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TOWARDS A UNIFIED ANALYSIS OF MIXED METHODS FOR

ELASTICITY WITH WEAKLY SYMMETRIC STRESS

JEONGHUN J. LEE

Abstract. We propose a framework for unified analysis of mixed methods
for elasticity with weakly symmetric stress. Based on a commuting diagram
in the weakly symmetric elasticity complex and extending a previous stabil-
ity result, stable mixed methods are obtained by combining Stokes stable and
elasticity stable finite elements. We show that the framework can be used to
analyze most existing mixed methods for the elasticity problem with elemen-
tary techniques. We also show that some new stable mixed finite elements are
obtained.

1. Introduction

In the Hellinger–Reissner formulation of linear elasticity, for a given external
body force and boundary conditions, the stress and displacement are sought as
a saddle point of the Hellinger–Reissner functional. In this saddle point problem
the stress tensor is directly obtained without suffering from volumetric locking in
nearly incompressible materials [4]. However, the symmetry condition of the stress
tensor gives a highly nontrivial obstacle in finding stable mixed finite elements for
the saddle point problem. Another way to find mixed methods for the problem is
to impose the symmetry condition weakly by requiring the stress to be orthogonal
against a certain space of skew-symmetric tensors [1, 18]. This alternative approach
turned out to be successful and various stable mixed finite elements have been
developed based on this idea [2, 6, 12, 17, 20, 21, 22, 27, 35, 36]. In this paper we
will call them weak symmetry elements.

There are several different ways to analyze the stability of weak symmetry ele-
ments. In early research [2, 21] a connection between the Stokes equation and the
linear elasticity equation with weak symmetry is used for the proof of stability. An
analysis using mesh-dependent norms is also proposed [35, 36]. A breakthrough is
made in [6] in the development of a weakly symmetric elasticity complex. In [6]
the Arnold–Falk–Winther (AFW) family is developed and the stability is proved
by commuting diagram properties in the elasticity complex and a diagram chasing
type argument in homological algebra. In [12] an analysis, based on a connection
with the Stokes equation, is revived with a commuting diagram in the weakly sym-
metric elasticity complex [6], and the stability proof of the AFW family is reduced
to proving existence of an interpolation operator satisfying some conditions. As
a consequence, new elements are developed and an alternative stability proof is
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proposed in [12]. This idea is adopted in [17, 22] to construct new elements with
the aid of cleverly-designed matrix bubble functions and some results in [6].

The aforementioned ways for the stability proof, although they are interesting,
are not elementary, and some of them need sophisticated concepts which are not
familiar to many numerical analysts and engineers. The goal of this paper is to
provide a unified framework for the analysis of weak symmetry elements with el-
ementary techniques. It is worth to mention that there is a similar attempt with
mesh-dependent norms [37], which can be useful for developing mixed discontinu-
ous Galerkin methods for the problem. In contrast, we revisit the approach in [12]
and extend it using an idea in [23]. We establish an abstract framework with this
simple extension and show that various known results can be easily recovered. For
example, in our approach, the stability of variable degree finite elements on affine
meshes [31, 32] is proved without special interpolation operators.

Another contribution of our work is to prove an improved error estimate, which
was available only for several families of elements [6, 17, 22, 23, 36], for a wider
class of elements. We prove that the improved error estimate holds for all ele-
ments satisfying several simple conditions and we shall show through examples
that most known finite elements, including variable degree elements, satisfy the
conditions. It is worth mentioning that this improved error estimate leads to exis-
tence of weakly symmetric elliptic projection, which is a key tool for error analysis
of time-dependent problems [7].

This paper is organized as follows. In section 2, we summarize notation and
review the Hellinger–Reissner formulation of linear elasticity with weakly symmetric
stress. In section 3, we introduce an abstract framework for unified analysis and
prove an improved a priori error estimates. In section 4, we give examples of weak
symmetry elements to which the abstract framework can be applied.

2. Preliminaries

2.1. Notation. Let Ω be a bounded domain in R
n (n “ 2, 3) with a Lipschitz

boundary. We use HmpΩq, m ě 0 to denote standard Sobolev spaces [19] based on
the L2 norm (H0pΩq “ L2pΩq) and for a finite dimensional inner product space X,
HmpXq is the space of X–valued functions such that each component is in HmpΩq.
The associated norm is denoted with } ¨ }m. For p, q P L2pXq we will use pp, qq to
denote the L2 inner product. We denote the spaces of all, symmetric, and skew-
symmetric n ˆ n matrices by R

nˆn, Rnˆn
sym , and R

nˆn
skw , respectively.

We use grad and div to denote the standard gradient and divergence operators.
However, we use curl to denote two different operators for different n, namely, if
n “ 2, then

curl : H1pRq Ñ L2pR2q, curlφ “ p´Bx2
φ Bx1

φq,

and if n “ 3, then curl is the standard three dimensional curl operator.
By Hpdivq we denote the space of square integrable R

n-valued functions on
Ω such that the divergence of functions is also square integrable and the Hpdivq
norm is defined by }τ}2div “ }τ}20 ` } div τ}20. The Hpcurlq space and } ¨ }curl are
defined similarly if n “ 3. When we apply the operators grad, div, curl to a matrix-
valued or vector-valued function the operations need to be well-defined as row-wise
operators. By Hpdiv;Rnq we denote the space of functions in L2pRnˆnq such that
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each row is in Hpdivq. The space Hpcurl;R3q is defined similarly for n “ 3. The
Hpdivq and Hpcurlq norms of the spaces are naturally defined.

2.2. Hellinger–Reissner formulation of linear elasticity. For a given displace-
ment u : Ω Ñ R

n, the linear strain tensor ǫpuq is

ǫpuq “
1

2
pgradu ` pgraduqT q,

where pgraduqT is the transpose of gradu. From generalized Hooke’s law the stress
tensor is σ “ Cǫpuq where C is the stiffness tensor such that Cpxq : Rnˆn

sym Ñ R
nˆn
sym

for all x P Ω and

c0τ : τ ď Cpxqτ : τ ď c1τ : τ, τ P R
nˆn
sym ,

with positive constants c0, c1 independent of x P Ω. For each x P Ω, Cpxq´1 is also
bounded and positive definite. If an elastic medium is isotropic, then C´1τ has the
form

C´1τ “
1

2µ

ˆ

τ ´
λ

2µ ` nλ
trpτqI

˙

,(2.1)

where µpxq, λpxq ą 0 are the Lamé parameters, trpτq is the trace of τ , and I is the
identity matrix.

Throughout this paper we assume the homogeneous displacement boundary con-
dition u “ 0 on BΩ for simplicity. For a given f P L2pRnq, the Hellinger–Reissner
functional J : pHpdiv;Rnq X L2pRnˆn

sym qq ˆ L2pRnq Ñ R is defined by

J pτ, vq “

ż

Ω

ˆ

1

2
C´1τ : τ ` div τ ¨ v ´ f ¨ v

˙

dx,(2.2)

and it is known that J has a unique critical point

pσ, uq P HpΩ, div;Rnˆn
sym q ˆ L2pΩ;Rnq,

which is the solution of the elasticity problem with the boundary condition u “ 0.
For the approach with weakly imposed symmetry of stress we define A as the

extension of C´1 on R
nˆn such that A is the identity map for skew-symmetric

matrices. We define function spaces Σ, U , and Γ by

Σ “ Hpdiv;Rnq, U “ L2pRnq, Γ “ L2pRnˆn
skw q,

and a functional J̃ : Σ ˆ U ˆ Γ Ñ R by

J̃ pτ, v, ηq “

ż

Ω

ˆ

1

2
Aτ : τ ` div τ ¨ v ` τ : η ´ f ¨ v

˙

dx.(2.3)

The functional J̃ has a unique critical point pσ, u, γq (see [5]) and the first two
components coincide with the critical point of J in (2.2). By variational methods,

the critical point pσ, u, γq of J̃ satisfies

pAσ, τq ` pu, div τq ` pγ, τq “ 0, τ P Σ,(2.4)

´pdiv σ, vq “ pf, vq, v P U,(2.5)

pσ, ηq “ 0, η P Γ.(2.6)
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The associated discrete problem with finite element spaces ΣhˆUhˆΓh Ă ΣˆUˆΓ
is seeking pσh, uh, γhq P Σh ˆ Uh ˆ Γh such that

pAσh, τq ` puh, div τq ` pγh, τq “ 0, τ P Σh,(2.7)

´pdiv σh, vq “ pf, vq, v P Uh,(2.8)

pσh, ηq “ 0, η P Γh.(2.9)

In this approach the numerical stress σh is not symmetric but is weakly symmetric
due to the last equation of the above.

3. Abstract framework

In this section we introduce an abstract framework for unified analysis of weak
symmetry elements. This is a generalization of the approach in [26] with inspirations
from [12, 23].

Throughout this paper c is a generic positive constant independent of mesh sizes.
We first recall the Babuška–Brezzi stability conditions for (2.7)–(2.9), which are

(S1) There is c such that

c}τ}2div ď pAτ, τq,

for τ P Σh satisfying pdiv τ, vq ` pτ, ηq “ 0 for all pv, ηq P Uh ˆ Γh.
(S2) There is c such that

inf
0“pv,ηqPUhˆΓh

sup
0“τPΣh

pdiv τ, vq ` pτ, ηq

}τ}divp}v}0 ` }η}0q
ě c.

Now we recall a commuting diagram of the elasticity complex in [6]. Let

Ξ “

#

H1pR2q if n “ 2,

Hpcurl;R3q if n “ 3.

We also define S and χ as

S

ˆ

ξ1
ξ2

˙

“
1

2

`

ξ1 ξ2
˘

for ξ P Ξ, χprq “

ˆ

0 r

´r 0

˙

for r P R if n “ 2,

Sξ “
1

2
pξT ´ ptr ξqIq for ξ P Ξ, χ

¨

˝

r1
r2
r3

˛

‚“

¨

˝

0 ´r3 r2
r3 0 ´r1

´r2 r1 0

˛

‚ if n “ 3.

Note that S and χ are invertible algebraic operators. One can verify by a direct
computation that S maps Ξ to Hpdivq if n “ 2, and to Hpdiv;R3q if n “ 3, so
χ divS maps Ξ to Γ. One can also verify by a direct computation that

skw curl ξ “ χ divSξ, ξ P Ξ,

where skw τ “ pτ ´ τT q{2 for τ P L2pΩ;Rnˆnq. For finite element spaces Ξh Ă Ξ,
Γh Ă Γ, and the L2 projection Qh into Γh, it holds that

Qh skw curl ξ “ Qhχ divSξ, ξ P Ξh,

which implies that the triangle in Figure 1 commutes. Note that the bottom row
of this diagram is not necessarily an exact sequence.

Definition 3.1. A triple of finite elements pΣh, Uh, Rhq is elasticity stable if Σh Ă
Σ, Uh Ă U , Rh Ă Γ and the following hold:

(A1) div Σh “ Uh
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Γh

Ξh Σh Uh
curl div

Qhχ divS Qh skw

Figure 1. A finite element version of the commuting diagram in
the weakly symmetric elasticity complex

(A2) There exists c such that for any pv, ρq P Uh ˆ Rh, there exists τ P Σh

satisfying

div τ “ v, pτ, ρ1q “ pρ, ρ1q @ρ1 P Rh, }τ}div ď cp}v}0 ` }ρ}0q.

It is not difficult to see that (A1) implies (S1) because A is positive definite,
and (A2) implies (S2). However, an elasticity stable triple pΣh, Uh, Rhq may not
be an appropriate mixed finite element for (2.7)–(2.9) in the standard context.
For instance, if Σh “ BDM1pR2q, Uh “ Pd

0 pR2q, then pΣh, Uh, 0q is elasticity
stable. Thus an elasticity stable triple pΣh, Uh,Γhq should have a reasonable order
of approximation of pΣ, U,Γq to be an appropriate mixed finite element for (2.7)–
(2.9).

Definition 3.2. Suppose that Ξh Ă Ξ, Rh Ă Γ are finite element spaces and
Qh : Γ Ñ Rh is the L2 projection. The pair pΞh, Rhq is Stokes stable if

(B) There exists c such that for any ρ P Rh there is ξ P Ξh satisfying

pQhχ divSξ, ρq ě c}ρ}20, } curl ξ}0 ď c}ρ}0.

The condition (B) implies that Qhχ divS : Ξh Ñ Rh is surjective. Furthermore,
for any ρ P Rh, there exists ξ P Ξh such that Qhχ divSξ “ ρ and } curl ξ}0 ď c}ρ}0.

Theorem 3.3. Let Ξh Ă Ξ, Σh Ă Σ, Uh Ă U , Γh Ă Γ be four finite element spaces.
For a subspace Γ0

h of Γh its orthogonal complement is denoted by Γ1
h. Suppose that

pΣh, Uh,Γ
0
hq is elasticity stable and pΞh,Γ

1
hq is Stokes stable with χ divSΞh K Γ0

h.
Then pΣh, Uh,Γhq is elasticity stable.

Proof. Since we assume that pΣh, Uh,Γ
0
hq is elasticity stable, we only need to check

(A2) to show that pΣh, Uh,Γhq is elasticity stable. Let v P Uh, η “ η0`η1 P Γ0
h‘Γ1

h

be given. By (A2) for pΣh, Uh,Γ
0
hq there is τ0 P Σh such that

}τ0}div ď cp}v}0 ` }η}0q, div τ0 “ v, pτ0, η
1
0q “ pη0, η

1
0q, @η1

0 P Γ0
h.

Let Q1
h be the L2 projection into Γ1

h. Since pΞh,Γ
1
hq is Stokes stable, there exists

ξ P Ξh such that Q1
hχ divSξ “ η1 ´ Q1

hτ0 and } curl ξ}0 ď c}η1 ´ Q1
hτ0}0. We take

τ “ τ0 ` curl ξ and check that the conditions in (A2) holds. Since div τ0 “ v,

div τ “ div τ0 ` div curl ξ “ div τ0 “ v.
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For η1 “ η1
0 ` η1

1 P Γ0
h ‘ Γ1

h

pτ, η1q “ pτ0 ` skw curl ξ, η1q

“ pτ0 ` χ divSξ, η1q

“ pτ0, η
1
0q ` pτ0 ` χ divSξ, η1

1q p7 χ divSξ K η1
0q

“ pτ0, η
1
0q ` pQ1

hpτ0 ` χ divSξq, η1
1q

“ pη0, η
1
0q ` pη1, η

1
1q p7 Q1

hχ divSξ “ η1 ´ Q1
hτ0q

“ pη, η1q.

Note that }η1}0 ď }η}0. By the triangle inequality, }τ0}div ď cp}v}0 ` }η}0q and
} curl ξ}0 ď c}η1 ´ Q1

hτ0}0 ď cp}η}0 ` }τ0}0q,

}τ}div ď } curl ξ}0 ` }τ0}div ď cp}v}0 ` }η}0q.

Thus (A2) holds and pΣh, Uh,Γhq is elasticity stable. �

Now we show an improved a priori error estimate.

Theorem 3.4. Suppose that pΣh, Uh,Γhq is elasticity stable and there exists an
interpolation operator Πh : H1pΩ,Rnˆnq Ñ Σh such that

div Πhτ “ Ph div τ, τ P H1pΩ;Rnˆnq,

where Ph is the L2 projection into Uh. Let pσ, u, γq and pσh, uh, γhq be the solutions
of (2.4)–(2.6) and (2.7)–(2.9). Then the following inequality

}σ ´ σh}0 ` }Phu ´ uh}0 ` }γ ´ γh}0 ď cp}σ ´ Πhσ}0 ` }γ ´ Qhγ}0q,(3.1)

holds with Qh the L2 projection into Γh.

Proof. The proof is same as that of Theorem 4.1 in [26] but we include the details
here to be self-contained. The difference of (2.4)–(2.6) and (2.7)–(2.9) gives

pApσ ´ σhq, τq ` pu ´ uh, div τq ` pγ ´ γh, τq “ 0, τ P Σh,(3.2)

pdivpσ ´ σhq, vq “ 0, v P Uh,(3.3)

pσ ´ σh, ηq “ 0, η P Γh.(3.4)

Let Σh,0 “ tτ P Σh : div τ “ 0u and consider an auxiliary problem of seeking
pσ1

h, γ
1
hq P Σh,0 ˆ Γh such that

pAσ1
h, τq ` pγ1

h, τq ` pσ1
h, ηq “ F pτq ` Gpηq, pτ, ηq P Σh,0 ˆ Γh,(3.5)

with a bounded linear functional pF,Gq on Σh,0 ˆ Γh. As a special case of (A2),
for v “ 0 and any given η P Γh there exists τ P Σh,0 such that pτ, η1q “ pη, η1q
for all η1 P Γh and }τ}0 ď c}η}0. From this observation and (A1), Σh,0 ˆ Γh is a
stable mixed finite element for the problem (3.5) with the L2 norms. By restricting
τ P Σh,0, the sum of (3.2) and (3.4) is

pApσ ´ σhq, τq ` pγ ´ γh, τq ` pσ ´ σh, ηq “ 0,

which is equivalent to

(3.6) pApσh ´ Πhσq, τq ` pγh ´ Qhγ, τq ` pσh ´ Πhσ, ηq

“ pApσ ´ Πhσq, τq ` pγ ´ Qhγ, τq ` pσ ´ Πhσ, ηq.
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Note that σh ´ Πhσ P Σh,0 because div σh “ Ph div σ “ div Πhσ by (3.3) and
div Σh “ Uh. By the Babuška–Brezzi stability of (3.5), there exists pτ, ηq P Σh,0ˆΓh

such that }τ}0 ` }η}0 ď c and

}σh ´Πhσ}0 ` }γh ´Qhγ}0 ď pApσh ´Πhσq, τq ` pγh ´Qhγ, τq ` pσh ´Πhσ, ηq.

Combining this, (3.6), and the Cauchy–Schwarz inequality with }τ}0 ` }η}0 ď c,

}σh ´ Πhσ}0 ` }γh ´ Qhγ}0 ď pApσ ´ Πhσq, τq ` pγ ´ Qhγ, τq ` pσ ´ Πhσ, ηq

ď cp}σ ´ Πhσ}0 ` }γ ´ Qhγ}0q.

By the triangle inequality and the above one,

}σ ´ σh}0 ` }γ ´ γh}0 ď }σ ´ Πhσ}0 ` }Πhσ ´ σh}0 ` }γ ´ Qhγ}0 ` }Qhγ ´ γh}0

ď cp}σ ´ Πhσ}0 ` }γ ´ Qhγ}0q,

so (3.1) for }σ ´ σh}0 and }γ ´ γh}0 is proved. To estimate }uh ´ Phu}0, observe
that (3.2) gives

pApσ ´ σhq, τq ` pPhu ´ uh, div τq ` pγ ´ γh, τq “ 0, τ P Σh,(3.7)

because div τ P Uh is orthogonal to u ´Phu. By (A2) there is τ in (3.7) such that
div τ “ Phu ´ uh and }τ}div ď c}Phu ´ uh}0. Then we have

}Phu ´ uh}20 “ ´pApσ ´ σhq, τq ´ pγ ´ γh, τq

ď cp}σ ´ σh}0 ` }γ ´ γh}0q}Phu ´ uh}0.

Combining the result with the estimates of }σ ´ σh}0 and }γ ´ γh}0, we have

}Phu ´ uh}0 ď cp}σ ´ Πhσ}0 ` }γ ´ Qhγ}0q,

as desired. �

If Σh and Γh provide higher order approximations than that of Uh, then (3.1)
implies that }Phu ´ uh}0 is superconvergent. A local post-processing can be used
to get a new numerical solution u˚

h such that the convergence rate of }u ´ u˚
h}0

is as good as that of }σ ´ σh}0 ` }γ ´ γh}0. A higher order superconvergence of
}Phu´uh}0 can be obtained by the Aubin–Nitsche duality argument and the elliptic
regularity of Ω when f P Uh. In this case, a higher order local post-processing can
be used to obtain u˚˚

h which is a higher order approximation of u in L2pRnq. A
careful discussion can be found in [26] for second order rectangular elements. It is
straightforward to generalize the argument in [26] to higher order elements.

4. Examples

In this section we show examples which can be analyzed by the abstract frame-
work.

By Th we denote a shape-regular mesh of Ω and h is the maximum diameter
of the elements in Th. By PkpDq and PkpD;Xq, we denote the spaces of R and
X–valued polynomials of degree ď k on D Ă Ω. For a rectangle D, QkpDq is the
space of polynomials of degree at most k in each variable xi, 1 ď i ď n. Now we
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define

Pd
k pXq “ tp P L2pXq | p|T P PkpT ;Xq, T P Thu, k ě 0,

Pc
kpXq “ tp P H1pXq | p|T P PkpT ;Xq, T P Thu, k ě 1,

Qd
kpXq “ tp P L2pXq | p|T P QkpT ;Xq, T P Thu, k ě 0,

Qc
kpXq “ tp P H1pXq | p|T P QkpT ;Xq, T P Thu, k ě 1,

RTNk “ tp P Hpdivq | p|T P Pk´1pT ;Rnq ` xPk´1pT qu, k ě 1,

BDMk “ tp P Hpdivq | p|T P PkpT ;Rnqu, k ě 1,

where x is the vector function px1, ..., xnq [15, 28, 29, 33]. Note that the lowest
order RTN element is denoted by RTN1 in this paper, which is different from
[14]. The rectangular RTN and BDM elements [14] are denoted by rRTNk and
rBDMk with k ě 1. We also define RTNkpRnq and BDMkpRnq as the subspaces
of Hpdiv;Rnq such that each row of an element in those spaces is in RTNk and
BDMk, respectively. Throughout this section Σh, Uh, Γh, Ξh are the finite element
spaces in Figure 1.

4.1. Elements with continuous Γh.

4.1.1. PEERS. Let bT be the standard cubic bubble function on a triangle T P Th

and

B “ tξ | ξ|T “ pbT , p P R
2, T P Thu.

The PEERS [2] is

Σh “ RTN1pR2q ` curlB, Uh “ Pd
0 pR2q, Γh “ Pc

1pR2ˆ2
skw q.

Let Γ0
h “ 0 and Ξh “ Pc

1pR2q ` B. It is not difficult to see that pΣh, Uh, 0q is
elasticity stable from the stability of pRTN1,P

d
0 q for the mixed Poisson equation.

Moreover, the stability of the MINI element for the Stokes equation [3] implies
that pΞh,Γhq is Stokes stable because S and χ are algebraic isomorphisms. Thus
pΣh, Uh,Γhq is elasticity stable.

4.1.2. Taylor–Hood based elements. Let

Σh “ BDMkpRnq, Uh “ Pd
k´1pRnq, Γh “ Pc

kpRnˆn
skw q,

for k ě 1 and take Γ0
h “ 0,

Ξh “

#

Pc
k`1pR2q, if n “ 2,

Pc
k`1pR3ˆ3q, if n “ 3.

By definition, pΣh, Uh, 0q is elasticity stable. Moreover, the stability of Taylor–
Hood elements for the Stokes equation [10, 11, 16, 38] yields that pΞh,Γhq is Stokes
stable. Thus pΣh, Uh,Γhq is elasticity stable.

In the two dimensional case these elements were noticed in [20]. In the three
dimensional case it seems that the same elements have not appeared in the literature
but similar elements were proposed in [12] with slightly larger space for Σh using
the Raviart–Thomas–Nédélec spaces. In addition, the improved error estimate (3.1)
was not claimed in [12].
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4.1.3. Two dimensional rectangular element. Let Ω be a bounded two dimensional
domain with a rectangular mesh Th. There is a rectangular PEERS element which
has same convergence rates as PEERS [27]. Here we propose a rectangular version
of the Taylor–Hood based elements in two dimensions. Let S2 be the serendipity
element with 8 local degrees of freedom [13] and set

Σh “ rBDM1pR2q, Uh “ Pd
0 pR2q, Γh “ Qc

1pR2ˆ2
skw q,

and let Ξh “ S2pR2q, Γ0
h “ 0. Since prBDM1,P

d
0 q is stable for mixed Poisson

equation with div rBDM1 “ Pd
0 , pΣh, Uh, 0q is elasticity stable. It is also known

that pΞh,Γhq is Stokes stable [34], so pΣh, Uh,Γhq is elasticity stable.

4.2. Elements with discontinuous Γh. To apply the framework for elements
with discontinuous Γh we need preliminary results.

Lemma 4.1. Suppose that Σh “ BDM1pRnq, Uh “ 0, and Γh “ Pd
0 pRnˆn

skw q. Then
pΣh, Uh,Γhq is elasticity stable.

A proof of this lemma can be found in [6, 12, 23]. For a simple proof we refer
to Proposition 2.10 in [23]. From this lemma the following can be easily obtained.

Corollary 4.2. The two triples

pBDMkpRnq,Pd
k´1pRnq,Pd

0 pRnˆn
skw qq and pRTNk`1pRnq,Pd

k pRnq,Pd
0 pRnˆn

skw qq

are elasticity stable for k ě 1.

Let bT be the standard cubic/quartic bubble function on a triangle/tetrahedron
T P Th. In the two and three dimensional cases Bk Ă Ξ, k ě 1 is defined by

Bk “

#

tη P L2pΩ;R2q | η|T P bTPk´1pT ;R2qu, if n “ 2,

tη P L2pΩ;R3ˆ3q | η|T P bTPk´1pT ;R3ˆ3qu, if n “ 3.

When n “ 3 a matrix bubble function bT on each T P Th is defined by

bT “
4

ÿ

i“0

λiλi`1λi`2pgradλi`3qT pgradλi`3q,

where λi, i “ 0, 1, 2, 3 are the barycentric coordinates on T , gradλi is a row vector,
and the index i is counted modulo 4. One can see that bT is symmetric positive
definite and the cross product of each row of bT and the unit normal vector ne on
an edge/face e Ă BT vanishes. By the integration by parts,

pcurlpbT curl η1q, η2q “ pbT curl η1, curl η2q, η1, η2 P PkpT ;Rnˆn
skw q,(4.1)

so the above relation gives an inner product on

P̂
d
k pRnˆn

skw q “ tτ P P
d
k pRnˆn

skw q | τ K P
d
0 pRnˆn

skw qu.

Moreover, the norm given by this inner product with weight bT is equivalent to
the standard L2 norm on T up to constants independent of the diameter of T . For
k ě 1 let

Bpηq “

#

h´2
T bT rot η for η P P̂kpT ;R2ˆ2

skw q if n “ 2,

h´2
T bT curl η for η P P̂kpT ;R3ˆ3

skw q if n “ 3,
(4.2)

and define B̂k as

B̂k “ tξ P Ξ : ξ|T “ Bpηq for some η P P̂kpT ;Rnˆn
skw qu.
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Lemma 4.3. For k ě 1 the pairs pB̂k, P̂
d
k pRnˆn

skw qq and pBk, P̂
d
k pRnˆn

skw qq are Stokes
stable.

Proof. We prove only the three dimensional case for both pairs because the two
dimensional case is similar.

In the case of pB̂k, P̂kpRnˆn
skw qq pair, for a given η P P̂kpRnˆn

skw q, take ξ P B̂k such

that ξ|T “ h´2
T bT curl η|T for T P Th. Then

pQhχ divSξ, ηqT “ pQh skw curl ξ, ηqT “ pcurl ξ, ηqT “ h´2
T pbT curl η, curl ηqT .

By the standard scaling argument

}η}0,T „ hT } curlη}0,T , } curl ξ}0,T „ h´1
T } curl η}0,T „ }η}0,T ,

so } curl ξ}0 ď c}η}0 and pQhχ divSξ, ηq ě c}η}20.

With the pBk, P̂kpRnˆn
skw qq pair and a given η P P̂kpRnˆn

skw q, one can take ξ P Bk

such that ξ|T “ h´2
T bT curl η|T for T P Th. The rest of the argument is then similar

to the first case, so we omit the details. �

We are now ready to present examples with discontinuous Γh.

4.2.1. The Cockburn–Gopalakrishnan–Guzmán (CGG) and the Arnold–Falk–Winther
(AFW) elements. The CGG elements [17] are

Σh “ RTNkpRnq ` curl B̂k´1, Uh “ Pd
k´1pRnq, Γh “ Pd

k´1pRnˆn
skw q,

for k ě 2. We apply the framework with Γ0
h “ Pd

0 pRnˆn
skw q and Ξh “ B̂k´1. Then

pB̂k, P̂
d
k pRnˆn

skw qq is Stokes stable by Lemma 4.3 and pΣh, Uh,Γ
0
hq is elasticity stable

by Corollary 4.2. Moreover, Qhχ divSξ “ Qh skw curl ξ for ξ P Ξh is orthogonal to

Γ0
h by the definition of B̂k and (4.1), so pΣh, Uh,Γhq is elasticity stable.
The AFW elements [6] are

Σh “ BDMkpRnq, Uh “ Pd
k´1pRnq, Γh “ Pd

k´1pRnˆn
skw q,

for k ě 1. The stability of these elements for k “ 1 follows as a corollary of Lemma
4.1. For k ě 2 it follows from the stability of CGG elements because curl B̂k´1 Ă

Pd
k pRnˆnq X Hpdiv;Rnq and then RTNkpRnq ` curl B̂k´1 Ă BDMkpRnq.

4.2.2. The Gopalakrishnan–Guzmán (GG) and the Stenberg elements. The GG el-
ements [22] are

Σh “ BDMkpRnq ` curl B̂k, Uh “ Pd
k´1pRnq, Γh “ Pd

k pRnˆn
skw q,

for k ě 1. Let Γ0
h “ Pd

0 pRnˆn
skw q and Ξh “ B̂k. Then pΞh,Γ

1
hq is Stokes stable

by Lemma 4.3 and pΣh, Uh,Γ
0
hq is elasticity stable by Corollary 4.2. Moreover,

Qhχ divSΞh is orthogonal to Γ0
h, so pΣh, Uh,Γhq is elasticity stable. By checking

the degree of polynomials one can see that curl B̂k´1 Ă BDMkpRnq holds, so only

a small part of curl B̂k is necessary for Σh. See [22] for degrees of freedom of Σh

for implementation.
The Stenberg elements [36] are

Σh “ BDMkpRnq ` curlBk, Uh “ Pd
k´1pRnq, Γh “ Pd

k pRnˆn
skw q,

for k ě 1. The stability can be proved in a way similar to the GG elements by
Lemma 4.3 and Corollary 4.2. As noticed in [23], the k “ 1 case, which is not
included in [36], also gives a stable mixed method.
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4.2.3. Elements with barycentric subdivision grids. LetMh be a shape-regular mesh
of Ω and Th be the mesh obtained by dividing each element in Mh into n ` 1
subelements by connecting the vertices of the element to its barycenter. Define

Σh “ BDMkpRnq, Uh “ Pd
k´1pRnq, Γh “ Pd

k pRnˆn
skw q,

for k ě 1 on Th. As is noticed in [22], this triple is elasticity stable when n “ 2 and
when n “ 3 with k ě 2 due to the stable finite elements for the Stokes equation in
[30, 39]. We will show that it can be extended to n “ 3, k “ 1 case. For M P Mh

we define

P
c
2,0pMq “ tξ P H1pM ;R3ˆ3q : ξ|T P P2pT ;R3ˆ3q, ξ|BM “ 0 for T Ă M,T P Thu,

and

Ξh “ tξ P Ξ : ξ|M P P
c
2,0pMq for M P Mhu,

Γ0
h “ tη P Γ : η|M “ Pd

0 pM ;Rnˆn
skw q for M P Mhu.

Then the restriction of Γ1
h on a macroelement M is the space of mean-value zero

polynomials on M , so pΞh,Γ
1
hq is Stokes stable by Lemma 2 in [39]. Recall that Ξh

is a space of continuous piecewise quadratic polynomials on Th and one can see that
curl Ξh Ă Σh. Furthermore, curl Ξh is orthogonal to Γ0

h due to the integration by
parts because ξ P Ξh is a bubble-like function on each macroelementM P Mh. Note
that this is not the case if we simply take Γ0

h as the space of piecewise constants on
Th. Since pΣh, Uh,Γ

0
hq is elasticity stable by Lemma 4.1, so is pΣh, Uh,Γhq.

A completely analogous argument can be used to show that

Σh “ RTNk`1pRnq, Uh “ P
d
k pRnq, Γh “ P

d
k pRnˆn

skw q, k ě 1,

is elasticity stable. This readily implies that the finite element family for dual-
mixed form of steady Navier–Stokes equations in [24] can be extended to k “ 1,
n “ 3 case.

4.2.4. Triangular elements with variable degree shape functions. Aiming to hp-
adaptive methods, Demkowicz and Qiu investigated h-stability of the AFW el-
ements with variable degree shape functions. We refer to [31, 32] for a precise
definition of variable degree finite element spaces. Their approach is extending the
elasticity complex framework in [6] to variable degree finite element spaces with a
suitable interpolation operator satisfying commuting diagram properties for vari-
able degree polynomial spaces. Construction of such an interpolation operator is
difficult. In fact, an indirect way to prove its existence in [31, 32] is nontrivial and
the argument seems to be highly sensitive to shape functions of elements. How-
ever, although p-stability is still missing, an h-stability result for variable degree
elements (with bounded highest degree) is readily obtained in our framework by
taking Γ0

h as the piecewise constant space, pΣh, Uh,Γ
1
hq as suitable variable degree

finite element spaces, and by repeating the previous stability proof of the AFW
elements. Moreover, the error estimate obtained by (3.1) is better than that in
[31, 32]. Lastly, a completely analogous argument will give h-stable variable degree
elements based on CGG and GG elements.
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Table 1. Convergence rates of errors and orders of approximation
of finite elements for some weak symmetry elements.

elements
convergence rate [order of approximation]

order n
}σ ´ σh}0 }Phu ´ uh}0 }γ ´ γh}0

PEERS (4.1.1) 1 r1s 1 r1s 1 r1s 1 2

THB (4.1.2) k rks k rk ´ 1s k rks k ě 2 2{3

2D Rect. (4.1.3) 2 r2s 2 r1s 2 r2s 2 2

AFW (4.2.1) k rk ` 1s k rks k rks k ě 1 2{3

CGG (4.2.1) k rks k rks k rks k ě 2 2{3

Stenberg (4.2.2) k rks k rk ´ 1s k rks k ě 2 2{3

GG (4.2.2) k rks k rk ´ 1s k rks k ě 2 2{3

barycentric BDM (4.2.3) k rks k rk ´ 1s k rks k ě 2 2{3

barycentric RTN (4.2.3) k rks k rks k rks k ě 2 2{3

Awanou low (4.2.5) 1 r2s 1 r1s 1 r1s 1 2{3

Awanou high (4.2.5) k rk ` 1s k rk ` 1s k rks k ě 2 2

rAAQ (4.2.5) k rks k rks k rks k ě 2 2

rGG (4.2.5) k rks k rk ´ 1s k rks k ě 2 2{3

THB = Taylor–Hood based elements, 2D Rect. = 2D rectangular element

AFW = Arnold–Falk–Winther, CGG = Cockburn–Gopalakrishnan–Guzmán

GG = Gopalakrishnan–Guzmán, Barycentric = the elements on barycentric meshes

rAAQ = Arnold–Awanou–Qiu family on rectangular meshes, rGG = rectangular GG

4.2.5. Rectangular elements with discontinuous Γh. There are not much literature
on rectangular/quadrilateral weak symmetry elements with discontinuous Γh [9, 26,
25, 8]. Unfortunately the properties which are crucial in our framework do not hold
on quadrilateral meshes. For instance, (A1) fails in general for quadrilateralHpdivq
and L2 element pairs, and there is no interpolation operator Πh as in Theorem 3.4,
so we will only consider rectangular meshes. We remark that a family of elements on
quadrilateral meshes, say the Arnold–Awanou–Qiu elements, have been developed
in [8].

It is known that the triple prBDM1pRnq,Pd
0 pRnq,Pd

0 pRnˆn
skw qq is elasticity stable

[9]. However, these elements are not readily extended to higher orders as in the tri-
angular AFW elements. The higher order elements in [9] are prRTNk`2,Q

d
k`1Q

d
kq

with k ě 1, which are not rectangular analogues of the AFW elements. The Arnold–
Awanou–Qiu family [8] on rectangular meshes is prRTNk`1,Q

d
k,P

d
k q with k ě 1.

As discussed in [8], this family can be analyzed with the framework using Stokes
stable pairs pQc

k`1,P
d
k q, k ě 1 and elasticity stable pairs prRTNk`1,Q

d
k, 0q, k ě 1.

Existence of similar higher order elements in three dimensions is not clear.
As the last example, we propose a family of new rectangular elements, say,

rectangular GG elements. Following the construction of the GG elements we define
B̂rpηq for η P P̂d

k pRnˆn
skw q as in (4.2) but with a standard rectangular quartic bubble

function brT in two dimensions, and a rectangular matrix bubble function br
T in

three dimensions. We refer to [26] for precise definitions of brT , b
r
T , and a proof of

(4.1) with brT and br
T . The space B̂r

k is defined correspondingly. The rectangular
GG elements are defined by

Σh “ rBDMkpRnq ` curlpB̂r
kq, Uh “ P

d
k´1pRnq, Γh “ P

d
k pRnˆn

skw q,
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for k ě 1. The stability of these elements can be proved with an analysis similar to
the GG elements by taking Γ0

h “ Pd
0 pRnˆn

skw q and Ξh “ B̂r
k. By counting degrees of

polynomials one can see that curlpB̂r
k´2q is included in rBDMkpRnq since rBDMk

contains all polynomials of degree k (cf. (3.29) and (3.30) in [14]), so the number of

degrees of freedom of Σh can be reduced because only a part of curlpB̂r
kq is necessary

for Σh.

5. Conclusion

We presented a framework for analysis of mixed methods for elasticity with
weakly symmetric stress by generalizing the approach in [12]. The framework en-
ables us to analyze many existing weak symmetry elements in a unified way with
elementary techniques. We also showed that some new stable mixed finite elements
can be easily obtained from it.
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