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Abstract An integral equation method for solving the Yukawa-Beltrami equation on a multiply-
connected sub-manifold of the unit sphere is presented. A fundamental solution for the Yukawa-
Beltrami operator is constructed. This fundamental solution can be represented by conical functions.
Using a suitable representation formula, a Fredholm equation of the second kind with a compact
integral operator needs to be solved. The discretization of this integral equation leads to a linear
system whose condition number is bounded independent of the size of the system. Several numerical
examples exploring the properties of this integral equation are presented.
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1 Introduction

Applications of partial differential equations (PDEs) on surfaces and manifolds include image pro-
cessing, biology, oceanography, and fluid dynamics [3,[13}17]. Since solutions of these PDEs depend
both on local and global properties of a given differential operator on the manifold, standard numer-
ical discretization methods developed for PDEs in the plane or in R® need to be modified. Recent
work in this direction includes the closest point method [16], surface parametrization [4], embedding
functions, [2], and projections onto an approximation of the manifolds by tesselations of simpler,
non-curved domains (such as triangles) [12].
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It is well-known that for elliptic PDEs in R? or R?, numerical methods based on integral equa-
tion formulations can offer significant advantages: efficiency is achieved through dimension reduction,
and superior stability of such methods allows highly accurate solutions to be computed. In addition,
the development of efficient numerical techniques such as the fast multipole method or fast direct
solvers have made integral equation approaches significantly faster than many other currently avail-
able schemes. Relatively little work has been done, however, on using integral equation methods for
numerically investigating elliptic PDEs on subsurfaces of manifolds. Some prior work in this direction
for the Laplace-Beltrami operator on the surface S of the unit sphere was presented in [6,9].

In this paper we present a reformulation of a boundary value problem for the Yukawa-Beltrami
equation on the surface of the unit sphere S in terms of boundary integral equations. Concretely, let
2 denote a sub-manifold of S, and let I" denote its boundary. By this we mean that I" is a closed curve
on & which divides § into two (not necessarily connected) parts 2 and £2°. In particular, I' = 942 is
the boundary curve of 2. We wish to solve the Yukawa boundary value problem:

— Asu(z) 4 Ku(z) = f(z), forz € 02, (1a)
u(z) = g(z), forxz e I. (1b)

Here Ag is the Laplace-Beltrami operator on S and k > 0 € R is constant. This problem arises in the
context of solving the isotropic heat equation via Rothe’s method. By first applying a semi-implicit
time discretization to the heat equation, time-stepping then involves repeatedly solve an elliptic PDE
of the form , where k% = O(1/At). This approach is discussed in [T0] for the heat equation in the
plane.

We recall that the exterior boundary value problem for the Yukawa operator (— A +k2) in R? is
well-posed if we seek H* (weak) solutions, even without the specification of a radiation condition (see,
e.g., [5]). This is in contrast to the exterior problem for the Laplacian. In [6], it was observed that the
single-layer operator for the Laplace-Beltrami did not satisfy the associated boundary value problem
on S unless a further constraint was satisfied. Experience with the Yukawa operator in R? [RLI5]
suggests that any issues concerning unique solvability which arise for the Laplace-Beltrami operator
when we move to a compact manifold will be ameliorated for the Yukawa-Beltrami operator. We shall
see this is indeed the case: it is possible, provided k > %, for the single-layer operator to exactly satisfy
the boundary value problem. (In case we solve the Yukawa-Beltrami problem on a sphere of radius R,
we require kR > 1/2.)

To simplify the exposition and analysis, we shall concentrate on locating the homogeneous solution
of . In other words: Find a smooth u such that for given smooth Dirichlet data g

— Asu(z) 4+ ku(z) = 0, for z € 2, (2a)
u(z) = g(z), forz e I (2b)

We note that we could equivalently have chosen to study the Neumann or Robin problem for the
system. We wish to solve by reformulating this boundary value problem as an integral equation.
As is expected, the process of reformulation is not unique; we shall be employing a layer ansatz based
on a parametrix for the Yukawa-Beltrami operator, and solving an integral equation for an unknown
density. The choice of parametrix is not unique, and we derive a particularly convenient parametrix
involving conical functions. By proceeding with a double-layer ansatz based on this parametrix, a well-
conditioned Fredholm equation of the second kind results. Several numerical examples are presented
which illustrate the analytic properties of this integral equation.
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1.1 Some preliminaries

We favour an intrinsic definition, and where possible identify z € S by two independent variables
(the spherical angles), z = z(¢,8). We can also describe this point in terms of a Euclidean coordinate
system in R® whose origin is at the center of mass of the sphere:

cos ¢ sin 6
z=1x(p,0) = | sinpsing | €S, ¢€l0,2r), 0¢€][0,n].
cos 6

We also recall that on S, the Laplace-Beltrami operator Ag is defined as

1 82 18(

Hsul@) = sin29 02 ' sinf 90

. 0
sin 0%)} u(z(p, 0)).
If two points z,y lie on the unit sphere, with spherical coordinates = = z(¢,0),y = (o, 8) then we
describe the solid angle between them (a measure of their distance in the metric on S) by

< z,y >= cos(¢ — a) sin(0) sin(B) + cos(#) cos(B).

In particular if y is the North Pole then 8 = 0 and < z,y >= cos(6). (If we denoted z,y by their
Cartesian coordinates (x1,z2,22), (y1,¥y2,y3), then < z,y >= Z?:1 z;y;.) The distance between z and
y in the 3-dimensional Euclidean metric ||z — y|| is given by

2
e —ol?

Hx*y”2:2*2<$79>» = <$7y>:17 B

We remind the reader of some useful vectorial identities on the sphere. Let ey, e, be the usual unit
vectors in spherical coordinates. Recall that we can define the surface gradient of a scalar f on S as
1 of of

Vsf(z) = sin@%e¢+ 30 0

In the same way, the surface divergence for a vector-valued function V on the sphere can be written
as

ivs V(o) = g ( Vil )+ gy (sin0) Vil 0) ).

We easily see the identity Asu(z) = divsVsu(z). The vectorial surface rotation for a scalar field f
on the sphere is

__ o L of
cwls () == g5+ 47 dp 0
and the (scalar) surface rotation of a vector field V is
curlgV(z) = —— (L v(0,0) + 2 ((sin0) Vi (,0)) ) -
sinf \ 9y ’ o0 oA

We then obtain another vectorial identity for the Laplace-Beltrami operator:

Asu(z) = —curlscurlgu(z) forz € S.
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Stoke’s theorem for the smooth positively oriented curve I' and the enclosed region 2 may be
written as

/ curlgV(z)dos = / V(z) - t(x) dss.
(P r

Here, t is the unit tangent vector to I', do is an area element, and ds is an arclength element. We note
that a similar identity holds for the region ¢, with care taken with the orientation of the tangent.
Now, setting V = v(z)W(z) and applying the product rule we have

/ curlgo(a) - W(z) doy = — / o(2)[W(x) - ()] dss + / o(z)eurls W (z)dos.
Q r Q
With W (z) = curlgu(z) we finally obtain Green’s first formula for the Laplace-Beltrami operator Ag,
- [ culge(a) - curlgu(w) dow = [ v(@leulsua) - taldse + [ o) A5 u@hdor. @)
9] r 2

We obtain Green’s second formula by interchanging the roles of u and v in , subtracting the
two identities, and using the symmetry of the left hand side

[ o@)( b u(w) + Bu(@) ~ u(e)(~ bs o) + Ko(e) do

(9]
- / [o(e) curlgu(z) - u(w) curlgo(e)] - t(a)ds: (4)
r

‘We shall make extensive use of these identities.

2 A fundamental solution and representation formula

We seek a fundamental solution for the Yukawa-Beltrami operator (— Ag +k?). Examining first the
situation for the Yukawa operator in the Euclidean plane, the fundamental solution of the Yukawa
operator, (— A +k?) in R? is given by %K@(kr), where r = ||x — xo|| is the distance between the
source and evaluation point in the two-dimensional Euclidean metric. Here Kg is the modified Bessel
function of order 0 which is analytic for non-zero argument, and has a logarithmic singularity when
the source and evaluation points coincide, that is, when r = 0.

On the surface of the sphere S, we expect the fundamental solution G (z,zo) for the Yukawa-
Beltrami operator to possess a logarithmic singularity when z approaches zo. Exactly as was done
with the Laplace-Beltrami operator in [6], we could define a parametrix for this operator by using
the distance measured in the Euclidean norm in R3. This would suggest using %Ko(kﬂw — xo]|). Such
a choice of parametrix would be directly related to the fundamental solution of the two-dimensional
operator; the amount by which it fails to yield a dirac measure is directly attributable to the difference

between the spherical and flat metrics. In particular, with r := ||z — z¢||, we have
2 4.2 3
o k . k*r B ﬂ
( As +k )27TK0(/€7‘) = 5(7‘) + B Ko(k'r) In Kl(kr).
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While this is a perfectly reasonable parametrix, it is inconvenient from the perspective of rewriting
the Yukawa-Beltrami boundary value problem in terms of a boundary integral equation. The term
k;’;z Ko(kr) — ’%:"Kl(kr) will result in volumetric constraints appearing in an integral equation repre-
sentation. Such a term encapsulates the fact that we are on a compact manifold, no longer on R2.
Recall that for the Laplace-Beltrami case, when k = 0, this term kg;'z Ko(kr)— %:Kl(kr) reduces to a
constant; it is then possible to use a double-layer ansatz in which no volumetric terms or constraints
appear [9].

To avoid such complications, we shall instead derive a more convenient parametrix. To the best of
our knowledge, the use of this parametrix and the associated boundary integral equations is novel.

Without loss of generality we first set zo to be the point at the north pole. Let = be some other
point on the sphere. The parametrix Gy (z,zo) we seek depends on ro(6) = ||z — zo|| = 1/2 — 2 cos(h).
Since there is no angular dependence in ¢, the Yukawa-Beltrami operator reduces to the second order
ODE operator

Dy(u) = ﬁd% (sin(e)d%u(ro(a))> ~ K2u(ro(0)).

A simple change of variables allows us to rewrite Dg(u) = 0 as
(1—23)w" =220 + [p(v+1)] w=0, (5)

where v = v(k) satisfies v(v + 1) = —k%. We note here that the Helmholtz-Beltrami operator on the
sphere would lead to to the same equation, but with v(k) satisfying v(v + 1) = k2. In what follows we
shall suppress the dependence of v on k& when there is no risk of confusion.

Equation is the well-known Legendre’s equation, which is well-defined for arbitrary real or
complex v. Therefore, we can locate two linearly independent solutions of , the so-called first and
second kind Legendre functions of degree v(k), denoted P,(;(z) and Q,(x)(z), respectively. Of these,
only the LegendreP function P, ;) (z) remains finite as z approaches 1 (to a limiting value of 1 as we
will soon see), [L1]. The function P, )(2) is well-defined for |1 — 2| < 2. This means that

u(ro(0)) = Py (= cos(0))

is well-defined whenever |1+ cos(#)| < 2, which holds for all § € (0,7] (see Figure [1)). Moreover, since
we want u(ro(r)) to be finite, we do not use the other possible solution of (], namely Qu(k)- We also

100

75

Pz/(l)(_ COS 9)

INH S
oA -
;\7
3

0
Fig. 1 The LegendreP function P, )(—cos®), for 0 € (0,7] and k =1
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Fig. 2 Gi(x,z0) when 2o = (0,0,1)T. The singularity at the north pole is logarithmic. Only the top hemisphere is
shown here for purpose of illustration

recall that P, is well-defined for all v € C, whereas @, is well-defined for v # 0, -1, -2, ....
On S, from we obtain

-1+ 1 —4k2
v(k) = ——————.
2
If 0 < k* < 1 then v € (=1,0). If ¥* > 1 then
—14iv4k2 -1

We observe that since k% > 0, v(k) ¢ Z. Moreover, if k > % then Im(v) # 0. This is the regime
in which we shall work, and in what follows we shall make this assumption on k. Recall that in
k? = bigO(1/At) in the our applications of interest.

A further substitution allows us to write as a hypergeometric equation, (see, e.g., Section
7.3, [11]). This in turn allows us to write the solution of Dy (u) =0 as

u(ro(6)) = Py (—cos(0)) =2 Fy <—V(k),u(k) +1;1; 4_;8(0)>

=2 (—V(k)w(k) +1;1;1++°S(9)> _

Here, 5 F (a,b;c; 2) is a hypergeometric function. Since the argument H#S(O) lies between —1 and 1,
and a+b = 1, the representation in terms of the hypergeometric function is also known as the Ferrers’
function of the first kind, [14].

A more (computationally) convenient representation is in terms of the conical or Mehler functions
(Section 8.5 in [I1]). The conical function Py (2) of order 7 € R solves the equation

(1—-2%)w" — 220 — (72 + i) w=0.
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In our specific case, we would pick 7 = 7(k) such that 72 + 1 = k* = —v(v + 1). It follows that

T'—74k2_1:>u——1+i7'
T 2 ) ’

2

and the solution of Dy (u) = 0 is P,(—cos(f)) = P_1 ;. (—cos(f)). The calculations above lead us then

to the following definition:

Definition 1 The fundamental solution for the Yukawa-Beltrami operator — Ag +k2 for points z, zg
on the surface of the unit sphere is

Gr(z,z0) = Cr Py (— < z,20 >)

::cM%<““;“F—1) (6a)
=CLaF (71/,1/+1;1;1_‘_<%0>) (6b)
= Cka%—H‘T (< o >), (6¢)
where v := M, k> 1/2, and
Cr = L ! (7)

~ 4sin(vn) - 4 cosh(5v4k? — 1)’

(See Figure [2[ for a visualization of Gi(z,z0).) We mention here that the specific choice of Cj, is
motivated by the calculations performed while deriving a representation formula in Section We
will see that Cj, is well-defined with our assumption that k& > 1/2.

2.1 Properties of the fundamental solution of the Yukawa-Beltrami operator

Before we embark on the definition and analysis of boundary integral operators, we examine some
properties of the fundamental solution Gy, defined in Definition [I] We shall use either the representa-
tion , , or as convenient. We first observe that the fundamental solution is symmetric in
its arguments, Gy (z,z9) = Gy (zo,z). Next, by noting the expansion for the conical functions as [I1]

42 41
Py (cos(t) =1+ 3 sin®(t/2) +

2

(472 +1)(47% + 3%)
2242

sin®(£/2) 4 -,

for 0 <t <, we see that Gi(z,zo) does not change sign for all z,z¢ € S,z # xo, provided k is fixed.
Next, we examine the asymptotic behaviour as * — z¢. In this case, it is convenient to work
with (6a]). Setting = 0 in 14.8.1 of [14] (or using 7.5.5 in [I1]), we have the asymptotic behaviour

Jlim Pu(1) = ﬁ —1. ®)

Next, following [14], as t — 17,

anzémgﬁgg)_7_¢@+1H4XL4LV¢_L_ZM
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where 1(z) is the digamma function, v = 0.5772... is Euler’s constant, and @, is the other linearly
independent solution of Legendre’s equation . For subsequent use, we denote

1
R(v) = 1 log(2) — 7 — (v + 1),
and therefore for ¢ close to 1,
1
Qu(t) = -3 log(l1—t)+ R(v)+0O(1—1t), v#—1,-2,... 9)

Now, as x — z¢ on the surface of the sphere, using we have

EILII%O Gk(m,wo) =Cg zhanzln Py(k) (— <z, T0 >) =Cg tlirilf Py(k) (—t).

We cannot immediately use . Instead, we must use the connection formula 14.9.10 in [I4] (again
setting u = 0):

% Sin(um)Qu (£) = cos(vr) Py () — Pu(—1). (10)

Combining with and @[), we obtain

lim Gy(z,z0) = li_>m CpPy(— < z,m0 >)

T—x0

= lim Cy (cos(wr)Py(< @,z >) — %sin(wr)@l,(< T, T0 >))

T—To
= C cos(vm)
20, . . 1
— —Esin(vn) lim | —Zlog(l— < z,z0 >) + R(v) + O(1— < z,z0 >)
T T—xo 2
= G o os(1— < a0 >) + O [Cos(uﬂ') _ 2MR(V)} o a
™ T—xTg

Therefore, as © — zo G (z,z0) possesses a logarithmic singularity (recall that v is not an integer). At
this point, we could predict a value for Cj so that the strength the singularity is consistent with that
for the Laplace-Beltrami [6]. However, we compute C}, rigorously below.

It is also useful to document the relation, obtained using recurrence relations for the LegendreP
function (Section 14.10.4 in [I4]):

(1—2*)P,(2) = (—v = 1)Puy1(2) + (v + 1)2Pu(2).

Suppose, again without loss of generality, that zo is the North Pole. Let x = z(0,¢). Then,
Gy (z,z0) = Cp P, (— cos(0)), and

4 b, (—cos(0)) = (v + 1)(sin0) ( DrtCR P2 (12)
do 22 -1
Now, using (L2,
o
curlgGy(z,z0) = —Ck% [Py k) (— cos(6))] e

= —Cy(v+1)7 sin(6)

0s20 — 1 [PV+1(7Z) + ZPV(fz)] |Z:COS(0)e<,0'
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Since the line element on the surface of the sphere is given by
t(z(p,0)) - dsy(p,0) = dfeg + sinfdyp ey,

we obtain that

curlg Gy (w,20) - € = Cp(v + 1) [Prst (—2) + 2P (—2)] Lo—con(oyd = F(8)ds. (13)
The term F(0) = Cy(v + 1) [Po41(—2) + 2Py (=2)] |.=cos(s) Will be important in subsequent sections,
and is related to the kernel of the second layer operator. (We shall define this operator carefully later.)
For now, however, we are interested in the limit of F(#) as the point & — zo, that is, as § — 07.
Lemma 1 Let F(0) be as defined in ([3). Then limg_,q+ F(0) = 2Cy sin(vr).
Proof Using , the term in the square bracket of

F(0) = Cy(v + 1) [Post (=2) + 2P (~2)] Ls—con(o),

can be simplified. Denoting cos(0) = z,

Pon(=2) 4 2Pu(~2) = 2 sin (v + 1)m) Quia (2) + eos((v + Dm) P (2
42 _% sin(vm)Qu (2) + cos(vm) Py (2)
- _% [2sin(vm)Qu (2) + sin (v + 1)7) Qua1 (2)]
+ [cos((v + 1)) Pot1 (2) + z cos(vm) Py (2)]

_ —% sin(vr) [2Qu (2) = Qua1 ()] + cos(vr) =Pyt (2) + 2Py (2)] . (14)

As & — o, i.e., as § — 07, clearly z = cos(f) — 1~. Recall that in this limit, P,(z) — 1. Therefore,
the terms involving the LegendreP functions of the first kind in behave as

lim cos(vm) [—Pu+1(z) + 2P, (2)] = 0. (15)

z—1—

We can use to compute the limit of the term involving the Legendre functions of the second kind

in :

lim — 2 sin(ur) [2Qu (2) — Qui (2)] = 7% sin(vr) V(v + 2) — v +1)]

z—1—- T
2 .
= 7m Sln(l/ﬂ'). (16)
Putting together , , and 7 we have
. . 2 .
egrél+ F(0) = Zlir{li Cr(v+1)[Pys1(=2) + zPv(—2)] = C’k; sin(vr). (17)
O
Observe that setting C}, = —m, that is, using exactly the constant defined in in the

1

definition of G (x, o), we have limy_,o+ F(0) = 5-.
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r r

Fig. 3 The points x,z¢ belong to 2. We denote by 2. := 2\ B:(z0)

2.2 Representation formula

Let 2 and £2° := S\ 2 be a simply-connected submanifold and its complement on the sphere. We can
then derive a representation formula in terms of the fundamental solution Gy (z,zo) of the previous
section.

Proposition 1 Every sufficiently smooth function u € C?(2)NC(2) satisfies the representation formula

—/Gk(m,xo) [Agu(m) - kQu(m)} dog — /Gk(m, zo)curlgu(z) - t(z)dsz
2 r

+ [ (o) curls G, 0) - t(a)ds, = {3@0) roce (18)

Proof We let z € £2, and z¢ be a point either in 2 or 2°. We proceed by examining the two possible
cases.

Case 1: zo € 2° In this situation, the fundamental solution Gy (z,z¢) satisfies the Yukawa-
Beltrami equation point-wise at all z € £2. Since = # z9, Gi(z,z0) is a smooth function and we can
therefore use Green’s second identity (4]) with v(z) replaced by Gy (z,xo). Since zo ¢ §2 all the integrals
involved are bounded, and

/u(x)(ASGk(ﬂc,:co) — E*°Gy(x,20)) doy = 0.
o}
Therefore, using we have

/ (z,z0) Agu(w) — Ku(x )) dog

n

/G (z,x0) curlgu(z) - t(z)dss + /u(x)@sGk(x,mo)-t(x)dsm.
r

Case 2: 1 € £2. In this situation we cannot directly use Green’s second identity, since the funda-
mental solution has a logarithmic singularity when x = z¢. Instead, we first define the e-neighbourhood
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of zo, Be(zo) :={y € S: |y —=zo| < £}. We choose £ > 0 small enough such that Be(zg) C §2 (see Fig-
ure[3). We then set 2. := 2\ Be (o). For z € (2, once again Gj,(z,z0) satisfies the Yukawa-Beltrami
equation exactly. The second Green’s formula for 2. with v(z) = Gy (z, o) yields:

- / Gz, o) (Asu(z) — Ku(z)) doy = /[Gk(x,mo) curlsu(z) — u(z) curlg Gy (z, zo)] - t(z)dse
2. r
+ / [Gr(z,z0) curlgu(z) — u(z) curlg Gy (z, z0)] - t(z)dsz. (19)
BBE (:C())

We shall discuss each of these terms. We first note that since xzp € (2, the integrals over I' in
are well-defined. So we must examine the volume integral over 2. and the integrals over dB.. For
ease of exposition and without loss of generality, we take zg = (0,0,1). The curve 9B is then fully
described by the latitude 6c. In this case, if x € 9Bc, then < z,z9 >= cos(f:), and Gi(x,z9) =

CrPy(iy (= < x,20 >) = CPy(i) (— cos(fe)) . Therefore, since cos(f:) =1 — 62/24 ---, we can use the
asymptotic result to compute

2m
/ |Gk($,$0) |ngg S / |CkPl,(k)(—COSGE) Sil’l65|dtp
OB, 0
= Cy| sin 0c|| P, 1) (— cos 0c) |2

= 27| sin 0:|Cy, (cos(wr)P,,(k) (cosfe) — 2 sin(vm)Qy (cos 05)>
m
-0 (ase—0),

where the limit holds since the singularity of P,y is only logarithmic. We can therefore estimate the
first integral over B¢ in as

/ G (z,z0) curlgu(z) - t(z) dsz| < |curlsul|r / |G (z,20)|dsz — 0, ase — 0.
B. OB,

To analyse the second contribution along B¢ in , we again assume zo = (0,0, 1). Using
we deduce that (note the orientation of dB:)

- / [u(z)curlsG(z, z0) - t(x)]dss

OB
. 2 0
= w [Py41(—cosBc) + (cosO:) P, (— cos b)] u(p, 0:) do
cos?6: — 1 o
2T
= C(v+ 1) [Posr (— c080:) + (cos 0) Py (— cos 95)]/ (e, 02) di. (20)
0

Combining , and and using the continuity of u, we have

- slgr%) u(z)[curlsG(x, o) - t(x)]dse = —4Cy sin(vm)u(zo) = u(zo).
0B
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Note that C), =
limit, is u(zo).
We finally observe that since u is assumed to be smooth enough,

—m is chosen precisely to be this value in to ensure this integral, in the

IN

/ G, 70) (Dsu(z) — K2u(z)) dos

| As u— Kul g e / G (&, 20)| do
(94 (94

IN

| As u— K ul| poo () M,

where M is a constant which depends on the volume of (2. Specifically, since P, (k)(—t) is smooth
away from the (logarithmic) singularity at ¢ = 1, we have

M ::/|Gk(x,xo)|dax :/ |Gz, 0)| doz + M.
0 Be (o)

The first integral is bounded since the logarithm is integrable over Be(zo), and M; is some finite
constant depending on the area of 2. Hence M is a finite positive constant depending on {2 and

lim / (@, 20) (Dsu(x) — Ku()) dow = / Gz, 20) (Dsu(z) — Ku()) dow.
2. (9]

Therefore, taking limits in proves the result.

3 Layer potentials and boundary integral operators

Now that we have a convenient parametrix Gy (z,zo) defined in Definition [1| for the Yukawa-Beltrami
equation and a representation formula , we can define convenient layer potentials which in turn
will be used to reduce the boundary value problem over the domain {2 to a boundary integral
equation over I' = 0f2.

3.1 Single- and double-layer potentials
We define the following two layer potentials.
— The single-layer potential with sufficiently smooth density function o:
(Vio)(z) := /Gk(amy) o(y)dsy, forxzé¢ I (21)
r
— and the double-layer potential with sufficiently smooth density function p:

(W) (z) = / i(y) leurlsGy (2, ) - 6(y)] sy, for o ¢ T, (22)
I
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We wish to point out here that the form of the double-layer potential above is equivalent to the,
perhaps, more familiar form:

(W) () = — / u(y)a%amy) dsy, forz ¢ T. (23)
I

where ny is the outward pointing normal to I" at the point y lying in a tangent plane to S. See [9] for
a more detailed discussion on this point.

By Proposition [I} every solution to the homogeneous Yukawa-Beltrami equation can be written
as the sum of a single- and a double-layer potential. This is the starting point for the so-called direct
boundary integral approach. However, for the purpose of this paper we follow the layer ansatz based
on the following observation.

For z ¢ I' z € £2, the single-layer potential in satisfies:

(= As +42) (Vo) (1) = (= As +£2) / G, ) o(y) dsy
I

- / (= Ds +K)Gy(w,y) o (y) dsy = 0.
I

Hence, we may find the general solution of the Dirichlet boundary value problem in terms of
a single-layer potential

u(z) = / Gr(z,) o(y) dsy.

r

We would then need to calculate the unknown density o.
Similarly, the double-layer potential in satisfies the Yukawa-Beltrami equation for z € 2,2 ¢ I’

(= As +K2)(Wp)(z) = (- As +42) / u(y) leurls Gz, y) - t(y)) dsy
I
- / () [(Bs — k2) curls G(z,y) - t(y)] dsy
I
— [ nwleuls (85 ~ K)G(a0) - ¢)] dsy = 0.
I

We might thus also try to look for the solution to in the form of a double-layer.

3.2 Jump relations for the layer potentials

In the previous section, we have only defined the layer potentials for x away from the boundary curve.
However, in order to align the operators with the given Dirichlet data along I, we need to investigate
their behavior in the limit as « approaches I'. Similarly, if one is interested in solving the Neumann
problem in which the tangential component of the vectorial surface rotation is prescribed along I', one
has to investigate the limit features of this quantity for the layer potentials. In both cases, there will
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be certain jump relations across the curve I'. For the purpose of this paper however, we will restrict
ourselves to the Dirichlet case. First, consider the single-layer potential with density o for = ¢ I":

(Veo)(z) = / Gr(z) o(y) dsy

r
=i [ Py (= <y >)a(w) dsy.
r
The following Lemma describes the limit behavior of the single-layer potential.
Lemma 2 Let f/; be the single-layer potential defined in . For xo € I' we have:

(Vo) o) 1= Jim (Vio)(o) = [ Gilan.) a(w) dsy
zE(2 T

as a weakly singular line integral and hence (‘7;;0) is continuous across I'.

Proof Fix an arbitrary € > 0. Let zg € I' be fixed, and z € 2 satisfy |z — zo| < e. Introduce the
notation

Ce<:={yellly—mzol <e},  Cex:={yellly—=zol >e}
Then, if we define
I.(z) := /Gk(m,y) o(y)dsy — / Gi(zo0,v) o(y) dsy,
T £,>

we can easily show

le = /C [Gr(z,y) — Gr(zo,y)] o(y) dsy +/ Gr(z,y) o(y) dsy. (24)

£,> e, <

The first integral in vanishes in the limit as # — o since P, (1) (1— < x,z0 >) is continuous away

from < z,z¢9 >= 1, i.e. where x = x¢. That is,

lim [Gr(z,y) — Gi(z0,y)] o(y)dsy = 0.

T—To C. >

The second term in (24]) can be bound in terms of the density o:

< ollmcr / G, )| dsy.

e, <

/ Gr(z,y) o(y) dsy
C.<

To finish the proof, note that we can estimate

/ |Gr(z,y)| dsy < / |G (z,y)| dsy “—5° / |G (wo,y)| dsy =5 0.
Cgé

yel’ yel’
ly—z|<2e ly—zo|<2e

As before, the final limit holds since G (xo,y) has a logarithmic singularity at y = zo. Putting these

estimates together, we see that lim lim I-(z) = 0, which proves the assertion.
e—>0zx—xo
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O

The case of the double-layer potential is slightly more involved. We anticipate that, just as for

the Laplace-Beltrami double-layer potential [6], the Yukawa-Beltrami double-layer will possess a jump

across the boundary of a domain. Indeed, since Gy (z,zo) has a logarithmic singularity, the estimates

follow the same argument as for the Laplace-Beltrami. The details of the calculation are cumbersome,
but the overall strategy is that of Section 8.2 in [7].

Lemma 3 Let I/I/7k be the double-layer potential defined in (22)), and let 753 (resp. y(?”) denote the trace
operator on I', with traces from inside (respectively outside) 2. For xo € I' we have:

O Wi eo) = Jim (o) = (o) + (1= 2520 ) uteo)
reN®

where a(xo) Tepresents the interior (with respect to 2°) angle of I' at x¢. For a smooth curve, « = w. The
double-layer operator K is defined via the Cauchy principle value:

(Ku)(wo) = lim (Kep)(zo) where  (Kep)(wo) = / 1(y) [curls Gi(zo,y) - t(y)] dsy.
yeCe >

Hence the double-layer potential satisfies:
— P P
[(’YOWkM)}F = (10" Win) + (0" Wen) = p,

where we tacitly assumed the orientation of the tangential vector t along I' to be in accordance with the
orientation of 2° in the sense of Stoke’s theorem.

Proof We provide only a sketch of the proof. Given ¢ > 0, let z € £2¢ with ||z — z¢|| < e. We use the
same notation for C, > and C¢ < introduced earlier. Then, for fixed ¢ > 0,

(Win)(@) = (Kzpn) (o) :/ p(y) [eurls Gi(z, y) — curls Gi(zo,y)] - t(y) dsy

£,>

+/C w(y) curls Gy (z,y) - t(y) dsy. (25)

We note that the integrand of [, N w(y) [curlg Gy (z,y) — curlg Gi(zo0,y)] - t(y) dsy is continuous in z
away from zg, and therefore -

lim w(y) [curlg G (z,y) — curlg G (zo,v)] - t(y) dsy = 0.

Tr—rxo Cs >

The integral over C¢ < in (25) can be rewritten as

A mmm@@wmmf/[mwmm@mewwm

&, <

buao) [ el Guo.y) - (o) ds. (26)
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For the first integral on the right hand side of , using Lemma |4} we have the estimate (for a fixed
z)

‘/C [1(y) — p(wo)] curls G (z,y) - t(y) dsy

< sup \u(y)*u(xo)l/ lcurls G (z,y) - t(y)| dsy
y€CEY< Cs,<

<M -length (Ce,<) - sup |u(y) — p(xo)|
yeCe <

for some constant M, and hence the integral vanishes in the limit as e — 0.
For the second integral in (26)), we define Qc(z0) := {y € 2°: ||zo — y|| < &} to see

u(l‘o)/ curlg Gp(z,y) - t(y) dsy
Cs,<

= u(wo) / curlg G(z,y) - t(y) dsy — / curlg Gi(z,y) - t(y) dsy
082: (o) yEeNe®
ly—zoll=¢

Using the representation formula ([18) with v =1 we have

(o) /C curlg Gy (2, y) - t(y) dsy
e,<

= w(zo) 1_/k2Gk($7y)d0y — p(zo) / curls Gy (z,y) - t(y) dsy.

02 yEQC
ly—zoll=¢

Without loss of generality we can set xg to be the north pole, and compute the last integral above to
find, for all zp:

lim / curls G(z,y) - t(y) dsy = a(mo).

e—0 2
yel’
ly—zoll=e

Putting the parts together we see that

ti i, (750 (0) = (i) a0) = (1= 252 ) ),
O
From Lemma we see that the kernel of the double-layer operator, curlg G (z,y)-t(y), is continu-
ous at x € I' as a function of y. This allows us to conclude that the integral operator I/IA//;C is a compact
operator from L%(I') to itself. The compactness, in addition to the jump 1 — a(zo)/(27) guarantees
that the double-layer potential representation will result in a second kind Fredholm integral equation
with a compact operator.
We need to record one further property of this kernel, which will be used to understand the
convergence properties of our quadrature rule in Section [4
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Lemma 4 Let xg,x be points on the sphere, connected by the smooth curve I'. Let xg be fixed, and let I'
be parametrized by v = x(s),s € [— A, A] such that £(0) = xo. Then the kernel of the double-layer operator
is continuously differentiable in s, but the second derivative is unbounded. More precisely, the function

f(s) == curls G (xo,z(s)) - t(z(s)), se€[-A A],s#0,

has the following properties:

. . 1
lim f(s) = x%%lﬂo[‘(curlsGk(wo,x) “t(2)] = — okt - (np X x0)
x

Here k s the principle curvature of I' at xo, Xo is the 3-dimensional vector associated with the point xg
(assuming the origin is located at the center of the sphere), ny, is the principle normal of I' at xg and
t is a three-dimensional vector, identified with t.

- %f(s) can be extended to be well-defined and continuous at s = 0.

- j—;f(s) is unbounded as s — 0, and therefore f cannot be extended to be a C? function on I.

Proof We provide a simple argument via 'Hopital’s rule in the case that I" is a simple smooth closed
curve. For this argument, it is easier to work with points and vectors in R3. Let zo, 2 be points on
the unit sphere. We identify them with the 3-dimensional vectors xg, x respectively. Let t and n be
the unit tangent and normal vectors at the point x € I" lying in the tangent plane of S. We note for
future reference that x = er, x-x = 1 and that x = n x t. Since I is parametrized by arc length s, we
also note the following identities:

t= d—x d—t = KN
T ds’ ds
The second identity is one of the Frenet formulae, where x is the curvature of the curve I' at the point
x and ny is the principal normal to the curve. From these, it is straightforward to show that

d

ds(txx)znnpxx.

We now examine the kernel of the double-layer potential. Calculating the three dimensional gra-
dient of the fundamental solution G yields

_ 2 _ 2
VGy(w0,7) = Cx VP, <M - 1) — P (M - 1) (0 — %),

which we can decompose into the surface gradient plus a derivative in the radial direction. We can
write this more concisely as

_leo—af®

VG (z0,2) = —Cp P (2)(x0 — %), where 2 5

1.

The kernel of the double-layer operator is f(s) := [curlgGy(zo, ) - t(z)] = %Gk(azo,x), which in turn
can be written as

_ 0

1) =5

Gr(z0,2) = VG, -n = VG, - (t x x) = —Cl(x0 — x)P,(2) - (t x x).
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Recalling that P} (z) = 7(V+1) (Po41(2) — 2Py (2)) ([12),

(V+

Y (Prs1(2) = 2Pu(2)) (x0 — %) - (8 % x)

Prss(z) — 2Pu(2) [ (0 — %)
1—-2 Ixo — x]|2

f(s) =

=2CL(v+1)

(txx)]|. (27)

Now, the quantity

Puy1(z) — 2P (2)
1—2

has a well-defined limit as z — zo . In fact, following (17

P,i1(2) — 2Pu(2)
4~ |lzo — z|?

2Ck(v+1) =4Cy(v +1)

)

lim C’k[curl Gr(zo,z) - t(z)] = Cx(v+ 1) lim Pyi1(—2)+ 2P, (—2)) = —i.
T z—1— 27
The remaining term in is g(z,z0) := H(;OO::H)Q -(t x x) . This term can be shown to be continuous

as x — xo by I'Hopital’s rule. A first application of 'Hopital’s rule to evaluate ¢(z,z¢) at the point of
singularity, x = zo,

lim ¢(z,20) = lim —t - (t x x) + (x0 — x) - (knp X X)
20 20 —2(xp —x) - t

— lim (x0 — x) - (knp X x)

X—Xo (xo — x) -t

Proceeding with a second application of ’'Hopital’s rule yields

—t-(kmp xx) +O0(x—x) _ 1
Jm q(@,z0) = lim 2t t+O0(x—x) 2" (rmp X o)

This shows that f(s) has a well-defined limit as s — 0, that is, as & — xo. The kernel of the double-layer
operator can therefore be made continuous in the arc-length parameter.
If we now examine %f(s)7 we obtain

f/(s) = _deis (Pll,(z)(xo —x) -n)
=—-Cj {PL’(Z)%(XO —x)-n—P(2)(~t-n) + P,(2)((x0 — x) - disn)} .

Since P, (z) solves Legendre’s equation and since x,t,n form an orthogonal set, we have

/
lim f'(s) = —Cj {QZPV(Z) —v(v+1)P,(2) @(XO —x)-n+rPL(2)((x0 — x) - (np x x)}
5—0 1—22 ds
Applying L’Hépital’s rule to each of the terms above, we see that f/(s) has a well-defined and bounded
limit at s — 0. Therefore, the kernel of the double-layer operator is differentiable in the arc length
parameter, with bounded derivative as s — 0.

However,

7"(s) = ~Ch s (PL(=)(x0 — x) - m)

is not bounded as s — 0. This can be shown using calculations similar to those above, and we do not
include them here.
O
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4 Numerical Examples

In this section, we apply standard numerical methods to solve the Fredholm integral equation of the
second kind

1
polao) + [ feulsGuleo,y) - 80))ulu)dsy = glwo), w0 € T (28)
r
and to evaluate the double-layer potential
(o) = [ felsGu(o.0) - t)luo)dsy, o € 2 (20)
r
where
_ |z =yl _ 1
Gr(z,y) = Cu Py < 3 1), Cp= Tsm(n)’

We have assumed that the boundary I" of the geometry is a smooth function so that a(z¢) = 7, where
a is defined in Lemma [3

In , since x ¢ I, the integrand is periodic and smooth. Therefore, for a fixed = € 2, the
trapezoid rule has spectral accuracy. However, since the error grows as x approaches I', our reported
errors are only measured at points x sufficiently far from I". We test two quadrature formulas for
solving . First, we test the trapezoid rule which we expect will achieve third-order accuracy
since the integrand is once continuously differentiable (Lemma. Second, we test a high-order hybrid
Gauss-trapezoidal quadrature formula designed for functions that contain logarithmic singularities [I].

For all the examples, we discretize each connected component of the boundary with N unknowns
and solve the resulting linear system with unrestarted GMRES and a tolerance of 10711, The error
of the Alpert quadrature formula is O(h'®logh), and we use Fourier interpolation to assign values to
the density function p at points that are intermediate to the regular grid.

We present four numerical examples which we now summarize.

The effect of the quadrature rule: For a two-ply connected domain, we report a convergence study
for the two quadrature formulas. We also establish that the number of GMRES iterations is
independent of the mesh size.

— The effect of k: For the same two-ply connected domain, we examine the effect of the parameter k
on the condition number of the linear system corresponding to , and its effect on the number
of GMRES iterations.

— The effect of the geometry’s curvature: We consider a simply-connected domain and vary the aspect
ratio of the major to minor axis of the domain’s boundary. We examine the effect of this parameter
on the conditioning and the number of GMRES iterations.

— A complex domain: We demonstrate that our method is able to solve the Yukawa-Beltrami equation

in complex domains by solving in a 36-ply connected domain, with an acceptable number of

GMRES iterations.

4.1 The effect of the quadrature rule

We consider the two-ply connect geometry illustrated in Figure[dl An exact solution is formed by taking
the Dirichlet boundary condition corresponding to the sum of two fundamental solutions centered
inside the two islands. In Table|[l] we report the number of GMRES iterations (this was independent
of the quadrature formula). We see that the number of GMRES iterations is independent of the mesh
size, the error of the trapezoid rule has third-order accuracy, and the error of the Alpert quadrature
formula quickly decays to the GMRES tolerance.
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Fig. 4 A numerical solution of the Yukawa-Beltrami equation with k = 4 in a two-ply connected domain viewed
from two different angles. The exact solution is the sum of two fundamental solutions, each one centered inside the
regions bounded by I"

Table 1 The number of GMRES iterations and the error at a collection of points sufficiently far from I".

N # GMRES Trapezoid Error Alpert Error
32 9 6.67E-5 5.54E-6

64 9 7.84E-6 9.66E-10
128 9 9.86E-7 2.28E-11
256 9 1.24E-7 3.68E-11
512 9 1.59E-8 1.76E-10
1024 9 1.84E-9 1.20E-10

4.2 The effect of k

We consider the same two-ply connected geometry illustrated in Figure El We solve for varying
values of k > 1/2 using Alpert’s quadrature rule with N = 32. We report the condition number of
the resulting linear system and the required number of GMRES iterations in Table [2l We see that
for larger values of k, the conditioning of the linear system improves, and the number of GMRES
iterations decreases. In Figure[5] we plot the eigenvalues of the linear system for k = 1 and k = 64. We
see that for larger values of k, the eigenvalues cluster more strongly around 1/2 resulting in a smaller
number of GMRES iterations and a smaller condition number.

4.3 The effect of the geometry’s curvature

We let 2 be exterior of an ellipse with a varying aspect ratio of its major and minor axis. The boundary
I' is discretized with N = 512 points and is parameterized by z(a) = acos(a), y(a) = bsin(«), and
z(a) = /1 - 22(a) — y2(a), where a = 0.8 and b is varied in Table [3| We see that the curvature does
have an effect on the condition number of the corresponding linear system as well as on the required
number of GMRES iterations.
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Table 2 The condition number of the linear system corresponding to a discretization of (28] and the number of
GMRES iterations as a function of the parameter k.

Imag

Fig. 5 The eigenvalues of a discretization of for k =1 (left) and k = 64 (right)

3E-4

-3E-4 |-

0.50

k Condition Number # GMRES
0.51 4.22E1 14
1 1.22E1 13
2 4.50E0 11
4 2.17E0 9
8 1.45E0 8
16 1.24E0 7
32 1.13E0 6
64 1.07E0 6
k=1 k =64
* 1E-5 -
)

[ .o oo cmume oo - - g 0 - om e © oo @ sawewe|

o -1E-5 N

| | 1
0 0.25 0.50 0.75 0.46
Real Real

Table 3 The condition number of the linear system corresponding to (28)) and the number of required GMRES
iterations with respect to the ratio a/b.

% Condition Number # GMRES
1 1.11E0 2

2 1.51E0 6

4 2.88E0 8

8 5.95E0 11

16 1.23E1 19

32 2.52E1 35

64 4.72E1 54

128 1.51E2 83

256 1.43E3 227

4.4 A complex domain

We take a 36-ply connected domain and set the boundary condition to be a constant value of one
everywhere. We set the parameter of the PDE to be & = 4 and each boundary is discretized with
N = 32 points. The resulting linear system has 1152 unknowns, a condition number of 7.58, and
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Fig. 6 The numerical solution of the Yukawa-Beltrami equation with £k = 4 in a 36-ply connected domain. The
Dirichlet boundary condition is equal to one on each of the boundaries (black curves)

GMRES requires 25 iterations to reach the desired tolerance of 11 digits. A plot of the solution is in
Figure [0

5 Conclusions and Discussion

We have presented an integral equation strategy to solve the Dirichlet boundary value problem for
the Yukawa-Beltrami equation on a multiply-connected, sub-manifold of the unit sphere. The integral
equation formulation is based on a representation of a particularly useful form of a parametrix for
the Yukawa-Beltrami operator involving conical functions. Using a double-layer ansatz based on this
parametrix, a well-conditioned Fredholm equation of the second kind arises. Numerical experiments
confirm the analytic properties of this integral equation and by selecting appropriate quadrature rules,
we are able to compute highly accurate solutions. This integral equation formulation is amenable to
acceleration either by a fast multipole method or a fast direct solver; this is future work.

The Yukawa-Beltrami equation arises when a temporal discretization is applied to the heat equa-
tion. However, the solution of requires solving both a forced and a homogeneous problem. While
the present work is designed to solve the homogeneous problem, future work involves using volume
potentials to form solutions to the forced problem, as is done in [10] for the heat equation in the plane.

Other future work includes extending the presented methods to other elliptic PDEs such as the
Helmholtz or Stokes equations, and also to other two-dimensional manifolds. This will potentially
create a new class of methods for solving problems involving scattering or fluid mechanics on the
surface of smooth manifolds.
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