order transfer function H(p, s) is obtained via linear spline in-
terpolation in the frequency domain and has the order r = 104. Figure 2b) shows
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Fig. 2 Example 1: relative errors of linear spline interpolation in the frequency domain (a)
and in the time domain (b)

the relative error for the reduced system of order r = 26 obtained using spline
interpolation in the time domain without adjustment. One can see, that the ap-
proximation in the first approach is better than that in the second approach. Note
that the adjustment with the orthogonal transformation matrices as in (26) does
not improve the approximation since these matrices are very close to the identity.
Furthermore, the adjusted local systems (24) lead even to a worse approximation.
The relative errors for the approximate models obtained by interpolation on the
Grassmann manifold with the reference basis at p(") = 151072 and p® = 15.
are shown in Figure 3a). We observe that the approximation in this approach is
much better than that provided by interpolation in the frequency and time domain.
The relative error on the whole parameter domain has the same amplitude order
as for local reduced models. For comparison, we also present in Figure 3b) the
relative errors for interpolation on the Grassmann manifold obtained on a larger
parameter domain P = [1073,5.2 - 107'°] x [0.1,460] and a coarser grid, where
four grid points are just vertices of P. The reference basis is taken at [1072, 0.1]7.
One can see that in this case the approximation quality still remains very good.

Exzample 2 The second example is the transmission line as presented in Figure 1
with two parameters describing the line length p(*) € [10, 20] measured in mm and
the distributed conductance p® € [0.1,0.9] measured in S/mm. At each point of
the grid [10, 12, 14, 16, 18, 20] x [0.1, 0.3, 0.5, 0.7, 0.9], the original system of order
N = 12000 was approximated by a reduced model of order 27. Since the original
order is rather large, the computation of the relative error on the whole parameter
domain is extremely expensive. Instead, we consider the relative error

|1 H (gj,iw) — H(gj,iw)]|2
| H(q;,iw)l|2

of the frequency response at four points qi, g2, g3 and g4, henceforth referred to
as points of interest, whose locations are depicted in Figure 4. In interpolation of
of projection subspaces, we choose the subspace at pg = [14, O.S]T as the contact
point for the tangent space.



Model reduction of parameterized circuit equations

15

conductance (S) 40

50

)

40 ;
capacitance (pF)

conductance (S)

b)

capacitance (pF)

Fig. 3 Example 1: relative errors of linear spline interpolation on the Grassmann manifold
using the fine grid Pj,. (a) and the coarse grid [10713,5.2 - 10710] x [0.1,460] (b)
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Fig. 4 Example 2: points of interest in the parameter domain
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Figures 5a) and 5b) show the relative errors at four points of interest for the
reduced-order models determined by spline interpolation in the frequency domain
and on the Grassmann manifold, respectively. These approaches provide slightly
different results for different points of interest. In Figures 6a) and 6b), we present
absolute errors |y(t) —§(t)| in the output for both methods at two points g1 and g3,
respectively. The simulation is performed with the input u(t) = sin(1007¢)*® V on
the time interval [0,0.05] with the stepsize 7 = 5.10~°. For comparison, we also in-
clude the simulation results for the reduced-order model obtained by interpolation
in the frequency domain using the local inverse distance weighted interpolation
method. Once again, the approximation by interpolation of projection subspaces
is seen to be much better (especially at g3) than the others.
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Fig. 5 Example 2: relative errors at four points of interest for linear spline interpolation in
the frequency domain (a) and on the Grassmann manifold (b)
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Fig. 6 Example 2: absolute errors in the output produced by interpolation of projection
subspaces (Subspace) and interpolation in the frequency domain using linear splines (FD-
spline) and distance weighted interpolation (FD-dist.) at g1 (a) and g3 (b)

Some main observations from numerical experiments with presented and also
other circuit systems can be summarized as follows.

— Interpolation of projection subspaces yields better approximations than inter-
polation in the frequency and time domain.

— Within interpolation in the time domain, interpolation of adjusted system mat-
rices as proposed in [5] gives better results than that presented in [37].

— Within interpolation in the frequency domain, the errors caused by linear spline
interpolation is smaller than that caused by local distance weighted interpola-
tion.

4 Conclusion

In this paper, the problem of model order reduction of parameterized circuit equa-
tions was considered. We have presented the recently developed parametric model
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reduction methods based on interpolation in the frequency domain, interpolation
of projection subspaces and interpolation in the time domain and discussed their
application to circuit systems. Exploiting specific system structure, we have also
investigated preservation of passivity and reciprocity in the reduced-order model
on the whole parameter domain.
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